Lugaru’se

eRsllon

rogrammer’s editor
>

Epsilon Programmer’s Editor
User’s Manual and Reference

Version 14.02 - Reference Edition

This is revision 14.02b of the manual.
It describes version 14.02 of Epsilon and EEL.

Copyright © 1984, 2021 by Lugaru Software Ltd.
All rights reserved.

Lugaru Software Ltd.
1645 Shady Avenue
Pittsburgh, PA 15217

TEL: (412) 421-5911
E-mail: support@lugaru.com or sales@lugaru.com

ii

LIMITED WARRANTY

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FOR EITHER THE
INSTRUCTION MANUAL, OR FOR THE EPSILON PROGRAMMER’S EDITOR AND THE EEL SOFTWARE
(COLLECTIVELY, THE “SOFTWARE”).

Lugaru warrants the medium on which the Software is furnished to be free from defects in material under normal
use for ninety (90) days from the original date of purchase, provided that the limited warranty has been registered by
mailing in the registration form accompanying the Software.

LIMITED LIABILITY AND RETURN POLICY

Lugaru will be liable only for the replacement of defective media, as warranted above, which are returned shipping
prepaid to Lugaru within the warranty period. Because Lugaru cannot anticipate the intended use to which its Software
may be applied, it does not warrant the performance of the Software. LUGARU WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, CONSEQUENTIAL OR OTHER DAMAGES WHATSOEVER. However, Lugaru wants you to
be completely satisfied with the Software. Therefore, THE ORIGINAL PURCHASER OF THIS SOFTWARE MAY
RETURN IT UNCONDITIONALLY TO LUGARU FOR A FULL REFUND FOR ANY REASON WITHIN SIXTY
DAYS OF PURCHASE, PROVIDED THAT THE PRODUCT WAS PURCHASED DIRECTLY FROM LUGARU
SOFTWARE LTD.

COPYRIGHT NOTICE

Copyright © 1984, 2021 by Lugaru Software Ltd. All rights reserved.

Lugaru Software Ltd. recognizes that users of Epsilon may wish to alter the EEL implementations of various editor
commands and circulate their changes to other users of Epsilon. Limited permission is hereby granted to reproduce and
modify the EEL source code to the commands provided that the resulting code is used only in conjunction with Lugaru
products and that this notice is retained in any such reproduction or modification.

TRADEMARKS

“Lugaru” and “EEL” are trademarks of Lugaru Software, Ltd. “Epsilon” is a registered trademark of Epsilon Data
Management, Inc. Lugaru Software Ltd. is licensed by Epsilon Data Management, Inc. to use the “Epsilon” mark in
connection with computer programming software. There is no other affiliation or association between Epsilon Data
Management, Inc. and Lugaru Software Ltd. “Brief” is a registered trademark of Borland International.

SUBMISSIONS

Lugaru Software Ltd. encourages the submission of comments and suggestions concerning its products. All
suggestions will be given serious technical consideration. By submitting material to Lugaru, you are granting Lugaru the
right, at its own discretion and without liability to you, to make any use of the material it deems appropriate.

iii
Note to Our Users

Individual copies of Epsilon aren’t protected with a formal license agreement, but by copyright law. In
addition to the copying for backup permitted under copyright law, Lugaru grants you, the end-user, certain
other rights, as explained on this page.

It describes the rules for installing a single purchased copy of Epsilon on multiple computers, and
related matters. These rules apply to all copies of Epsilon purchased by an end-user and not subject to a
written license agreement.

Each copy of Epsilon includes packages for various operating systems or distributions, such as a
Windows package, a Debian Linux package, and a Macintosh package.

You may install a single purchased copy of Epsilon on up to four computers under your control, either
installing the same package on each, or a different package on each, or any combination, as long as you’re
the only one using any of these packages. Two individuals may not share a single copy of Epsilon if there is
any chance both individuals might use that copy of Epsilon at the same time, even by using separate
packages on separate computers.

You may not split a single purchased copy of Epsilon into its separate packages and sell them separately.

If you purchase an update to Epsilon, it becomes part of the same copy. You may not (for example) buy
Epsilon 10, update to Epsilon 11, and then sell Epsilon 10 while retaining Epsilon 11. The update does not
count as a separate copy and must accompany the original version if sold.

We hope that you will respect our efforts, and the law, and not allow illegal copying of Epsilon.

We wish to thank all of our users who have made Epsilon successful, and extend our welcome to all
new users.
Steven Doerfler
Lugaru Software, Ltd.

We produced this manual using the Epsilon Programmer’s Editor and the TgX typesetting system.
Duane Bibby did the illustrations.

v

Contents

Welcome
1.1 Introduction e e
1.2 Features
Getting Started
2.1 Installing Epsilon for Windows
2.2 Installing Epsilon for Unix
2.3 Installing Epsilon formacOS oL
2.3.1 Epsilon for macOS Keyboard Issues
2.3.2 BEpsilonformacOS Startup
2.3.3 Epsilon for macOS and Privacy-protected Folders
2.4 Installing Epsilon for DOS or Epsilon forOS/2
2.5 Tutorialo
2.6 Invoking Epsilon e e
2.7 Configuration Variables: The Environment and The Registry
2.7.1 How Epsilon FindsitsFiles
2.7.2 The Customization Directory
2.8 Epsilon Command Line Flags
29 FileInventory L
General Concepts
3.1 Buffers
32 WINdows
3.3 Epsilon’s Screen Layout
3.4 Different Keys for Different Uses: Modes
3.5 Keystrokes and Commands: Bindings L.
3.6 Repeating: Numeric Arguments v vt vt e e e e e e e
37 Viewing Lists
3.8 Typing Less: Completion & Defaults
3.9 Command History e e e e e
3.10 Mouse Supporto e e e e e e e e
311 TheMenuBar
3.11.1 Customizing Epsilon’sMenu
Commands by Topic
4.1 GettingHelp.
41.1 InfoMode. e
4.1.2 Web-based Epsilon Documentation
42 Moving Aroundo L e e e e e e e

23
23
23
23
25
26
27
27
28
30
31
32
33

vi

43

4.4

4.5

4.6

CONTENTS

4.2.1 Simple Movement Commands 42
422 MovinginLarger Units. L 42
423 Searching L e e 45
424 Bookmarks L e 50
425 Tags e e e e e 50
4.2.6 Source Code Browsing Interface 52
427 Comparing TwoBuffers 54
428 ComparingMany Files L 56
Changing Text e 57
43.1 Insertingand Deleting 57
4.3.2 The Region, the Mark, and Killing 59
433 Clipboard ACCESS v v i e e e e e e e e e e 61
434 Rectangle Commands 62
43.5 Capitalization e e 63
43.6 Replacing e 64
437 Regular Expressions e e 66
43.8 Rearran@ing L e e e e 75
439 IndentingCommands e e e 78
4.3.10 Aligningo 80
4.3.11 Automatically Generated Text 81
43.12 Spell Checking e 81
43.13 HexMode e 83
Language Modes e e 84
441 AsmMode 85
442 BatchMode e 85
443 CModeo 86
444 ConfigurationFileMode oo 90
445 GAMSMode e 90
44,6 HTML, XML,and CSSModes o i ittt it 91
447 IniFileMode e 93
448 MakefileMode 93
449 NSISMode 93
4410 PerlMode e e 94
4411 PHPMode e 95
4.4.12 PostScript Mode e e e 95
4.4.13 PythonMode e e 95
44.14 RMode 96
44.15 ShellMode e 96
44.16 TclMode 97
4417 TeXandLaTeXModes i e 97
4418 VHDLMode e 100
44.19 Visual BasicMode 100
More Programming Features L 100
45.1 NavigatinginSource Code 101
452 PullingWords e 101
453 AccessingHelp 102
454 Context-Sensitive Help 102
4.5.5 Commenting Commands 104
Fixing Mistakes e e 105
4.6.1 Undoing e 105

4.6.2 InterruptingaCommand L oL 106

CONTENTS vii

47 TheScreen e 106
47.1 DisplayCommands e e e 106

4.7.2 Horizontal Scrolling e 108

473 WINdOwWS o e e e 108
474 Customizing the Screen 110

4775 Fonts e 112

47.6 Setting Colors e e 113

477 CodeColoring i e e e e e 114

47.8 Window Borders L e 115

479 TheBell. e 116

4.8 BuffersandFiles 117
48.1 Buffers e 117
482 Files. e 118

483 FileVariables e 127

4.84 Internet SUPPOTt L L. e e e e e 130

4.8.5 Unicode Features e 136

48.6 Printing e 137

48.7 Extendedfilepatterns 138

4.8.8 Directory Editing 139

4.89 BufferListEditing 143

4.9 Starting and Stopping Epsilon oo o 144
49.1 SessionFiles 144

49.2 File AssOCiations e e 146

493 Sending FilestoaPriorInstance 146
494 MS-Windows Integration Features 147

4.10 Running Other Programs e 149
4.10.1 The Concurrent Process e 150
4.10.2 Compiling FromEpsilon L oo 153

4.11 Repeating Commands 155
4.11.1 Repeating a Single Command 155
4.11.2 Keyboard Macros e e 155

4.12 Simple CuStomizZing ¢ v v vt e e e e e e e e e e e e e e 157
4.12.1 BIndings e e e e e e 157
4.12.2 Brief Emulation. e 159
4123 CUAKeyboard e 159
4124 Variables 159
4.12.5 Saving Changes to Bindings and Variables 162
4126 CommandFiles e 164

4.13 Advanced TOPICS o o e e e e e e 168
4.13.1 Changing Commands withEEL 168
4.13.2 Updating froman Old Version 170
4.13.3 Keys and their Representation 172
4134 Customizingthe Mouse L 175

4.14 Miscellaneous e 176
5 Alphabetical Command List 179
6 Variables 265
7 Changing Epsilon 387

8 Introduction to EEL 391

viii CONTENTS
8.1 Epsilon Extension Language e 391
8.2 EEL Tutorial e e e e e e e 391

9 Epsilon Extension Language 397
9.1 EEL Command LineFlags 397
9.2 The EEL Preprocessor o v v i i it i e i e e e e e e 398
9.3 LexicalRules e 401

9.3.1 Identifiers e e e e e 401
9.3.2 Numeric Constants o v v v v v vt e e e e e e e 401
9.3.3 Character Constants e e 401
9.34 String Constants e e e e 402
9.4 Scopeof Variables e 402
9.5 DataTypes o v e e e e e e e e 403
9.5.1 Declarations e e e e e e e e 404
9.5.2 Simple Declarators L 405
9.5.3 Pointer Declarators e 405
9.54 ArrayDeclarators e 406
9.5.5 Function Declarators e e 407
9.5.6 Structure and Union Declarations 407
9.5.7 Complex Declarators e 409
9.5.8 Typedefs e 409
959 TypeNames i e e 409
9.6 Initialization e e e e e e e e e e 410
0.7 Statements e e e e e e e e e e e e e e 412
9.7.1 Expression Statement 412
9.7.2 IfStatement e 413
9.7.3 While, Do While, and For Statements 413
9.7.4 Switch, Case, and Default Statements 413
9.7.5 Break and Continue Statements 414
9.7.6 Return Statementol 414
9.7.7 Save_var and Save_spot Statements 414
9.7.8 On_exitStatement e 415
9.7.9 Goto and Empty Statementso 416
9.7.10 Block e 416
0.8 Conversions i e e e e e e e e e e e 416
9.9 Operator Grouping v v v it e e e 417
9.10 Order of Evaluation e e e e 418
9.11 EXPressions i i it e e e e e e e 418
9.11.1 Constants and Identifiers 418
9.11.2 Unary Operators o o v v v vttt e e e e e 419
9.11.3 Simple Binary Operators e 420
9.11.4 Assignment Operators v v v v et e e e e e e e e 421
9.11.5 Function Calls e 422
9.11.6 Miscellaneous Operators e 422
9.12 Constant EXpressions i e e e e e e 423
9.13 Global Definitions e 423
9.13.1 KeyTables e 424
9.13.2 Color Classes v v v i et e e e e e e e e e 425
9.13.3 Function Definitions 427
9.14 Differences Between EEL AndC 429
9.15 Syntax Summary e e 430

CONTENTS ix

10 Primitives and EEL Subroutines 439
10.1 Buffer Primitives 439
10.1.1 Changing Buffer Contents, 439
10.1.2 Moving Text Between Buffers 441
10.1.3 Getting Text fromaBuffer L. 441
10.1.4 Spots . . . o o e e 442
10.1.5 Narrowing o oot e e e e 444
10.1.6 Undo 445
10.1.7 Searching Primitives L 446
10.1.8 MovingbyLines L 451
10.1.9 Other Movement Functions 452
10.1.10 Sorting Primitives e e e 453
10.1.11 Other Formatting Functions 453
10.1.12Comparingo e e 454
10.1.13 Managing Buffers L 456
10.1.14 Catching Buffer Changes 457
10.1.15 Listing Buffers e 458

10.2 Display Primitives o e e e e e e e e e e e 459
10.2.1 Creating & Destroying Windows 459
10.2.2 Window Resizing Primitiveso 461
10.2.3 Preserving Window Arrangements 461
10.2.4 Pop-up Windows e 462
10.2.5 Pop-up Window Subroutines 464
10.2.6 Window Attributes 465
10.2.7 Buffer Textin Windows 466
10.2.8 Window Titles and Mode Lines 468
10.2.9 Normal Buffer Display 471
10.2.10 Displaying Status Messages o v v vttt e e e 477
10.2.11 Printf-style Format Strings 480
10.2.12 Other Display Primitives 482
10.2.13 Highlighted Regions 483
10.2.14 Character Coloring v it 486
10.2.15 Code Coloring Internals 488
10.2.16Colors o e e e 492

10.3 File Primitives o o e e e 495
103.1 ReadingFiles 495
10.3.2 Writing Fileso o 497
10.3.3 Line Translation 498
10.3.4 Character Encoding Conversions 500
10.3.5 More File Primitives 502
10.3.6 File Properties 505
10.3.7 Low-level File Primitives, 507
10.3.8 DIrectories o v vt e e e e 508
10.3.9 Manipulating FileNameso .. 510
10.3.10 Internet Primitives L e 514
10.3.11 Tagging Internals e 519

10.4 Operating System Primitives e 519
10.4.1 System Primitives L e 519
10.4.2 Window System Primitives L 523
1043 TiMING o o oo 527

10.4.4 Calling DLLs (Windows Only) 528

10.4.5 RunningaProcess
10.5 Control Primitives
10.5.1 ControlFlow,
10.5.2 Character Types,
10.5.3 Examining Strings
10.5.4 Modifying Stringso
10.5.5 Byte Arrays v v v i i e e e e
10.5.6 Memory Allocation
10.5.7 TheName Table
10.5.8 Built-in and User Variables

10.5.9 Buffer-specific and Window-specific Variables

10.5.10 Bytecode Files
10.5.11 Starting and Finishing
10.5.12 EEL Debugging and Profiling
10.5.13 Help Subroutines
10.6 Input Primitives
10.6.1 Keys o
10.6.2 TheMouse
10.6.3 WindowEvents
10.6.4 Completion Subroutines
10.6.5 Other Input Functions
10.6.6 Dialogs
10.6.7 TheMainLoop
10.6.8 Bindings
10.7 Defining Language Modes
10.7.1 Language-specific Subroutines

11 Error Messages

A Index

CONTENTS

CONTENTS

X1

Chapter 1

Welcome

1.1

Introduction

Welcome! We hope you enjoy using Epsilon. We think you’ll find that Epsilon provides power and
flexibility unmatched by any other editor for a personal computer.

Epsilon has a command set and general philosophy similar to the EMACS-style editors used on many

different kinds of computers. If you’ve used an EMACS-style editor before, you will find Epsilon’s most
commonly used commands and keys familiar. If you haven’t used an EMACS-style editor before, you can
use Epsilon’s tutorial program. Chapter 2 tells you how to install Epsilon and how to use the tutorial
program.

1.2

Features

Full screen editing with an EMACS-style command set.

An exceptionally powerful embedded programming language, called EEL, that lets you customize or
extend the editor. EEL provides most of the expressive power of the C programming language.

You can invoke your compiler or “make” program from within Epsilon, then have Epsilon scan the
output for error messages, then position you at the offending line in your source file. See page 153.

An undo command that lets you “take back” your last command, or take back a sequence of
commands. The undo facility works on both simple and complicated commands. Epsilon has a redo
command as well, so you can even undo your undo’s. See page 105.

Very fast redisplay. We designed Epsilon specifically for the personal computer, so it takes advantage
of the high available display bandwidth.

Epsilon can dynamically syntax-highlight source code files written in many different languages,
showing keywords in one color, functions in another, string constants in a third, and so forth.

Epsilon can finish typing long identifier names for you.

You can interactively rearrange the keyboard to suit your preferences, and save the layout so that
Epsilon uses it the next time. Epsilon can also emulate the Brief text editor’s commands, or use a
CUA-style keyboard (like various Windows programs).

You can edit a virtually unlimited number of files simultaneously.

Epsilon understands Internet URLs and can asynchronously retrieve and send files via FTP. It also
includes support for Telnet, SSH, SCP, and various other protocols.

Epsilon provides a multi-windowed editing environment, so you can view several files simultaneously.
You can use as many windows as will fit on the display. See page 108.

Under Windows, Epsilon provides a customizable tool bar.
The ability to run other programs from within Epsilon in various ways. See page 149.

The ability to run some classes of programs concurrently with the output going to a window. Details
begin on page 150.

An extensive on-line help system. You can get help on what any command does, what any key does,
and on what the command executing at the moment does. And Epsilon’s help system will
automatically know about any rearrangement you make to the keyboard. See page 37.

Chapter 1. Welcome

An extensible “tags” system for many programming languages that remembers the locations of
subroutine and variable definitions. You provide a subroutine name, for instance, and Epsilon takes
you to the place that defines that subroutine. Alternatively, you can position the cursor on a function
call, hit a key, and jump right to the definition of that function. See page 50.

Completion on file names and command names. Epsilon will help you type the names of files and
commands, and display lists of names that match a pattern that you specify. You can complete on
many other classes of names too. This saves you a lot of typing. See page 28.

Support for Unicode files and files using a variety of other character sets.

Under Windows, you can drag and drop files or directories onto Epsilon’s window, and Epsilon will
open them.

Commands to manipulate words, sentences, paragraphs, and parenthetic expressions. See the
commands starting on page 42.

Indenting and formatting commands. Details start on page 77.

A Kkill ring to store text you’ve previously deleted. You can set the number of such items to save. See
page 59.

A convenient incremental search command (described on page 45), as well as regular searching
commands, and search-and-replace commands.

Regular expression searches. With regular expressions you can search for complex patterns, using
such things as wildcards, character classes, alternation, and repeating. You can even search based on
syntax highlighting, finding only matches in a programming language comment or string, or using
Unicode property names.

A fast grep command that lets you search across a set of files. See page 48. You can also replace text
in a set of files.

Extended file patterns that let you easily search out files on a disk.

A directory editing command that lets you navigate among directories, copying, moving, and deleting
files as needed. It even works on remote directories via FTP or SCP.

Fast sort commands that let you quickly sort a buffer. See page 75.

A powerful keyboard macro facility (see page 155), that allows you to execute sequences of
keystrokes as a unit, and to extend the command set of the editor. You’ll find Epsilon’s keyboard
macros very easy to define and use.

Commands to compare two files and find the differences between them. You can compare
character-by-character or line-by-line, displaying results in a variety of formats. See page 54.

You can choose from a variety of built-in screen layouts, making Epsilon’s screen look like those of
other editors, or customize your own look for the editor.

1.2. Features

Chapter 2

Getting Started

This chapter tells you how to install Epsilon on your system and explains how to invoke Epsilon. We also
describe how to run the tutorial, and list the files in an Epsilon distribution.

2.1 Installing Epsilon for Windows

To install Epsilon for Windows, run the Windows installer you downloaded. The usual version installs
Epsilon system-wide and requires admin privileges, but we also include a setup program that does not, and
installs Epsilon just for the current user.

Each installation program installs the GUI version of Epsilon for Windows, and the Windows Console
version. We named the Windows GUI version epsilon. exe and the console version epsilonc.exe.

The installation program creates program items to run Epsilon. You can recreate them, set up file
associations, change the registration information shown in Epsilon’s About box, and do similar
reconfiguration tasks by running Epsilon’s configure-epsilon command.

The installer also sets the registry entry Software\Lugaru\Epsilon\EpsPathversion in the
HKEY_CURRENT_USER hierarchy to include the name of the directory in which you installed Epsilon (where
version represents Epsilon’s version number).

You can uninstall Epsilon by using the “Programs and Features” Control Panel, or from
configure-epsilon.

2.2 Installing Epsilon for Unix

Epsilon includes a version for Linux and a separate version for FreeBSD. We describe them (and the macOS
version) collectively as the “Unix” version of Epsilon. The Linux version is available in .rpm and .deb
formats, while the FreeBSD version is provided in .tar.bz2 format.

FEDORA, RED HAT, AND CENTOS LINUX

To install on Fedora, Red Hat, CentOS, and other Linux distributions that use .rpm files, double-click
the .rpm file. Or install manually by using one of these commands:

sudo dnf localinstall ./path/to/filename.rpm (for newer systems)
sudo yum localinstall ./path/to/filename.rpm
sudo rpm -i ./path/to/filename.rpm (for older systems)

You can also install the .rpm version without sudo access. Type rpm2cpio filename.rpm | cpio
-idmv to extract Epsilon’s directory hierarchy into the current directory, then create ~/bin if necessary
and run opt/epsilon14.02/esetup. This will not install any dependencies.

DEBIAN AND UBUNTU LINUX

To install on Debian, Ubuntu, and other Linux distributions that use .deb files, double-click the .deb file.
Or install manually by using one of these commands:

sudo gdebi filename.deb (for newer systems)
sudo dpkg -i filename.deb

If dpkg complains of missing dependencies, run apt-get -f install.

You can also install the .deb version without sudo access. Type dpkg -x filename.deb dirname to
extract Epsilon’s directory hierarchy into the specified directory, then create ~/bin if necessary and run

6 Chapter 2. Getting Started

opt/epsilon14.02/esetup. This will not install any dependencies. (Use dpkg-deb -f filename.deb
depends to list the packages Epsilon needs, dpkg -1 packagename to see if each is installed.)

FREEBSD

To install on FreeBSD, as root, execute these commands:

cd /opt (or /ust/local)
tar xjf filename-bsd.tarbz2
./epsilon14.02/esetup

The FreeBSD version of Epsilon uses a helper program to access certain shared library files from the
glibc 2.1 NSS subsystem. If necessary, the installation script will compile it to provide Epsilon with these
services.

AFTER INSTALLING

Epsilon runs as an X11 program when run under the X11 windowing system, and as a text program
outside of X. Epsilon knows to use X when it inherits a DISPLAY environment variable. You can override
Epsilon’s determination by providing a -vt flag to make Epsilon run as a text program, or an appropriate
-display flag to make Epsilon connect to a given X server. On platforms where Epsilon uses shared libraries,
you can run the program terminal-epsilon instead of epsilon; it will run as a text program even where
X11 shared libraries are not installed.

Epsilon also recognizes these standard X11 flags:

-bw pixels or -borderwidth pixels This flag sets the width of the window border in pixels. An
Epsilon.borderWidth resource may be used instead.

-display disp This flag makes Epsilon use disp as the display instead of the one indicated by the DISPLAY
environment variable. It follows the standard X11 syntax.

~fn font or —font font This flag specifies the font to use. The Alt-x set-font command can select a different
font from within Epsilon. Epsilon will remember any font you select with set-font and use it in future
sessions; this flag overrides any remembered font.

-geometry geometry This flag sets the window size and position, using the standard X11 syntax for
geometry flags. It uses the format WIDTHxHEIGHT+X0FF+YOFF. The WIDTH and HEIGHT values are in
characters, separated by an “x”. The XOFF and YOFF values are in pixels, measured from the top left
corner of the screen. You can use - instead of + as the offset separator to positon relative to the right
or bottom edge of the screen instead. You may omit trailing values (for instance, just specify width
and height) and the offsets (following either a + or — separator) may be negative. Without this flag,
Epsilon looks for an Epsilon.geometry resource, and if none, restores the size (and optionally,
position: see Epsilon.recordPosition below) from the last time Epsilon exited.

-name resname This flag tells Epsilon to look for X11 resources using a name other than “Epsilon”.

~title title This flag sets the title Epsilon displays while starting. An Epsilon.title resource may be used
instead.

-xrm resourcestring This flag specifies a specific resource name and value, overriding any defaults.

Epsilon uses various X11 resources. You can set them from the command line with a flag like -xrm
Epsilon.cursorstyle:1 or put a line like Epsilon. cursorstyle:1 in your X resources file, which is
usually named ~/.Xresources or ~/.Xdefaults:

Epsilon.cursorstyle: 1

2.3. Installing Epsilon for macOS 7

You’ll need to tell X to reread the file after making such a change, using a command like xrdb -merge
~/ .Xresources.

As another option, you can put X resources in a file named ~/.epsilon/Xcustomresources and
Epsilon will load it each time it starts. These override any resources previously loaded on the server, and are
in turn overridden by font selections you make within Epsilon (which Epsilon automatically saves), and by
resources set on the command line.

Epsilon uses these X resources:

Epsilon.borderWidth This sets the width of the border around Epsilon’s window.

Epsilon.cursorstyle Under X11, Epsilon displays a block cursor whose shape does not change. Define a
cursorstyle resource with value 1 and Epsilon will use a line-style cursor, sized to reflect overwrite
mode or virtual space mode. Note: This cursor style does not display correctly on some X11 servers.

Epsilon.font This resource sets Epsilon’s font. It must be a fixed-width font. If you set a font from within
Epsilon, it remembers your selection in a file /. epsilon/Xresources and uses it in future
sessions. Epsilon uses this resource if there’s no font setting in that file.

Epsilon.geometry This resource provides a geometry setting for Epsilon. See the —-geometry flag above for
the format.

Epsilon.recordPosition Define this resource with a value of 1 and Epsilon will remember and restore its
window position on the screen, as well as its window size.

Epsilon.title This resource sets the title Epsilon displays while starting.

2.3 Installing Epsilon for macOS

Epsilon for macOS supports drag and drop installation. Simply open the downloaded disk image file and
drag the Epsilon application inside to your Applications folder, or to the Applications alias. Epsilon supports
macOS version 10.9 and later.

Epsilon for macOS runs as an X11 app when XQuartz is installed, and in console mode as a “Terminal”
app when it isn’t. Installing XQuartz from https://www.xquartz.org/ is highly recommended. It lets Epsilon
display more colors, use font styles like bold and italic, recognize many more key combinations, and is also
necessary if you want to edit files in folders like ~/Documents that receive privacy protection under macOS
10.15 Catalina and later. (See page 9 for more on macOS privacy contexts and Epsilon.)

Any time Epsilon documentation mentions the “Unix version” of Epsilon, this also includes the macOS
version. Any time Epsilon documentation mentions Epsilon for X11, this includes Epsilon running under
XQuartz (an X11 server). (For example, Epsilon for macOS running under XQuartz recognizes all the X11
flags described in the previous section, and all the X11 resource names documented there.)

2.3.1 Epsilon for macOS Keyboard Issues

When Epsilon runs under macOS, certain keyboard issues arise. This section explains how to resolve them.

¢ Under XQuartz, Epsilon uses the Command key as its Alt modifier key. XQuartz’s Preferences should
be set so the “Enable key equivalents under X11” option is disabled (called “Enable Keyboard
Shortcuts” in older XQuartz versions); otherwise XQuartz will reserve for itself many key
combinations that use the Command key. Alternatively, you can substitute multi-key sequences like
Escape f for the key combination Alt-f. See the alt-prefix command.

8 Chapter 2. Getting Started

* macOS normally reserves the function keys F9 through F12 for its own use. Epsilon also uses these
keys for various functions. You can set macOS to use different keys for these four functions
system-wide, via System Preferences > Keyboard, but another option is to use alternative keys in
Epsilon.

For the undo and redo commands on F9 and F10, the undo-changes and redo-changes commands on
Ctrl-F9 and Ctrl-F10 make fine replacements. Or you can run undo and redo using their alternative
key bindings Ctrl-x u and Ctrl-x 1, respectively.

For the previous-buffer and next-buffer commands on F11 and F12, you can use their alternative key
bindings, Ctrl-x < and Ctrl-x >, respectively.

* When Epsilon for macOS runs in console mode (typically, in an instance of the Terminal program)
because XQuartz is not installed, it uses the TERM environment variable and the terminfo database of
terminal characteristics. If you run Epsilon under a terminal program like Terminal and the TERM
setting doesn’t match the terminal program’s actual behavior, some things won’t work right. The
“xterm-color” setting comes closest to Terminal’s actual default behavior. Select this option from
Terminal’s Preferences.

With the xterm-color setting, function keys F1-F4 may not work right; the commands on these keys
almost all have alternative bindings you can use instead: For F1 (the help command), use the key
labeled “Help” on Mac keyboards that have one, or type Alt-7 or Ctrl-_. For F2 (the named-command
command), use the Alt-x key combination instead. For F3 (the pull-word command), use the Ctrl-(Up)
key. For F4 (the bind-to-key command), type Alt-x bind-to-key. Or you can change Terminal’s settings
for these keys, or the terminfo database, so they match. But the best way to avoid these issues entirely
is to install XQuartz so Epsilon can run as an X11 program, as above.

2.3.2 Epsilon for macOS Startup

When you run Epsilon for macOS, a helper program runs first and manages starting Epsilon. For example, it
adds various flags to Epsilon’s command line that make it start in your home directory the very first time you
run Epsilon, remember any directory you’ve set from session to session, and use a single instance.

Unlike most Unix-based systems, macOS applications run from an icon aren’t descended from any shell
process that loads user-defined environment variables. Since Epsilon uses some environment variables for
configuration, on macOS, Epsilon’s helper program loads environment variables from the file
~/.epsilon/environment if it exists. The format is a series of lines with VAR=VALUE, the same as the
env command produces. Invalid lines are ignored. Any settings here override variables in the environment.

Epsilon includes a setup script, which will install Epsilon and its EEL compiler on your path, so you
can run them from the command line more conveniently. Running it is optional. To run Epsilon’s setup
script from a shell prompt, type

sudo "/Applications/Epsilon 14.02.app/Contents/esetup"”

assuming /Applications is where you installed Epsilon.

The setup script creates a link to Epsilon’s startup helper, instead of running Epsilon’s executable
directly. If you want to run Epsilon using a shell alias, via an XQuartz Applications menu entry, or in some
similar way, either have it run the startup helper program within Epsilon’s app bundle (Epsilon
14.02.app/Contents/MacOS/epsilon-starter), or use the “open” command on Epsilon’s app bundle, rather
than directly running the Epsilon binary file within the app bundle, to let it switch privacy contexts if
necessary. (See the next section.)

Normally Epsilon runs with a single instance when invoked via its icon, while each command-line
invocation begins a new instance. You can change this by adding an entry to the file

2.4. Installing Epsilon for DOS or Epsilon for OS/2 9

~/.epsilon/startup-config. Add the line singleinstance=always to make Epsilon, when run from
a command line, first try to bring any running instance to the front (via the —add flag), starting up normally if
there’s no previous instance running. Add the line singleinstance=never to make Epsilon’s icon start a
new Epsilon instance always. (This works for icons in a folder, not icons in the dock, which are always
single-instance.)

Similarly, from an icon Epsilon normally restores the current directory from a previous session (via the
-w1 flag), while from the command line it inherits the invoking shell’s current directory. You can change
this by adding a line useolddir=always or useolddir=never, just as above. If you want the startup
helper to pass a different flag in such cases, set wflag=-w17, for example. (The value 17 combines 1,
setting the current directory from a previous session, and 16, overriding that by setting the current directory
to that of the first file listed on the command line, if any.)

Some other settings are available to work around issues. To operate with the macOS privacy system
explained in the next section, Epsilon’s startup helper sometimes needs to know if X11’s DISPLAY
environment variable refers to a local display, where starting Epsilon in a different privacy context would
work, or a remote ssh connection where it would not. At present, it checks to see if the value of DISPLAY
contains “xquartz:”, which indicates a local X11 server. You can change this string by setting
localdisplaydetect, if that’s not working right with your configuration. Epsilon also skips switching
privacy contexts if invoked with sudo, but this check may be disabled with ignoresudo=1.

2.3.3 Epsilon for macOS and Privacy-protected Folders

When you run Epsilon for macOS, a helper program runs first and manages starting Epsilon. Starting in
10.15 Catalina, macOS uses a privacy system to keep programs from accessing privacy-protected folders
like Downloads, Documents, or Desktop. Epsilon’s startup helper tries to ensure it’s running in a privacy
context that permits macOS to ask for your permission before Epsilon can access these. (If not, macOS will
either block Epsilon from accessing such folders, or apply the privacy context of some other program like
Terminal.)

For this to work, XQuartz must be installed (so Epsilon runs as an X11 program), and you must either
start Epsilon from its icon, or else (for command-line invocation), without using sudo. If you’re connecting
to your Mac over an ssh connection, that will also keep macOS from selecting Epsilon’s privacy context.

You can change your privacy selections for Epsilon under System Preferences > Security & Privacy >
Files and Folders, or let Epsilon access all files by manually adding it to System Preferences > Security &
Privacy > Full Disk Access.

2.4 Installing Epsilon for DOS or Epsilon for 0S/2

Older versions of Epsilon for DOS and OS/2 are also available for download.

To install Epsilon for DOS or OS/2, unzip the appropriate archive and run Epsilon’s installation
program by typing:

install

Follow the directions on the screen to install Epsilon. The installation program will ask before it
modifies or replaces any system files. The DOS executable is named epsdos.exe, and the OS/2 executable is
named epsilon.exe.

10 Chapter 2. Getting Started

2.5 Tutorial

If you’ve never used Epsilon or EMACS before, you should run the tutorial to become acquainted with some
of Epsilon’s simpler commands.

The easiest way to run the tutorial is to start Epsilon and select Epsilon Tutorial from the Help menu. (If
you’re running a version of Epsilon without a menu bar, you can instead press the F2 key in Epsilon and
type the command name tutorial. Or you can start Epsilon with the -teach flag.)

The tutorial will tell you everything else you need to know to use the tutorial, including how to exit the
tutorial.

2.6 Invoking Epsilon

You can start Epsilon using the icon created by the installer. If you chose to put Epsilon on your PATH (for
Windows, by selecting that option; for macOS, by running the esetup program), you can run Epsilon by
simply typing “epsilon”.

Epsilon for Windows also includes a Windows Console version of Epsilon, which you can run by typing
“epsilonc”. The corresponding terminal-based version on other platforms is called “terminal-epsilon”, or
you can start Epsilon with its -vt flag. On Unix platforms, you can also run Epsilon using the command
“lugaru-epsilon”, which is handy if your system includes a different and unrelated program also named
epsilon.

The first time you run Epsilon, you will get a single window containing an empty document. You can
give Epsilon the name of a file to edit on the command line. For example, if you type

epsilon sample.c

then Epsilon will start up and read in the file sample. c. If the file name contains spaces, surround the entire
name with double-quote characters.

epsilon "a sample file.c"

When you name several files on the command line, Epsilon reads each one in, but puts only up to three
in windows (so as not to clutter the screen with tiny windows). You can set this number by modifying the
max-initial-windows variable.

If you specify files on the command line with wild cards, Epsilon will show you a list of the files that
match the pattern in dired mode. See page 139 for more information on how dired works. File names that
contain only extended wildcard characters like , ; [or], and no standard wildcard characters like * or ?, will
be interpreted as file names, not file patterns. (If you set the variable expand-wildcards to 1, Epsilon will
instead read in each file that matches the pattern, as if you had listed them explicitly. Epsilon for Unix does
this too unless you quote the file pattern.)

Epsilon normally shows you the beginning of each file you name on the command line. If you want to
start at a different line, put “+number” before the file’s name, where number indicates the line number to go
to. You can follow the line number with a : column number too. For example, if you typed

epsilon +26 file.one +144:20 file.two

then you would get file.one with the cursor at the start of line 26, and file.two with the cursor at line 144,
column 20. You can instead specify a character offset using the syntax “+pnumber” to go to character offset
number in the buffer.

Windows users running the Cygwin environment may wish to configure Epsilon to accept Cygwin-style
file names on the command line. See the cygwin-filenames variable for details.

2.7. Configuration Variables: The Environment and The Registry 11

By default, Epsilon will also read any files you were editing in your previous editing session, in addition
to those you name on the command line. See page 144 for details.

If you’re running an evaluation version of Epsilon or a beta test version, you may receive a warning
message at startup indicating that soon your copy of Epsilon will expire. You can disable or delay this
warning message (though not the expiration itself). Create a file named no-expiration-warning in
Epsilon’s main directory. Put in it the maximum number of days warning you want before expiration.

2.7 Configuration Variables: The Environment and The Registry

Epsilon for Unix uses several environment variables to set options and say where to look for files. Epsilon
for Windows stores such settings in the System Registry, under the key
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon. Epsilon’s setup program will generally create all
necessary registry keys automatically.

We use the term configuration variable to refer to any setting that appears as an environment variable
under Unix, or a registry entry under Windows. There are a small number of settings that are stored in
environment variables on all platforms; these are generally settings that are provided by the operating
system. These include COMSPEC, TMP or TEMP, EPSRUNS, and MIXEDCASEDRIVES.

Under Windows, the installation program creates a registry entry similar to this:
HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath=";c:\epsilon

Of course, the actual entry, whether it’s an environment variable setting or an entry in the system
registry, would contain whatever directory Epsilon was actually installed in, not c:\epsilon.

If you have more than one version of Epsilon on your computer, you may want each to use a different
set of options. You can override many of the configuration variables listed below by using a configuration
variable whose name includes the specific version of Epsilon in use. For example, when Epsilon needs to
locate its help file, it normally uses a configuration variable named EPSPATH. Epsilon version 6.01 would
first check to see if a configuration variable named EPSPATH601 existed. If so, it would use that variable. If
not, it would then try EPSPATH60, then EPSPATHS6, and finally EPSPATH. Epsilon does the same sort of
thing with all the configuration variables it uses, with the exception of DISPLAY, EPSRUNS, TEMP, and
TMP.

Epsilon uses a similar procedure to distinguish registry entries for the Windows Console mode version
from registry entries for the Windows GUI version of Epsilon. For the console version, it checks registry
names with an -NTCON suffix before the actual names; for the GUI version it checks for a -WIN suffix. So
Epsilon 10.2 for Windows Console would seek an EPSPATH configuration variable using the names
EPSPATH102-NTCON, EPSPATH102, EPSPATH10-NTCON, EPSPATH10, EPSPATH-NTCON, and
finally EPSPATH, using the first one it finds.

For example, the Windows installation program for Epsilon doesn’t actually add the EPSPATH entry
shown above to the system registry. It really uses an entry like

HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath80=c:\epsilon

where EpsPath80 indicates that the entry should be used by version 8.0 of Epsilon, or version 8.01, or 8.02,
but not by version 8.5. In this way, multiple versions of Epsilon can be installed at once, without overwriting
each other’s settings. This can be helpful when upgrading Epsilon from one version to the next.

Here we list all the configuration variables that Epsilon can use. Remember, under Windows, most of
these names refer to entries in the registry, as described above. Under Unix, these are all environment
variables.

12 Chapter 2. Getting Started

CMDCONCURSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command
line when you use the start-process command with a numeric argument. It overrides
CMDSHELLFLAGS. See page 150.

CMDSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command line when
it runs a subshell that should execute a single command and exit.

COMSPEC Epsilon for Windows needs a valid COMSPEC environment variable in order to run another
program. Normally, the operating system automatically sets up this variable to give the file name of
your command processor. If you change the variable manually, remember that the file must actually
exist. Don’t include command line options for your command processor in the COMSPEC variable. If
a configuration variable called EPSCOMSPEC exists, Epsilon will use that instead of COMSPEC.
(For Unix, see SHELL below.)

DISPLAY Epsilon for Unix tries to run as an X11 program if this environment variable is defined, using the
X server display it specifies.

EEL The EEL compiler looks for a configuration variable named EEL before examining its command line,
then “types in” the contents of that variable before the compiler’s real command line. See page 397.

EPSCOMSPEC See COMSPEC above.

EPSCONCURCOMSPEC If defined, Epsilon for Windows runs the shell command processor named by
this variable instead of the one named by the EPSCOMSPEC or COMSPEC variables, when it starts a
concurrent process. See page 150.

EPSCONCURSHELL If defined, Epsilon for Unix runs the shell command processor named by this
variable instead of the one named by the EPSSHELL or SHELL variables, when it starts a concurrent
process. See page 150.

EPSCUSTDIR Epsilon uses the directory named here as its customization directory (see page 14) instead
of the usual one (under \Users or \Documents and Settings, for Windows, or at */.epsilon,
for Unix). The directory must already exist, or Epsilon will ignore this variable.

EPSILON Before examining the command line, Epsilon looks for a configuration variable named
EPSILON and “types in” the value of that variable to the command line before the real command line.
See page 14.

EPSMIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 126 for details.

EPSPATH Epsilon uses this configuration variable to locate its files. See page 13.

EPSRUNS When Epsilon runs another program, it sets this environment variable to indicate to the other
program that it’s running within Epsilon. A setting of C indicates the subprocess is running within
Epsilon’s concurrent process. A setting of P indicates the subprocess is running via the filter-region
command or similar. A setting of Y indicates Epsilon ran the process in some other way, such as via
the shell command.

EPSSHELL See SHELL below.
ESESSION Epsilon uses this variable as the name of its session file. See page 144.

INTERCONCURSHELLFLAGS If defined, Epsilon uses the contents of this variable as the command
line to the shell command processor it starts when you use the start-process command without a
numeric argument. It overrides INTERSHELLFLAGS. See page 150.

2.7. Configuration Variables: The Environment and The Registry 13

INTERSHELLFLAGS If defined, Epsilon uses the contents of this variable as a subshell command line
when it runs a subshell that should prompt for a series of commands to execute. See page 150.

MIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon
doesn’t change the case of file names on the listed drives. See page 126 for details.

NOFOCUSCLICK If defined, when you click on an Epsilon window under MS-Windows, while another
program has the focus, Epsilon will get the focus but will otherwise ignore the mouse click. By
default, it treats mouse clicks the same whether or not they switch the focus to Epsilon, setting point
to the character you clicked on.

PATH The operating system uses this variable to find executable programs such as epsilon.exe. Make sure
this variable includes the directory containing Epsilon’s executable files if you want to conveniently
run Epsilon from the command line.

SHELL Epsilon for Unix needs a valid SHELL environment variable in order to run another program. If a
configuration variable called EPSSHELL exists, Epsilon will use that instead of SHELL. (See
COMSPEC above for the non-Unix equivalent.)

TEMP Epsilon puts any temporary files it creates in this directory, unless a TMP environment variable
exists. See the description of the -fs flag on page 15.

TMP Epsilon puts any temporary files it creates in this directory. See the description of the -fs flag on page
15.

2.7.1 How Epsilon Finds its Files

Sometimes Epsilon needs to locate one of its files. For example, Epsilon needs to read an .mnu file like
gui.mnu or epsilon.mnu to determine what commands go in its menu bar.

Epsilon searches for the file in each directory named by the EPSPATH configuration variable. This
configuration variable should contain a list of directories, separated by semicolons (or for Unix, colons).
Epsilon will then look for the file in each of these directories. Under Windows, a directory named ~ in an
EPSPATH variable has a special meaning. It refers to the current user’s customization directory. See the
next section.

If there is no EPSPATH configuration variable, which is the usual case on non-Windows systems,
Epsilon constructs a default one. It consists of the user’s customization directory, then the parent of the
directory containing Epsilon’s executable. For Unix, the default EPSPATH also contains the directories
/opt/epsilonVER and /ust/local/epsilonVER (where VER indicates the current version, such as 10.01). For
Mac OS, it also contains the Misc and Resources subdirectories within its app bundle, just after your
customization directory.

If the name of the directory with Epsilon’s executable doesn’t start with bin, or its parent doesn’t start
with eps (they do, in a normal installation), Epsilon uses the directory containing Epsilon’s executable, not
its parent, in the default EPSPATH. (MacOS doesn’t use this rule unless you manually rearrange files within
its app bundle.)

Some flags can change the above behavior. The -w32 flag makes Epsilon look for files in the directory
containing the Epsilon executable before trying the EPSPATH. The -w8 flag keeps Epsilon from including
the executable’s directory or its parent in the default EPSPATH.

The EEL compiler also uses the EPSPATH configuration variable. See page 397.

14 Chapter 2. Getting Started

2.7.2 The Customization Directory

Epsilon searches for some files in a user-specific customization directory. It also creates files like its
initialization file einit.ecm there. (See page 164, and the edit-customizations command.)

To locate your customization directory, switch to Epsilon’s #messages# buffer. Epsilon writes the
name of its customization directory to this buffer when it starts up. Or run the edit-customizations command,
which opens the einit.ecn file located in this directory.

Under Linux, FreeBSD, and macOS, the customization directory is ~/.epsilon.

Under Windows, the customization directory is located in the Lugaru\Epsilon subdirectory within the
current user’s Application Data directory:

\Users\username\AppData\Roaming\Lugaru\Epsilon
or
%APPDATAY,\Lugaru\Epsilon

On all platforms, you can use the syntax %@ecustomy, in Epsilon to refer to the customization directory.

You can force Epsilon to use a different customization directory by defining a configuration variable
named EPSCUSTDIR. See page 11 for more on configuration variables.

2.8 Epsilon Command Line Flags

When you start Epsilon, you may specify a sequence of command line flags (also known as command-line
options, or switches) to alter Epsilon’s behavior. Flags must go before any file names.

“_9

Each flag consists of a minus sign (“-”), a letter, and sometimes a parameter. You can use the special
flag —- to mark the end of the flags; anything that follows will be interpreted as a file name even if it starts
with a - like a flag.

If a parameter is required, you can include a space before it or not. If a parameter is optional (-b, -m,
-p) it must immediately follow the flag, with no space.

Before examining the command line, Epsilon looks for a configuration variable (see page 11) named
EPSILON and “types in” the value of that variable to the command line before the real command line. Thus,
if you define a Unix environment variable:

export EPSILON=-m250000 -smine
then Epsilon would behave as if you had typed
epsilon -m250000 -smine myfile
when you actually type
epsilon myfile
Here we list all of the flags, and what they do:
+number Epsilon normally shows you the beginning of each file you name on the command line. If you

want to start at a different line, put “+number” before the file’s name, where number indicates the line
number to go to. You can follow the line number with a colon and a column number if you wish.

2.8. Epsilon Command Line Flags 15

-add This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,
and exit. Epsilon ignores the flag if there’s no prior instance. If you want to configure another
program to run Epsilon to edit a file, but use an existing instance of Epsilon if there is one, just include
this flag in the Epsilon command line. See page 146 for details on Epsilon’s server support.

-bfilename Epsilon normally reads all its commands from a state file at startup. (See the -s flag below.)
Alternately, you can have Epsilon start up from a file generated directly by the EEL compiler. These
bytecode files end with a “.b” extension. This flag says to use the bytecode file with name filename, or
“epsilon” if you leave out the filename. You may omit the extension in filename. You would rarely use
this flag, except when building a new version of Epsilon from scratch. Compare the -1 flag.

—dvariable!value You can use this flag to set the values of string and integer variables from the command
line. The indicated variable must already exist at startup. You can also use the syntax
-dvariable=value, but beware: if you run Epsilon for Windows via a .BAT or .CMD file, the system
will replace any =’s with spaces, and Epsilon will not correctly interpret the flag.

~dir dirname Epsilon interprets any file names that follow on the command line relative to this directory.

—fdfilename This flag tells Epsilon where to look for the on-line documentation file. Normally, Epsilon
looks for a file named edoc. This flag tells Epsilon to use filename for the documentation file. If you
provide a relative name for filename, then Epsilon will search for it; see page 13. Use a file name, not
a directory name, for filename.

—fsdirnames This switch tells Epsilon what directories to use for temporary files, such as Epsilon’s swap
file, which it uses when you edit files too big for available memory, or the eshell file it creates in some
environments to help capture the output of a process. Dirnames should indicate a list of one or more
directories, separated by semicolons (colons under Unix). Epsilon will use the first directory named as
long as there is space on its device; then it will switch to the second directory, and so forth. If it cannot
find any available space, it will ask you for another directory name.

If you don’t use this switch, Epsilon will create any temporary files it needs in the directory named by
the TMP environment variable. If TMP doesn’t exist, Epsilon tries TEMP, then picks a fallback
location. Epsilon calls its swap file eswap, but it will use another name (like eswap0, eswapl, etc.) to
avoid a conflict with another Epsilon using this file.

-geometry When Epsilon for Unix runs as an X program, it recognizes this standard X11 flag, which
specifies the size and position of Epsilon’s window. See page 6.

-kanumber This switch changes certain keyboard and display functions, primarily to help diagnose
problems. It’s followed by a number, a bit pattern made by summing the bit values that follow.

For Windows, the value 1 tells Epsilon not to translate the Ctrl-2 key combination to Ctrl-@.
(Ctrl-Shift-2 always produces Ctrl-@.) The value 16 makes text a little darker, and sometimes helps
with display driver compatibility too.

A value of 128 tells Epsilon for Windows not to apply the Ctrl key to those ASCII characters that
have no Control version in ASCIL. For instance, the ASCII code includes characters Ctrl-a and Ctrl-\,
but not Ctrl-9 or Ctrl-(. Epsilon for Windows will construct a non-ASCII key code for the latter pair
unless you use this bit. (Under X11, Epsilon always does this.)

For Unix, bits in this flag can set which X11 modifier keys indicate an Alt key. By default, Epsilon
chooses an appropriate key, but you can use 1 or 2 to force modifier key 1 or 2, respectively. The
number is a bit pattern specifying which of the five possible X11 modifier keys will be used as an Alt
key, using the values 1, 2, 4, 8, and 16. The value 32 tells Epsilon under X11 not to translate the Ctrl-2
key combination to NUL (as 1 for Windows does).

Both Windows and X11 GUI versions recognize the 64 bit, which tells Epsilon not to translate the
Ctrl-6 combination into Ctrl-~, or Ctrl-(Minus) on the main keyboard into Ctrl-_.

16 Chapter 2. Getting Started

-ksnumber This flag lets you adjust the emphasis Epsilon puts on speed during long operations versus
responsiveness to the abort key. Higher numbers make Epsilon slightly faster overall, but when you
press the abort key, Epsilon may not respond as quickly. Lower numbers make Epsilon respond more
quickly to the abort key, but with a performance penalty. The default setting is —ks100.

-1bytecode Giving this switch makes Epsilon load a bytecode file named bytecode.b after loading the state
file. If you give more than one -1 flag on the command line, the files load in the order they appear.
Compare the -b flag.

-mbytes This switch controls how much memory Epsilon uses for the text of buffers. Epsilon interprets a
number less than 1000 as a number of kilobytes, otherwise, as bytes. You may explicitly specify
kilobytes by ending bytes with ‘k’, or megabytes by ending bytes with ‘m’. Specify -mO to use as
little memory as possible, and -m to put no limit on memory use.

If you read in more files than will fit in the specified amount of memory, or if despite a high limit, the
operating system refuses Epsilon’s requests for more memory, Epsilon will swap portions of the files
to disk. By default, Epsilon puts no limits on its own memory usage.

-noinit This flag tells Epsilon not to read any einit.ecm customization file.

-nologo In some environments Epsilon prints a short copyright message when it starts. This flag makes it
skip displaying that message.

-noserver This flag tells Epsilon for Windows or Unix that it should not register itself as a server so as to
accept messages from other instances of Epsilon. By default, Epsilon will receive messages from
future instances of Epsilon that are started with the —add flag, or (for Windows) sent via file
associations or DDE. See page 146 for details. The flag -nodde is a synonym.

-pfilename This overrides the ESESSION configuration variable to control the name of the session file that
Epsilon uses. When you specify a file name, Epsilon uses that for the session file, just as with
ESESSION. Because the -p0 and -p1 flags enable and disable sessions (see the next item), the given
filename must not begin with a digit.

—-pnumber This flag controls whether or not Epsilon restores your previous session when it starts up. By
default, Epsilon will try to restore your previous window and buffer configuration. The -p flag with
no number toggles whether Epsilon restores the session. Give the —p0 flag to disable session restoring
and saving, and the -p1 flag to enable session restoring and saving. This flag understands the same
values as the preserve-session variable; see its description for other options.

—-quickup Epsilon uses this flag to help perform certain updates. It searches for and loads a bytecode file
named quickup.b. This flag is similar to the -1 flag above, but the —quickup flag doesn’t require any
EEL functions to run. For that reason, it can replace and update any EEL function.

-rcommand Giving this switch makes Epsilon try to run a command or keyboard macro named command at
startup. If the command doesn’t exist, nothing happens. If you specify more than one -r flag on the
command line, they execute in the order they appear. Use the syntax -rcmdname=param or
-rcmdname!param to run an EEL subroutine and pass it a value; the subroutine must be defined to
accept a single parameter of char * type.

-sfilename When Epsilon starts up, it looks for a state file named epsilon-v14.sta. The state file contains
definitions for all of Epsilon’s commands. You can create your own state file by using the write-state
command. This switch says to use the state file with the name filename. Epsilon will add the
appropriate extension if you omit it. Specify a file name for filename, not a directory name. Of course,
the file name may include a directory or drive prefix. If you specify a relative file name, Epsilon will
search for it. See page 13. See also the -b flag, described above.

2.8. Epsilon Command Line Flags 17

-sendonly The startup script in Epsilon for macOS uses this flag in combination with the —add flag. It
makes Epsilon exit with an error code whenever no prior instance was found to receive the —add
command line.

-server:servername The command line flag —server may be used to alter the server name for an instance of
Epsilon. An instance of Epsilon started with —-server:somename —add will only pass its command line
to a previous instance started with the same -server:somename flag. See page 146. The flag -dde is a
synonym.

-teach This flag tells Epsilon to load the on-line tutorial file at startup. See page 10.

-vex x indicates the number of columns you want displayed while in Epsilon. For example, use “-vc132”
for 132 columns. See the -vl flag, described below. See the -geometry flag for the equivalent in
Epsilon for Unix.

-veolor Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one
based on the type of display in use and its mode. This flag forces Epsilon to use a full-color color
scheme, regardless of the type of the display.

—-vfnumber This flag controls how Epsilon for Windows behaves at startup when the previous window
position is partly or entirely offscreen. It’s followed by a number, a bit pattern made by summing the
bit values listed below.

By default, Epsilon first picks which monitor (on a multi-monitor system) overlaps the most with its
recorded position, then shrinks its window so it’s no larger than that monitor. Then, Epsilon moves its
window until at least half of it is visible on that monitor, doing this separately in the horizontal and
vertical directions.

The 1 bit makes Epsilon omit shrinking its window. (Using the —-vc or -vl flags to set the number of
columns or lines also overrides any window resizing in that direction.)

The 2 bit makes Epsilon omit moving its window to put more of it on the monitor. Using the -vx or
-vy flags to explicitly position Epsilon’s window also overrides Epsilon’s normal window shifting in
that direction.

Normally Epsilon only considers the working area of a monitor, excluding elements like its task bar.
The 4 bit makes it perform its calculations using the entire monitor area.

The 8 bit changes Epsilon’s movement rule, making it move Epsilon’s window so it doesn’t extend off
the selected monitor at all.

-vlx x indicates the number of screen lines you want to use while in Epsilon. Also See the —vc switch,
described above. See —geometry for the equivalent in Epsilon for Unix.

-vmono Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one
based on the type of display in use and its mode. This flag forces Epsilon to use its monochrome color
scheme, regardless of the type of the display.

-vt (Unix only) This flag forces Epsilon to run as a curses-style terminal program, not an X11 program. By
default Epsilon for Unix runs as an X program whenever an X display is specified (either through a
DISPLAY environment variable or a —-display flag), and a terminal program otherwise.

-vv This flag instructs Epsilon to split the screen vertically, not horizontally, when more than one file is
specified on the command line.

-vx and -vy These flags let you specify the position of Epsilon’s window in Epsilon for Windows. For
example, -vx20 -vy30 positions the upper left corner of Epsilon’s window at pixel coordinates
20x30. See —geometry for the equivalent in Epsilon for Unix.

18 Chapter 2. Getting Started

-wnumber This flag controls several directory-related settings. Follow it with a number.

The -w1 flag tells Epsilon to remember the current directory from session to session. Without this
flag, Epsilon will remain in whatever current directory it was started from. Epsilon always records the
current directory when it writes a session file; this flag only affects whether or not Epsilon uses this
information when reading a session file.

The -w2 and -w4 flags have no effect in this version of Epsilon.

The -w8 flag tells Epsilon not to look for its own files in the parent of the directory containing the
Epsilon executable. See page 13.

The -w16 flag tells Epsilon to set its current directory to the directory containing the first file named
on its command line. If you edit files by dragging and dropping them onto a shortcut to Epsilon, you
may wish to use this flag in the shortcut.

The -w32 flag tells Epsilon to look for its own files in the directory containing the Epsilon executable
before searching the EPSPATH. See page 13.

You can combine -w flags by adding their values together. For example, -w9 makes Epsilon
remember the current directory and exclude its executable’s parent directory from the default
EPSPATH. These -w flags are cumulative, so -w1 -w8 works the same as -w9. Omitting the number
discards all prior -w flags on the command line, so -w9 -w -w32 acts like just ~-w32.

Program icons for Epsilon typically invoke it with -w1 so that Epsilon remembers the current
directory.

-wait This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,
and wait for the user in that instance to invoke the resume-client command. (Epsilon ignores the flag if
there’s no prior instance.) If you want to configure another program to run Epsilon to edit a file, but
use an existing instance of Epsilon, just include this flag in the Epsilon command line. See page 146
for details on Epsilon’s server support.

2.9 File Inventory

Epsilon consists of the following files:

epsilon.exe The Epsilon for Windows executable program.
epsilonc.exe The Epsilon executable program for Windows Console mode.

eel.exe Epsilon’s compiler. You need this program if you wish to add new commands to Epsilon or modify
existing ones.

eel_lib.dll Under Windows, Epsilon’s compiler eel.exe requires this file. Epsilon itself also uses this file
when you compile from within the editor.

icu* These files help provide Unicode support under Windows.

inherit.exe and inherit.pif Epsilon for Windows uses these files to execute another program and capture its
output.

edoc.hlp This Windows help file provides help on Epsilon.

epshlp.dll Epsilon’s WinHelp file communicates with a running copy of 32-bit Epsilon so it can display
current key bindings or variable values and let you modify variables from the help file. It uses this file
to do that.

2.9. File Inventory 19
sendeps.exe The Epsilon for Windows installer uses this file to help create desktop shortcuts and Send To
menu entries. See page 148.

VisEpsil.dll Epsilon for Windows includes this Developer Studio extension that lets Developer Studio pass
all file-opening requests to Epsilon.

mspellemd.exe Epsilon’s speller uses this helper program to get suggestions from the MicroSpell speller.
econfig.exe Epsilon for Windows runs this program when you use the configure-epsilon command.
mshelp2.vbs Epsilon for Windows uses this script to display MS Help 2 files.

fixpath2.exe Epsilon’s Windows installer and configuration program use this program to add or remove
directories from the system’s PATH.

winpty32.exe, winpty64.exe and win-askpass.exe, run-ssh-agent.bat The secure shell (ssh) and secure
file transfer (scp) features in Epsilon for Windows use these helper programs to interact with
Cygwin’s ssh program.

bscquery.exe Epsilon for Windows uses this program to help support .bsc source code browser files.

owitheps.dll This shell extension can be used to put an Open With Epsilon menu item on File Explorer’s
context menu, but by default Epsilon does this in a way that requires only setting registry entries, so
this DLL is unused.

The installation program puts the following files in the main Epsilon directory, normally \Program
Files\Eps14 under Windows and /opt/epsilon14.02 under Unix. (Epsilon for macOS keeps these files in
various directories located within its app bundle, following Apple’s requirements.)

epsilon-vl4.sta This file contains all of Epsilon’s commands. Epsilon needs this file in order to run. If you
customize Epsilon, this file changes. The name includes Epsilon’s major version.

original.sta This file contains a copy of the original version of epsilon-v14.sta at the time of installation.

edoc Epsilon’s on-line documentation file. Without this file, Epsilon can’t provide basic help on commands
and variables.

info\ epsilon.inf Epsilon’s on-line manual, in Info format.

info\dir A default top-level Info directory, for non-Unix systems that may lack one. See Info mode for
details.

lhelp* This directory contains files for the HTML version of Epsilon’s documentation. The lhelp helper
program reads them.

eteach Epsilon’s tutorial. Epsilon needs this file to give the tutorial (see page 10). Otherwise, Epsilon does
not need this file to run.

keychart.pdf A printable sheet listing most of Epsilon’s default key assignments.

colclass.txt One-line descriptions of each of the different color classes in Epsilon. The set-color command
reads this file.

brief.kbd The brief-keyboard command loads this file. It contains the bindings of all the keys used in Brief
emulation, written in Epsilon’s command file format.

epsilon.kbd The epsilon-keyboard command loads this file. It contains the standard Epsilon key bindings
for all the keys that are different under Brief emulation, written in Epsilon’s command file format.

20 Chapter 2. Getting Started

epsilon.mnu, brief.mnu Non-GUI versions of Epsilon use one of these files to construct the menu bar.
gui.mnu, cua.mnu GUI versions of Epsilon use one of these files to construct the menu bar.

latex.env The tex-environment command in LaTeX mode (Alt-Shift-E) gets its list of environments from
this file. You can add new environments by editing this file.

filter.txt A file defining the options for the filter control of Epsilon’s Common File Open/Save dialogs
under Windows.

readme.txt This file describes changes in recent versions of Epsilon. You can use the Alt-x release-notes
command to read it.

epsout.e The import-customizations command uses this file.
uninstall.exe If you used the Windows-based installer, you can uninstall Epsilon by running this program.
install.log The Windows-based installer creates this file to indicate which files it installed.

*h The installation program copies a number of “include files” to the subdirectory “include” within
Epsilon’s main directory. These header files are used if you decide to compile an Epsilon extension or
add-on written in its EEL extension language.

eel.h Epsilon’s standard header file, for use with the EEL compiler.
codes.h Another standard header file, with numeric codes. The eel.h file includes this one automatically.

*.,e These files contain source code in EEL to all Epsilon’s commands. The installation program copies
them to the subdirectory “source” within Epsilon’s main directory.

epsilon.e This file loads all the other files and sets up Epsilon.
samplemode.e This example file demonstrates various aspects of how to define a new mode.

makefile You can use this file, along with a “make” utility program, to help recompile the above Epsilon
source files. It lists the source files and provides command lines to compile them.

The directory “changes” within Epsilon’s main directory contains files that document new features
added in Epsilon 9 and earlier versions. See the online documentation for details on changes in more recent
versions. Other files in this directory may be used to help incorporate old customizations, when updating
from Epsilon 7 or earlier. See page 170 for information on updating to a new version of Epsilon.

2.9. File Inventory

21

Chapter 3

General Concepts

23

This chapter describes the framework within which the commands operate. The chapter entitled
“Commands by Topic”, which starts on page 37, goes into detail about every Epsilon command.

If you have never used Epsilon before, you should run the tutorial now. This chapter discusses some
general facilities and concepts used throughout Epsilon by many of the commands. You will find the
discussion much clearer if you’ve used the tutorial, and have become accustomed to Epsilon’s general style.

To run the tutorial, start Epsilon and select Epsilon Tutorial from the Help menu. (You can also press
the F2 key in Epsilon and type the command name tutorial, or start Epsilon with the -teach flag.)

3.1 Buffers

In Epsilon’s terminology, a buffer contains text that you can edit. You can think of a buffer as Epsilon’s copy
of a file that you have open for editing. Actually, a buffer may contain a copy of a file, or it may contain a
new “file” that you’ve created but have not yet saved to disk.

To edit a file, you read the file into a buffer, modify the text of the buffer, and write the buffer to the file.
A buffer need not necessarily correspond to a file, however. Imagine you want to write a short program from
scratch. You fire up Epsilon, type the text of the program into a buffer, then save the buffer to a file.

Epsilon does not place any limitation on the number of active buffers during an editing session. You can
edit as many buffers at the same time as you want. This implies that you can edit as many files, or create as
many files, or both, as you desire. Each document or program or file appears in its own buffer.

3.2 Windows

Epsilon displays your buffers to you in windows. You can have one window or many windows. You can
change the number and size of windows at any time. You may size a window to occupy the entire display, or
to occupy as little space as one character wide by one character high.

Each window can display any buffer. You decide what a window displays. You can always get rid of a
window without worrying about losing the information the window displays: deleting a window does not
delete the buffer it displays.

Each window displays some buffer, and several windows can each display the same buffer. This comes
in handy if you want to look at different parts of a buffer at the same time, say the beginning and end of a
large file.

A buffer exists whether or not it appears in some window. Suppose a window displays a buffer, and you
decide to refer to another file. You can read that file into the current window without disturbing the old
buffer. You peruse the new buffer, then return to the old buffer.

You may find this scheme quite convenient. You have flexibility to arrange your buffers however you
like on the screen. You can make many windows on the screen to show any of your buffer(s), and delete
windows as appropriate to facilitate your editing. You never have to worry about losing your buffers by
deleting or changing your windows.

Epsilon has many commands to deal with buffers and windows, such as creating, deleting, and changing
the size of windows, reading files into a buffer, writing buffers out to files, creating and deleting buffers, and
much more. We describe these in detail in the chapter “Commands by Topic”, which starts on page 37.

3.3 Epsilon’s Screen Layout

To see what buffers and windows look like, refer to figure 3.1. This shows what the screen looks like with
only one window. It shows what the screen looks like when you edit a file named screen. 1.

24 Chapter 3. General Concepts

< screen.1 - Epsilon

File Edit Search Process Uklity window Help
D|w|d| & *@l@ o~ ale| =X

This region of the screen iz called the WINDOW, Thizs is
the place where the text you are editing appears.

The text you are editing goes in this region.

The text you are editing goes in this region.

The mwode line displays warious informwation asbout this
window. The line khelow this one is the MCDE LINE.
— screen.l [Fundsmental] 1,0 A11

Figure 3.1: What Epsilon looks like with one window.

The top section of the screen displays some of the text of the window’s buffer. Below that appears the
mode line. The mode line begins with the name of the file shown in that buffer. If the buffer isn’t associated
with any file, Epsilon substitutes the buffer name, in parentheses.

Next comes the name of the current major mode, followed by any minor modes, all surrounded by
square brackets. (See page 25.)

Then Epsilon shows the current column and line numbers (the first counting from zero, the second
counting from 1), and the percentage of the buffer before the cursor. A star (*) at the end of the line means
that you have changed the buffer since the last time you saved it to disk. (See the mode-format variable for
information on customizing the contents of the mode line.) The text area and the mode line collectively
constitute the window.

Below the mode line, on the last line of the screen, appears the echo area. Epsilon uses this area to
prompt you for information or to display messages (in the figure it’s empty). For example, the command to
read a file into a buffer uses the echo area to ask you for the file name. Regardless of how many windows
you have on the screen, the echo area always occupies the bottommost screen line.

When Epsilon displays a message in the echo area, it also records the message in the #messages#
buffer (except for certain transient messages). See the message-history-size variable to set how Epsilon
keeps the buffer from excessive size by dropping old messages.

Epsilon has an important concept called the editing point, or simply point. While editing a buffer, the
editing point refers to the place that editing “happens”, as indicated by the cursor. Point refers not to a
character position, but rather to a character boundary, a place between characters. You can think of point as,
roughly, the leftmost edge of the cursor. Defining the editing point as a position between characters rather
than at a particular character avoids certain ambiguities inherent in the latter definition.

Consider, for example, the command that goes to the end of a word, forward-word. Since point always
refers to a position between characters, point moves right after the last letter in the word. So the cursor itself
would appear underneath the first character after the word. The command that moves to the beginning of the
word, backward-word, positions point right before the first character in the word. In this case, the cursor
itself would appear under the first character in the word.

When you want to specify a region, this definition for point avoids whether characters near each end
belong to the region, since the ends do not represent characters themselves, but rather character boundaries.

Figure 3.2 shows Epsilon with 3 windows. The top window and bottom window each show the buffer
“main”. Notice that although these two windows display the same buffer, they show different parts of the

3.4. Different Keys for Different Uses: Modes 25

+5 main - Epsilon

File Edt Search Process Utility ‘Window Help
Diw|d| & &|sl@ o~ Qe @X|

This iz the first one of three windows being displayed at the same -
time. The window at the hottom of the screen is displaying the same
buffer that this window is displaving. In general, each window can
display any buffer. You can look at two different parts of the same

— main [Fundamencal] 1,0 Top *
the middle window. The buffer in this window is different from the
buffer in the other two windows. The name of this buffer is "other®™,
whereas the name of the buffers associated with the other two windows
iz "main®™. The blinking cursor always appears in the current window.
— other [Fundamental] 39,0 12%
display any buffer. Tou can look st two different parts of the ssme
buffer at the sawe time by having each in its own window. This can
bome in handy if you are, say, writing a documwent with a table of
contents and you want to he sure that the table of contents is right.
Fou just put the table of contents in one window, and use the other
window to check out the page numbers.

— mwain [Fundamwental] &,0 58% *

Figure 3.2: Epsilon with three windows.

buffer. The mode line of the top window says 0%, but the mode line of the bottom window says 58%. The
middle window displays a different buffer, named “other”. If the cursor appears in the middle window and
you type regular letters (the letters of your name, for example), they go into the buffer named “other” shown
in that window. As you type the letters, the point (and so the cursor) stays to the right of the letters.

In general, the current window refers to the window with the cursor, or the window where the “editing
happens”. The current buffer refers to the buffer displayed by the current window.

3.4 Different Keys for Different Uses: Modes

When you edit a C program, your editor should behave somewhat differently than when you write a letter, or
edit a Lisp program, or edit some other kind of file.

For example, you might want the third function key to search forward for a comment in the current
buffer. Naturally, what the editor should search for depends on the programming language in use. In fact,
you might have PHP in the top window and C++ in the bottom window.

To get the same key (in our example, the third function key) to do the right thing in either window,
Epsilon allows each buffer to have its own interpretation of the keyboard.

We call such an interpretation a mode. Epsilon comes with several useful modes built in, and you can
add your own using the Epsilon Extension Language (otherwise known as EEL, pronounced like the aquatic
animal).

Epsilon uses the mode facility to provide the dired command, which stands for “directory edit”. The
dired command displays a directory listing in a buffer, and puts that buffer in dired mode. Whenever the
current window displays that buffer, several special keys do things specific to dired mode. For example, the
‘e’ key displays the file listed on the current line of the directory listing, and the ‘n’ key moves down to the
next line of the listing. See page 139 for a full description of dired mode.

Epsilon also provides C mode, which knows about several C indenting styles (see page 86) and is used
for all C-like languages. Fundamental mode is a general-purpose editing mode used for scratch buffers and
plain text files. And there are many other modes, some associated with specific commands (like hex mode,
diff mode, or grep mode) and many more supporting individual programming languages or other file types.
See the section starting on page 84.

26 Chapter 3. General Concepts

Almost every mode has an associated command, named after the mode, that puts the current buffer in
that mode. The c-mode and fundamental-mode commands put the current buffer into those modes, for
instance.

Press F1 m to display help on the current buffer’s major mode.

The mode name that appears in a mode line suggests the keyboard interpretation active for the buffer
displayed by that window. When you start Epsilon with no particular file to edit, Epsilon uses Fundamental
mode, so the word “Fundamental” appears in the mode line. Other words may appear after the mode name
to signal changes, often changes particular to that buffer. We call these minor modes.

For example, the auto-fill-mode command sets up a minor mode that automatically types a (Return) for
you when you type near the end of a line. (See page 77.) It displays “Fill” in the mode line, after the name
of the major mode. A read-only buffer display “RO” to indicate that you won’t be able to modify it. There is
always exactly one major mode in effect for a buffer, but any number of minor modes may be active.
Epsilon lists all active minor modes after the major mode’s name.

Here are some common minor modes:

Fill indicates auto-filling is in effect for the current buffer. See page 77.
RO indicates the buffer is read-only. See page 119.

Pager is similar to RO, indicating the buffer is read-only and that (Space) and (Backspace) page forward
and back, but this behavior isn’t conditioned on the readonly-pages variable as read-only mode’s is.

Def indicates Epsilon is defining a keyboard macro. See page 155.
Susp indicates defining or running a keyboard macro has been suspended. See page 156.

Narrow indicates only a section of the buffer is being displayed, and the rest has been hidden. See page
176.

Sp indicates Epsilon will highlight misspelled words in the current buffer. See page 81.

Along with any minor modes, Epsilon will sometimes also display the name of a type of file translation
(one of DOS, Binary, Unix, or Mac). See page 122. It may also display the name of an encoding, such as
UTEF-8, OEM, or windows-1258. See page 136.

3.5 Keystrokes and Commands: Bindings

Epsilon lets you redefine the function of nearly all the keys on the keyboard. We call the connection between
a key and the command that runs when you type it a binding.

For example, when you type the (Down) key, Epsilon runs the down-line command. The down-line
command, as the name suggests, moves the point down by one line. So when you type the (Down) key,
point moves down by one line.

You can change a key’s binding using the bind-to-key command. The command asks for the name of a
command, and for a key. Thereafter, typing that key causes the indicated command to run. Using
bind-to-key, you could, for example, configure Epsilon so that typing (Down) would run the
forward-sentence command instead of the down-line command.

This key-binding mechanism provides a great deal of flexibility. Epsilon uses it even to handle the
alphabetic and number keys that appear in the buffer when you type them. Most of the alphabetic and
number keys run the command normal-character, which simply inserts the character that invoked it into the
buffer.

3.6. Repeating: Numeric Arguments 27

Out of the box, Epsilon comes with a particular set of key bindings that make it resemble the EMACS
text editor that runs on many kinds of computers. Using the key-binding mechanism and the bind-to-key
command, you could rearrange the keyboard to make it resemble another editor’s keyboard layout. That is
exactly what the brief-keyboard command does; it rearranges the keyboard commands to make Epsilon work
like the Brief text editor. See page 159.

Epsilon provides over 400 commands that you can bind to keys, and you can write brand new
commands to do almost anything you want, and assign them to whatever keys you choose. See page 157 for
more information on the bind-to-key command.

Some commands have no default binding. You can invoke any command, bound or not, by giving its
name. The command named-command, normally bound to Alt-x, prompts for a command name and
executes that command. For example, if you type

Alt-x down-line

followed by pressing the (Enter) key, the cursor moves down one line. Of course, you would find it easier in
this example to simply type the (Down) key.

3.6 Repeating: Numeric Arguments

You can prefix a numeric argument, or simply an argument, to a command. This numeric argument
generally functions as a repeat count for that command. You may enter a numeric argument in several ways.
You may type Ctrl-u and then the number. You can also enter a numeric argument by holding down the Alt
key and typing the number using the number keys across the zop of the keyboard. Then you invoke a
command, and that command generally repeats that number of times.

For example, suppose you type the four characters Ctrl-u 2 6 Ctrl-n. The Ctrl-n key runs the command
named down-line, which moves point down one line. But given a numeric argument of 26, the command
moves point down 26 lines instead of 1 line. If you give a numeric argument of -26 by typing a minus key
while typing the 26, the down-line command would move point up 26 lines. You can get the same effect as
Ctrl-u 2 6 Ctrl-n by holding down the Alt key and typing 26 on the main keyboard, then typing Ctrl-n.
(Remember to release the Alt key first; otherwise you’d get Alt-Ctrl-n.)

You can give a numeric argument to any Epsilon command. Most commands will repeat, as our
example did above. But some commands use the numeric argument in some other way, which can vary from
command to command. Some commands ignore the numeric argument. We describe all the commands in
the chapter titled “Commands by Topic”, which starts on page 37.

3.7 Viewing Lists

Sometimes Epsilon needs to show you a list of information. For example, when it asks you for the name of a
file to edit, you might request a list of possible files to edit (see the next section). In such cases, Epsilon will
display the list of items in a pop-up window. While in a pop-up window, one line will stand out in a different
color. If you press (Enter), you select that item. To select another item, you can use normal Epsilon
commands such as (Up) and (Down) to move to the next and previous items, or (PageDown) and (PageUp)
to go to the next or previous windowful of items. You can even use Epsilon’s searching commands to find
the item you want. If you don’t want any item on the list, you can simply type another response instead.

If you want to select one of the items and then edit it, press Alt-e. Epsilon will copy the highlighted line
out of the list so can edit it.

28 Chapter 3. General Concepts

3.8 Typing Less: Completion & Defaults

Whenever Epsilon asks you for some information (for instance, the name of a file you want to edit), you can
use normal Epsilon commands to edit your response. For example, Control-A moves to the beginning of the
response line. Most commands will work here, as long as the command itself doesn’t need to prompt you for
more information.

At many prompts, Epsilon will automatically type a default response for you, and highlight it. Editing
the response will remove the highlight, while typing a new response will replace the default response. You
can set the variable insert-default-response to zero if you don’t want Epsilon to type in a response at
prompts.

If you type a Control-R or Control-S, Epsilon will type in the default text. This is especially useful if
you’ve told Epsilon not to automatically insert the default response, but it can also come in handy when
you’ve mistakenly deleted or edited the default response, and you want to get it back. It’s also convenient at
prompts where Epsilon doesn’t automatically type the default response, such as search prompts. Epsilon
keeps separate defaults for the regular expression and non-regular expression replace commands, and for the
regular expression and non-regular expression search commands. Epsilon will never overwrite what you
actually type with a default, and indeed will only supply a default if you haven’t yet specified any input for
the response.

Another way to retrieve a previous response is to type Alt-e. While Ctrl-r and Ctrl-s provide a
“suggested response” in many commands, Alt-e always types in exactly what you typed to that prompt last
time. For example, at the prompt of the write-file command, Ctrl-s types in the name of the directory
associated with the file shown in the current window, while Alt-e types in the last file name you typed at a
write-file prompt. See page 30.

Alt-g provides yet another suggested response; it’s often the name of the “current thing” for this
prompt; in a search-and-replace command, for instance, Alt-g when typing the replacement text inserts the
search text. In the write-file example, Alt-g inserts the current name of the file.

Sometimes Epsilon shows you the default in square brackets []. This means that if you just press
(Enter) without entering anything, Epsilon will use the value between the square brackets. Often you can
use the Ctrl-s or Alt-e keys to pull in that value, perhaps so that you can use regular Epsilon commands to
edit the response string.

Epsilon can also retrieve text from the buffer at any prompt. Press the Alt-(Down) key or Alt-Ctrl-n to
grab the next word from the buffer and insert it in your response. Press the key again to retrieve successive
words. This is handy if there’s a file name in the buffer that you now want to edit, for example. The keys
Alt-(PageDown) or Alt-Ctrl-v behave similarly, but retrieve from the current position to the end of the line.

You can also use pull completion to retrieve text at a prompt that isn’t at the current position, but
elsewhere in the buffer. Begin typing the word you want to retrieve; then press Ctrl-(Up) (or Ctrl-(Down))
to grab the previous (or next) word in the buffer that starts with what you’ve typed. F3 is the same as
Ctrl-(Up). See page 101 for details.

Whenever Epsilon asks for the name of something (like the name of a command, file, buffer, or tag),
you can save keystrokes by performing completion on what you type. For example, suppose you type Alt-x
to invoke a command by name, then type the letter ‘v’. Only one command begins with the letter ‘v’, the
visit-file command. Epsilon determines that you mean the visit-file command by examining its list of
commands, and fills in the rest of the name. We call this process completion.

To use completion, type a (Space) and Epsilon will fill in as much of the name as possible. The letters
Epsilon adds will appear as if you had typed them yourself. You can enter them by typing (Enter), edit them
with normal editing commands, or add more letters. If Epsilon cannot add any letters when you ask for
completion, it will pop up a list of items that match what you’ve typed so far. To disable automatic pop-ups
on completion, set the completion-pops-up variable to zero.

3.8. Typing Less: Completion & Defaults 29

o - |5]x]
D | & & [G@ <~ Gt P

R o mand E] blayed at the same

. irmg displaying the same

buf 1, each window cah

dis | nt parts of the same

bury IS~ b vindow. This can

com about-epsilon with & table of

con align-region f contents is right.

alt-prefix
ansi-to-oen
append-next-kill
apropos

ar ument

asn-mode
auto-fill-made
back-to-tab-stop
backward-character

Tou and use the other

i

backward-delete-character
backward-delete-word
backward-ifdef b

akK Cancel Help

— main [Fundamental]l 1,0 ALL

k)

Figure 3.3: Typing ‘?” shows all of Epsilon’s commands.

For example, four commands begin with the letters “go”, goto-beginning, goto-end, goto-line, and
goto-tag. If you type “go”, and then press (Space), Epsilon fills in “goto-" and waits for you to type more.
Type ‘b’ and another (Space), to see “goto-beginning”. Epsilon moves the cursor one space to the right of
the last letter, to indicate a match. Press (Enter) to execute the goto-beginning command.

The (Esc) key works just like the (Space) key, except that if a single match results from the completion,
Epsilon takes that as your response. This saves you a keystroke, but you don’t have the opportunity to check
the name before continuing. The (Tab) key does the same thing. (These keys work the same in most
Windows dialogs Epsilon displays, instead of performing their usual Windows functions of canceling or
moving around in the dialog, respectively, but see the want-gui-prompts variable.)

Typing a question mark during completion causes Epsilon to display a list of choices in a pop-up
window. Recall that completion works with buffer and file names, as well as with command names. For
example, you can get a quick directory listing by giving any file command and typing a question mark when
asked for the file name. Press the Ctrl-g key to abort the command, when you’ve read the listing. (See the
dired command on page 139 for a more general facility.)

Figure 3.3 shows you what Epsilon looks like when you type Alt-x (the named-command command),
and then press ‘?” to see a list of the possible commands. Epsilon shows you all its commands in a pop-up
window. Epsilon provides many more commands than could fit in the window, so Epsilon shows you the first
window-full. At this point, you could press (Space) or (PgDn) to see the next window-full of commands, or
use searching or other Epsilon commands to go to the item you desire. If you want the highlighted item,
simply press (Enter) to accept it. If you type Alt-e, Epsilon types in the current item and allows you to edit
it. Type any normal character to leave the pop-up window and begin entering a response by hand.

Figure 3.4 shows what the screen looks like if you type ‘w’ after the Alt-x, then type ‘?” to see the list
of possible completions. Epsilon lists the commands that start with ‘w’.

You can set variables to alter Epsilon’s behavior. The menu-width variable contains the width of the
pop-up window of matches that Epsilon creates when you press ‘?°. (Unix only. In Windows, drag the
dialog’s border to change its size.) The search-in-menu variable controls what Epsilon does when you
press ‘?” and then continue typing a response. If it has a value of zero, as it does by default, Epsilon moves
from the pop-up window back to the response area, and editing keys like (Left) navigate in the response. If

30 Chapter 3. General Concepts

o - [T
D |H| & & B@ i Qlab X

Thi LN E] hlayed st the same

t imng displaying the =sme

buf 1, each window can

dis ‘“’I ht parts of the same

buf wall-chart b window. This can

com what-is with & table of

con widen-buffer f contents is right.

Tou wrice-file and use the other

wrice-files-and-exic
write-region
write-session

wimn

write-state

ak. | Cancel Help

— main [Fundamental] 1,0 411

Figure 3.4: Typing “w?” shows all commands that start with ‘w’.

search-in-menu has a nonzero value, Epsilon moves in the pop-up menu of names to the first name that
matches what you’ve typed, and stays in the pop-up window. (If it can’t find a match, Epsilon moves back to
the prompt as before.)

During file name completion, Epsilon can ignore files with certain extensions. The
ignore-file-extensions variable contains a list of extensions to ignore. By default, this variable has the
value ‘| .obj| .exel| .ol .b|’, which makes file completion ignore files that end with .obj, .exe, .0, and .b.
Each extension must appear between |’ characters. You can augment this list using the set-variable
command, described on page 159.

Similarly, the only-file-extensions variable makes completion look only for files with certain
extensions. It uses the same format as ignore-file-extensions, a list of extensions surrounded by |
characters. If the variable holds a null pointer, Epsilon uses ignore-file-extensions as above.
Completion also restricts its matches using the ignore-file-basename and ignore-file-pattern
variables, which use patterns to match the names of files to be excluded. When the pattern the user types
doesn’t match any files due to such exclusions, Epsilon temporarily removes exclusions and lists matching
files again.

When typing a file name, you can use environment variables to specify the directory or directories,
using the syntax %TEMP% under Windows, and $TEMP or ${TEMP} on macOS, Linux and FreeBSD. You can
also use the values of Windows shell folders, and define your own shorthand names. See the
file-interpret-env-vars variable for all the details.

3.9 Command History

Epsilon maintains a list of your previous responses to all prompts. To select a prompt from the list, press the
Alt-(Up) key or Alt-Ctrl-p. Then use the arrow keys or the mouse to choose a previous response, and press
(Enter). If you want to edit the response first, press Alt-e.

For example, when you use the grep command to search in files for a pattern, you can press Alt-(Up) to
see a list of file patterns you’ve used before. If the pattern \windows\system*. inf appeared on the list,

3.10. Mouse Support 31

you could position the cursor on it and then press Alt-e. Epsilon would copy the pattern out of the list so you
can edit it, perhaps replacing *. inf with *.ini. Both patterns would then appear in the history list next
time. Or you could just press (Enter) in the list of previous responses to use the same pattern.

You can also use Alt-e at any prompt to retrieve the last response without showing a list of responses
first. For example, Ctrl-x Ctrl-f Alt-e will insert the full name of the last file you edited with the find-file
command.

Except in certain searching commands, you can press (Up) or Ctrl-p instead of Alt-(Up) key or
Alt-Ctrl-p. These normally behave the same, but you can set the recall-prior-response-options
variable to make the non-Alt versions of the keys select older command history responses without
displaying a list of all of them.

3.10 Mouse Support

Epsilon supports a mouse under Windows and under X11 in Unix. You can use the left button to position
point, or drag to select text. Double-clicking selects full words. (When a pop-up list of choices appears on
the screen, double-clicking on a choice selects it.) Use shift-clicking to extend or contract the current
selection by repositioning the end of the selection. Holding down the Alt key while selecting produces a
rectangle selection.

Once you’ve selected a highlighted region, you can drag it to another part of the buffer. Move the mouse
inside the highlighted region, hold down a mouse button and move the mouse to another part of the buffer
while holding down the button. The mouse cursor changes to indicate that you’re dragging text. Release the
mouse button and the text will move to the new location. To make a copy of the text instead of moving it,
hold down the Control key while dropping the text.

Dragging text with the mouse also copies the text to a kill buffer, just as if you had used the
corresponding keyboard commands to kill the text and yank it somewhere else. When you drag a
highlighted rectangular region of text, Epsilon’s behavior depends upon the whether or not the buffer is in
overwrite mode. In overwrite mode, Epsilon removes the text from its original location, replacing it with
spaces. Then it puts the text in its new location, overwriting whatever text might be there before. In insert
mode, Epsilon removes the text from its original location and shifts text to its right leftwards to fill the space
it occupied. Then it shifts text to the right in the new location, making room for the text.

You can use the left button to resize windows by dragging window corners or borders. For pop-up
windows only, dragging the title bar moves the window.

A pop-up window usually has a scroll bar on its right border. Drag the box or diamond up and down to
scroll the window. Click on the arrows at the top or bottom to scroll by one line. Click elsewhere in the
scroll bar to scroll by a page. In some environments, ordinary tiled windows have a scroll bar that pops up
when you move the mouse over the window’s right-hand border, or (for windows that extend to the right
edge of the screen), when you move the mouse past the right edge. The toggle-scroll-bar command toggles
whether tiled windows have pop-up scroll bars or permanent scroll bars.

Under X11, you can adjust the speed at which Epsilon scrolls due to mouse movements by setting the
scroll-rate variable. It contains the number of lines to scroll per second. The scroll-init-delay
variable contains the delay in hundredths of a second from the time the mouse button goes down and Epsilon
scrolls the first time, to the time Epsilon begins scrolling repeatedly.

The right mouse button displays a context menu (which you can modify by editing an .mnu file, see
page 33).

You can click (or hold) the middle mouse button and drag the mouse to pan or auto-scroll—the speed
and direction of scrolling varies as you move the mouse. This works on wheeled mice or on any mouse with

32 Chapter 3. General Concepts

three or more buttons. When you click the middle mouse button while holding down the Shift key, Epsilon
pastes text instead. See the mouse-center-yanks variable to change its behavior.

Some mice have additional buttons. If the environment supports it, Epsilon recognizes buttons 4 and 5
and makes them scroll up and down. You can bind these buttons to different commands or to nothing using
the bind-to-key and unbind-key commands.

Epsilon for Windows or Unix (under X11) also recognizes wheel rolling on wheeled mice, and scrolls
the current window when you roll the wheel. See the wheel-click-1lines variable for more details.

Under X11, some programs automatically make any text you select using the mouse available to be
pasted in other programs. See the variable mouse-selection-copies to turn on this behavior for Epsilon.

3.11 The Menu Bar

The Windows GUI version of Epsilon provides a customizable menu bar and tool bar. To modify the menu
bar, edit the file gui.mnu. See the next section for details. You can turn it off by adding (set-gui-menu 0)
to your einit.ecm file (see page 164). To modify the tool bar, you can redefine the EEL command
standard-toolbar in the file menu.e.

SESNS) % Complex.pm - Epsilon
File Edi