
Epsilon Programmer’s Editor
User’s Manual and Reference

Version 13.17 - Reference Edition

This is revision 13.17a of the manual.

It describes version 13.17 of Epsilon and EEL.

Copyright © 1984, 2020 by Lugaru Software Ltd.

All rights reserved.

Lugaru Software Ltd.
1645 Shady Avenue

Pittsburgh, PA 15217

TEL: (412) 421-5911

E-mail: support@lugaru.com or sales@lugaru.com

ii

LIMITED WARRANTY

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FOR EITHER THE

INSTRUCTION MANUAL, OR FOR THE EPSILON PROGRAMMER’S EDITOR AND THE EEL SOFTWARE

(COLLECTIVELY, THE “SOFTWARE”).

Lugaru warrants the medium on which the Software is furnished to be free from defects in material under normal

use for ninety (90) days from the original date of purchase, provided that the limited warranty has been registered by

mailing in the registration form accompanying the Software.

LIMITED LIABILITY AND RETURN POLICY

Lugaru will be liable only for the replacement of defective media, as warranted above, which are returned shipping

prepaid to Lugaru within the warranty period. Because Lugaru cannot anticipate the intended use to which its Software

may be applied, it does not warrant the performance of the Software. LUGARU WILL NOT BE LIABLE FOR ANY

SPECIAL, INDIRECT, CONSEQUENTIAL OR OTHER DAMAGES WHATSOEVER. However, Lugaru wants you to

be completely satisfied with the Software. Therefore, THE ORIGINAL PURCHASER OF THIS SOFTWARE MAY

RETURN IT UNCONDITIONALLY TO LUGARU FOR A FULL REFUND FOR ANY REASON WITHIN SIXTY

DAYS OF PURCHASE, PROVIDED THAT THE PRODUCT WAS PURCHASED DIRECTLY FROM LUGARU

SOFTWARE LTD.

COPYRIGHT NOTICE

Copyright © 1984, 2020 by Lugaru Software Ltd. All rights reserved.

Lugaru Software Ltd. recognizes that users of Epsilon may wish to alter the EEL implementations of various editor

commands and circulate their changes to other users of Epsilon. Limited permission is hereby granted to reproduce and

modify the EEL source code to the commands provided that the resulting code is used only in conjunction with Lugaru

products and that this notice is retained in any such reproduction or modification.

TRADEMARKS

“Lugaru” and “EEL” are trademarks of Lugaru Software, Ltd. “Epsilon” is a registered trademark of Epsilon Data

Management, Inc. Lugaru Software Ltd. is licensed by Epsilon Data Management, Inc. to use the “Epsilon” mark in

connection with computer programming software. There is no other affiliation or association between Epsilon Data

Management, Inc. and Lugaru Software Ltd. “Brief” is a registered trademark of Borland International.

SUBMISSIONS

Lugaru Software Ltd. encourages the submission of comments and suggestions concerning its products. All

suggestions will be given serious technical consideration. By submitting material to Lugaru, you are granting Lugaru the

right, at its own discretion and without liability to you, to make any use of the material it deems appropriate.

iii

Note to Our Users

Individual copies of Epsilon aren’t protected with a formal license agreement, but by copyright law. In

addition to the copying for backup permitted under copyright law, Lugaru grants you, the end-user, certain

other rights, as explained on this page.

It describes the rules for installing a single purchased copy of Epsilon on multiple computers, and

related matters. These rules apply to all copies of Epsilon purchased by an end-user and not subject to a

written license agreement.

Each copy of Epsilon includes packages for various operating systems or distributions, such as a

Windows package, a Debian Linux package, and a Macintosh package.

You may install a single purchased copy of Epsilon on up to four computers under your control, either

installing the same package on each, or a different package on each, or any combination, as long as you’re

the only one using any of these packages. Two individuals may not share a single copy of Epsilon if there is

any chance both individuals might use that copy of Epsilon at the same time, even by using separate

packages on separate computers.

You may not split a single purchased copy of Epsilon into its separate packages and sell them separately.

If you purchase an update to Epsilon, it becomes part of the same copy. You may not (for example) buy

Epsilon 10, update to Epsilon 11, and then sell Epsilon 10 while retaining Epsilon 11. The update does not

count as a separate copy and must accompany the original version if sold.

We hope that you will respect our efforts, and the law, and not allow illegal copying of Epsilon.

We wish to thank all of our users who have made Epsilon successful, and extend our welcome to all

new users.

Steven Doerfler

Lugaru Software, Ltd.

We produced this manual using the Epsilon Programmer’s Editor and the TEX typesetting system.

Duane Bibby did the illustrations.

iv

Contents

1 Welcome 1

1.1 Introduction . 1

1.2 Features . 1

2 Getting Started 5

2.1 Installing Epsilon for Windows . 5

2.2 Installing Epsilon for Unix . 5

2.3 Installing Epsilon for Mac OS X . 7

2.3.1 Using Epsilon under Mac OS X . 7

2.4 Installing Epsilon for DOS . 8

2.5 Installing Epsilon for OS/2 . 9

2.6 Tutorial . 9

2.7 Invoking Epsilon . 9

2.8 Configuration Variables: The Environment and The Registry 10

2.8.1 How Epsilon Finds its Files . 12

2.8.2 The Customization Directory . 13

2.9 Epsilon Command Line Flags . 13

2.10 File Inventory . 17

3 General Concepts 21

3.1 Buffers . 21

3.2 Windows . 21

3.3 Epsilon’s Screen Layout . 21

3.4 Different Keys for Different Uses: Modes . 23

3.5 Keystrokes and Commands: Bindings . 24

3.6 Repeating: Numeric Arguments . 25

3.7 Viewing Lists . 25

3.8 Typing Less: Completion & Defaults . 26

3.9 Command History . 28

3.10 Mouse Support . 29

3.11 The Menu Bar . 30

3.11.1 Customizing Epsilon’s Menu . 31

4 Commands by Topic 35

4.1 Getting Help . 35

4.1.1 Info Mode . 37

4.1.2 Web-based Epsilon Documentation . 39

4.2 Moving Around . 40

4.2.1 Simple Movement Commands . 40

v

vi CONTENTS

4.2.2 Moving in Larger Units . 40

4.2.3 Searching . 43

4.2.4 Bookmarks . 47

4.2.5 Tags . 48

4.2.6 Source Code Browsing Interface . 50

4.2.7 Comparing . 52

4.3 Changing Text . 54

4.3.1 Inserting and Deleting . 54

4.3.2 The Region, the Mark, and Killing . 56

4.3.3 Clipboard Access . 58

4.3.4 Rectangle Commands . 59

4.3.5 Capitalization . 60

4.3.6 Replacing . 61

4.3.7 Regular Expressions . 63

4.3.8 Rearranging . 72

4.3.9 Indenting Commands . 74

4.3.10 Aligning . 76

4.3.11 Automatically Generated Text . 77

4.3.12 Spell Checking . 77

4.3.13 Hex Mode . 79

4.4 Language Modes . 80

4.4.1 Asm Mode . 81

4.4.2 Batch Mode . 81

4.4.3 C Mode . 81

4.4.4 Configuration File Mode . 86

4.4.5 GAMS Mode . 86

4.4.6 HTML, XML, and CSS Modes . 86

4.4.7 Ini File Mode . 88

4.4.8 Makefile Mode . 89

4.4.9 Perl Mode . 89

4.4.10 PHP Mode . 90

4.4.11 PostScript Mode . 90

4.4.12 Python Mode . 91

4.4.13 Shell Mode . 91

4.4.14 Tcl Mode . 91

4.4.15 TeX and LaTeX Modes . 92

4.4.16 VHDL Mode . 93

4.4.17 Visual Basic Mode . 93

4.5 More Programming Features . 94

4.5.1 Navigating in Source Code . 94

4.5.2 Pulling Words . 94

4.5.3 Accessing Help . 95

4.5.4 Context-Sensitive Help . 96

4.5.5 Commenting Commands . 97

4.6 Fixing Mistakes . 98

4.6.1 Undoing . 98

4.6.2 Interrupting a Command . 99

4.7 The Screen . 100

4.7.1 Display Commands . 100

4.7.2 Horizontal Scrolling . 101

4.7.3 Windows . 102

CONTENTS vii

4.7.4 Customizing the Screen . 104

4.7.5 Fonts . 106

4.7.6 Setting Colors . 106

4.7.7 Code Coloring . 108

4.7.8 Window Borders . 108

4.7.9 The Bell . 109

4.8 Buffers and Files . 110

4.8.1 Buffers . 110

4.8.2 Files . 111

4.8.3 File Variables . 120

4.8.4 Internet Support . 122

4.8.5 Unicode Features . 127

4.8.6 Printing . 128

4.8.7 Extended file patterns . 128

4.8.8 Directory Editing . 130

4.8.9 Buffer List Editing . 133

4.9 Starting and Stopping Epsilon . 134

4.9.1 Session Files . 134

4.9.2 File Associations . 136

4.9.3 Sending Files to a Prior Instance . 136

4.9.4 MS-Windows Integration Features . 137

4.10 Running Other Programs . 139

4.10.1 The Concurrent Process . 140

4.10.2 Compiling From Epsilon . 142

4.11 Repeating Commands . 145

4.11.1 Repeating a Single Command . 145

4.11.2 Keyboard Macros . 145

4.12 Simple Customizing . 147

4.12.1 Bindings . 147

4.12.2 Brief Emulation . 148

4.12.3 CUA Keyboard . 150

4.12.4 Variables . 151

4.12.5 Saving Changes to Bindings and Variables . 152

4.12.6 Command Files . 154

4.13 Advanced Topics . 158

4.13.1 Changing Commands with EEL . 158

4.13.2 Updating from an Old Version . 160

4.13.3 Keys and their Representation . 162

4.13.4 Customizing the Mouse . 165

4.14 Miscellaneous . 165

5 Alphabetical Command List 169

6 Variables 253

7 Changing Epsilon 369

8 Introduction to EEL 373

8.1 Epsilon Extension Language . 373

8.2 EEL Tutorial . 373

9 Epsilon Extension Language 379

viii CONTENTS

9.1 EEL Command Line Flags . 379

9.2 The EEL Preprocessor . 380

9.3 Lexical Rules . 383

9.3.1 Identifiers . 383

9.3.2 Numeric Constants . 383

9.3.3 Character Constants . 383

9.3.4 String Constants . 384

9.4 Scope of Variables . 384

9.5 Data Types . 385

9.5.1 Declarations . 386

9.5.2 Simple Declarators . 387

9.5.3 Pointer Declarators . 387

9.5.4 Array Declarators . 388

9.5.5 Function Declarators . 388

9.5.6 Structure and Union Declarations . 389

9.5.7 Complex Declarators . 390

9.5.8 Typedefs . 391

9.5.9 Type Names . 391

9.6 Initialization . 392

9.7 Statements . 394

9.7.1 Expression Statement . 394

9.7.2 If Statement . 394

9.7.3 While, Do While, and For Statements . 395

9.7.4 Switch, Case, and Default Statements . 395

9.7.5 Break and Continue Statements . 396

9.7.6 Return Statement . 396

9.7.7 Save_var and Save_spot Statements . 396

9.7.8 On_exit Statement . 397

9.7.9 Goto and Empty Statements . 397

9.7.10 Block . 398

9.8 Conversions . 398

9.9 Operator Grouping . 398

9.10 Order of Evaluation . 399

9.11 Expressions . 400

9.11.1 Constants and Identifiers . 400

9.11.2 Unary Operators . 401

9.11.3 Simple Binary Operators . 401

9.11.4 Assignment Operators . 403

9.11.5 Function Calls . 404

9.11.6 Miscellaneous Operators . 404

9.12 Constant Expressions . 405

9.13 Global Definitions . 405

9.13.1 Key Tables . 406

9.13.2 Color Classes . 406

9.13.3 Function Definitions . 409

9.14 Differences Between EEL And C . 411

9.15 Syntax Summary . 412

10 Primitives and EEL Subroutines 421

10.1 Buffer Primitives . 421

10.1.1 Changing Buffer Contents . 421

CONTENTS ix

10.1.2 Moving Text Between Buffers . 422

10.1.3 Getting Text from a Buffer . 423

10.1.4 Spots . 424

10.1.5 Narrowing . 426

10.1.6 Undo . 426

10.1.7 Searching Primitives . 427

10.1.8 Moving by Lines . 432

10.1.9 Other Movement Functions . 433

10.1.10 Sorting Primitives . 434

10.1.11 Other Formatting Functions . 435

10.1.12 Comparing . 435

10.1.13 Managing Buffers . 437

10.1.14 Catching Buffer Changes . 438

10.1.15 Listing Buffers . 440

10.2 Display Primitives . 440

10.2.1 Creating & Destroying Windows . 440

10.2.2 Window Resizing Primitives . 442

10.2.3 Preserving Window Arrangements . 442

10.2.4 Pop-up Windows . 444

10.2.5 Pop-up Window Subroutines . 445

10.2.6 Window Attributes . 446

10.2.7 Buffer Text in Windows . 447

10.2.8 Window Titles and Mode Lines . 449

10.2.9 Normal Buffer Display . 452

10.2.10 Displaying Status Messages . 458

10.2.11 Printf-style Format Strings . 461

10.2.12 Other Display Primitives . 462

10.2.13 Highlighted Regions . 463

10.2.14 Character Coloring . 467

10.2.15 Code Coloring Internals . 469

10.2.16 Colors . 472

10.3 File Primitives . 475

10.3.1 Reading Files . 475

10.3.2 Writing Files . 477

10.3.3 Line Translation . 479

10.3.4 Character Encoding Conversions . 480

10.3.5 More File Primitives . 482

10.3.6 File Properties . 485

10.3.7 Low-level File Primitives . 487

10.3.8 Directories . 488

10.3.9 Manipulating File Names . 490

10.3.10 Internet Primitives . 494

10.3.11 Tagging Internals . 499

10.4 Operating System Primitives . 499

10.4.1 System Primitives . 499

10.4.2 Window System Primitives . 503

10.4.3 Timing . 507

10.4.4 Calling DLLs (Windows Only) . 508

10.4.5 Running a Process . 509

10.5 Control Primitives . 514

10.5.1 Control Flow . 514

x CONTENTS

10.5.2 Character Types . 517

10.5.3 Examining Strings . 519

10.5.4 Modifying Strings . 520

10.5.5 Byte Arrays . 522

10.5.6 Memory Allocation . 522

10.5.7 The Name Table . 523

10.5.8 Built-in and User Variables . 525

10.5.9 Buffer-specific and Window-specific Variables . 528

10.5.10 Bytecode Files . 528

10.5.11 Starting and Finishing . 530

10.5.12 EEL Debugging and Profiling . 532

10.5.13 Help Subroutines . 534

10.6 Input Primitives . 535

10.6.1 Keys . 535

10.6.2 The Mouse . 539

10.6.3 Window Events . 544

10.6.4 Completion . 545

10.6.5 Other Input Functions . 551

10.6.6 Dialogs . 553

10.6.7 The Main Loop . 557

10.6.8 Bindings . 558

10.7 Defining Language Modes . 563

10.7.1 Language-specific Subroutines . 568

11 Error Messages 571

A Index 573

CONTENTS xi

Chapter 1

Welcome

1

1.1 Introduction

Welcome! We hope you enjoy using Epsilon. We think you’ll find that Epsilon provides power and

flexibility unmatched by any other editor for a personal computer.

Epsilon has a command set and general philosophy similar to the EMACS-style editors used on many

different kinds of computers. If you’ve used an EMACS-style editor before, you will find Epsilon’s most

commonly used commands and keys familiar. If you haven’t used an EMACS-style editor before, you can

use Epsilon’s tutorial program. Chapter 2 tells you how to install Epsilon and how to use the tutorial

program.

1.2 Features

• Full screen editing with an EMACS-style command set.

• An exceptionally powerful embedded programming language, called EEL, that lets you customize or

extend the editor. EEL provides most of the expressive power of the C programming language.

• You can invoke your compiler or “make” program from within Epsilon, then have Epsilon scan the

output for error messages, then position you at the offending line in your source file. See page 142.

• An undo command that lets you “take back” your last command, or take back a sequence of

commands. The undo facility works on both simple and complicated commands. Epsilon has a redo

command as well, so you can even undo your undo’s. See page 98.

• Very fast redisplay. We designed Epsilon specifically for the personal computer, so it takes advantage

of the high available display bandwidth.

• Epsilon can dynamically syntax-highlight source code files written in many different languages,

showing keywords in one color, functions in another, string constants in a third, and so forth.

• Epsilon can finish typing long identifier names for you.

• You can interactively rearrange the keyboard to suit your preferences, and save the layout so that

Epsilon uses it the next time. Epsilon can also emulate the Brief text editor’s commands, or use a

CUA-style keyboard (like various Windows programs).

• You can edit a virtually unlimited number of files simultaneously.

• Epsilon understands Internet URLs and can asynchronously retrieve and send files via FTP. It also

includes support for Telnet, SSH, SCP, and various other protocols.

• Epsilon provides a multi-windowed editing environment, so you can view several files simultaneously.

You can use as many windows as will fit on the display. See page 102.

• Under Windows, Epsilon provides a customizable tool bar.

• The ability to run other programs from within Epsilon in various ways. See page 139.

• The ability to run some classes of programs concurrently with the output going to a window. Details

begin on page 140.

• An extensive on-line help system. You can get help on what any command does, what any key does,

and on what the command executing at the moment does. And Epsilon’s help system will

automatically know about any rearrangement you make to the keyboard. See page 35.

2 Chapter 1. Welcome

• An extensible “tags” system for many programming languages that remembers the locations of

subroutine and variable definitions. You provide a subroutine name, for instance, and Epsilon takes

you to the place that defines that subroutine. Alternatively, you can position the cursor on a function

call, hit a key, and jump right to the definition of that function. See page 48.

• Completion on file names and command names. Epsilon will help you type the names of files and

commands, and display lists of names that match a pattern that you specify. You can complete on

many other classes of names too. This saves you a lot of typing. See page 26.

• Support for Unicode files and files using a variety of other character sets.

• Under Windows, you can drag and drop files or directories onto Epsilon’s window, and Epsilon will

open them.

• Commands to manipulate words, sentences, paragraphs, and parenthetic expressions. See the

commands starting on page 40.

• Indenting and formatting commands. Details start on page 73.

• A kill ring to store text you’ve previously deleted. You can set the number of such items to save. See

page 56.

• A convenient incremental search command (described on page 43), as well as regular searching

commands, and search-and-replace commands.

• Regular expression searches. With regular expressions you can search for complex patterns, using

such things as wildcards, character classes, alternation, and repeating. You can even search based on

syntax highlighting, finding only matches in a programming language comment or string, or using

Unicode property names.

• A fast grep command that lets you search across a set of files. See page 46. You can also replace text

in a set of files.

• Extended file patterns that let you easily search out files on a disk.

• A directory editing command that lets you navigate among directories, copying, moving, and deleting

files as needed. It even works on remote directories via FTP or SCP.

• Fast sort commands that let you quickly sort a buffer. See page 72.

• A powerful keyboard macro facility (see page 145), that allows you to execute sequences of

keystrokes as a unit, and to extend the command set of the editor. You’ll find Epsilon’s keyboard

macros very easy to define and use.

• Commands to compare two files and find the differences between them. You can compare

character-by-character or line-by-line, displaying results in a variety of formats. See page 52.

• You can choose from a variety of built-in screen layouts, making Epsilon’s screen look like those of

other editors, or customize your own look for the editor.

1.2. Features 3

Chapter 2

Getting Started

5

This chapter tells you how to install Epsilon on your system and explains how to invoke Epsilon. We also

describe how to run the tutorial, and list the files in an Epsilon distribution.

2.1 Installing Epsilon for Windows

Epsilon for Windows is provided as a self-installing Windows executable. Run the program

r:\setup.exe

where r represents your CD-ROM drive.

The installation program installs the GUI version of Epsilon for Windows, and the Win32 console

version. We named the Windows GUI version epsilon.exe and the console version epsilonc.exe.

The installation program creates program items to run Epsilon. You can recreate them, set up file

associations, change the registration information shown in Epsilon’s About box, and do similar

reconfiguration tasks by running Epsilon’s configure-epsilon command.

The installer also sets the registry entry Software\Lugaru\Epsilon\EpsPathversion in the

HKEY_CURRENT_USER hierarchy to include the name of the directory in which you installed Epsilon (where

version represents Epsilon’s version number).

Under Windows 95/98/ME, the installation program directs the system to install Epsilon’s VxD each

time it starts, by creating the registry entry

System\CurrentControlSet\Services\VxD\Epsilonversion\StaticVxD in the HKEY_LOCAL_MACHINE

hierarchy. If you’re running Windows 95/98/ME, the program will warn that you must restart Windows

before the concurrent process will work.

You can uninstall Epsilon by using the “Programs and Features” Control Panel (called “Add/Remove

Programs” prior to Windows Vista).

2.2 Installing Epsilon for Unix

Epsilon includes a version for Linux and a separate version for FreeBSD. We describe them collectively as

the “Unix” version of Epsilon. To install either one, mount the CD-ROM, typically by typing

mount -o exec /cdrom

or for FreeBSD and some Linux systems

mount /cdrom

Then, as root, run the appropriate shell script. For Linux, use

/cdrom/linux/einstall

and for FreeBSD use

/cdrom/freebsd/einstall

The installation script will prompt you for any necessary information.

If for some reason that doesn’t work, you can manually perform the few steps needed to install Epsilon.

For Epsilon for Linux, you would type, as root:

6 Chapter 2. Getting Started

cd /usr/local

tar xjf /cdrom/linux/epsilon13.17.tar.bz2

cd epsilon13.17

./esetup

For FreeBSD, substitute freebsd for linux in the second command.

You can also install Epsilon in a private directory, if you don’t have root access. If you do this on some

systems, you might have to define an environment variable to ensure Epsilon can locate its files, such as

EPSPATH1317=~/.epsilon:/home/bob/epsilon13.17

If needed, the esetup command will display an appropriate environment variable definition.

Some versions of Epsilon use a helper program to access certain shared library files from the glibc 2.1

NSS subsystem. If necessary, the installation script will compile a helper program to provide Epsilon with

these services.

Epsilon runs as an X11 program when run under the X11 windowing system, and as a text program

outside of X. Epsilon knows to use X when it inherits a DISPLAY environment variable. You can override

Epsilon’s determination by providing a -vt flag to make Epsilon run as a text program, or an appropriate

-display flag to make Epsilon connect to a given X server. On platforms where Epsilon uses shared libraries,

you can run the program terminal-epsilon instead of epsilon; it will run as a text program even where

X11 shared libraries are not installed.

Epsilon also recognizes these standard X11 flags:

-bw pixels or -borderwidth pixels This flag sets the width of the window border in pixels. An

Epsilon.borderWidth resource may be used instead.

-display disp This flag makes Epsilon use disp as the display instead of the one indicated by the DISPLAY

environment variable. It follows the standard X11 syntax.

-fn font or -font font This flag specifies the font to use. The Alt-x set-font command can select a different

font from within Epsilon. Epsilon will remember any font you select with set-font and use it in future

sessions; this flag overrides any remembered font.

-geometry geometry This flag sets the window size and position, using the standard X11 syntax. Without

this flag, Epsilon looks for an Epsilon.geometry resource.

-name resname This flag tells Epsilon to look for X11 resources using a name other than “Epsilon”.

-title title This flag sets the title Epsilon displays while starting. An Epsilon.title resource may be used

instead.

-xrm resourcestring This flag specifies a specific resource name and value, overriding any defaults.

Epsilon uses various X11 resources. You can set them from the command line with a flag like -xrm

Epsilon.cursorstyle:1 or put a line like Epsilon.cursorstyle:1 in your X resources file, which is

usually named ~/.Xresources or ~/.Xdefaults:

Epsilon.cursorstyle: 1

You’ll need to tell X to reread the file after making such a change, using a command like xrdb -merge

~/.Xresources.

Epsilon uses these X resources:

2.3. Installing Epsilon for Mac OS X 7

Epsilon.borderWidth This sets the width of the border around Epsilon’s window.

Epsilon.cursorstyle Under X11, Epsilon displays a block cursor whose shape does not change. Define a

cursorstyle resource with value 1 and Epsilon will use a line-style cursor, sized to reflect overwrite

mode or virtual space mode. Note: This cursor style does not display correctly on some X11 servers.

Epsilon.font This resource sets Epsilon’s font. It must be a fixed-width font. If you set a font from within

Epsilon, it remembers your selection in a file ~/.epsilon/Xresources and uses it in future

sessions. Epsilon uses this resource if there’s no font setting in that file.

Epsilon.geometry This resource provides a geometry setting for Epsilon. See the -geometry flag above.

Epsilon.title This resource sets the title Epsilon displays while starting.

2.3 Installing Epsilon for Mac OS X

Epsilon for Mac OS X supports drag and drop installation. Simply open the disk image in the “macos”

folder on the CD-ROM and drag the Epsilon application inside to your Applications folder. Epsilon supports

Mac OS X version 10.4 and later on Intel-based Macs. A legacy package in the “powerpc” folder supports

old PowerPC-based Macs running OS X 10.3.9 through 10.6.8.

Epsilon includes a setup script, and there are some advantages to running it, though it’s optional. The

setup script will install Epsilon and its EEL compiler on your path, so you can run them from the command

line more conveniently. And it will link Epsilon’s Info documentation into the main Info tree, so other

Info-reading programs can locate it. To run Epsilon’s setup script from a shell prompt, type

sudo "/Applications/Epsilon.app/Contents/esetup"

assuming /Applications is where you installed Epsilon.

Epsilon for Mac OS X can run as an X11 program or as a curses-based console program. Normally it

automatically chooses the best way: as an X11 program if there’s a DISPLAY environment variable or if

X11 is installed, otherwise as a console program. OS X versions through 10.7 (Lion) come with X11

preinstalled (or available on your installation disk as an optional extra), but starting in 10.8 (Mountain Lion),

the XQuartz program must be installed from http://xquartz.macosforge.org/ for X11 support. This is highly

recommended, since Epsilon for OS X works best as an X11 program.

Any time Epsilon documentation mentions the “Unix version” of Epsilon, this also includes the Mac

OS X version. In particular, Epsilon for Mac OS X recognizes all the X11 flags described in the previous

section, and all the X11 resource names documented there.

2.3.1 Using Epsilon under Mac OS X

When you run Epsilon for Mac OS X as an application bundle, the Finder runs a shell script named

MacOS/start-epsilon within the bundle. This script picks the best method to invoke Epsilon. If there’s a

DISPLAY environment variable, indicating X11 is already running, it simply executes bin/epsilon.

Otherwise, if X11 is installed, it uses X11’s open-x11 program to start X11 and run bin/epsilon within it.

Finally, if X11 is not installed, it runs the bin/terminal-epsilon program, which can run without X11.

If you want to create a link to Epsilon in a common bin directory for executables and retain this

behavior, create a symbolic link to its MacOS/start-epsilon script.

When the MacOS/start-epsilon shell script uses open-x11 to run Epsilon, the Epsilon process

created may or may not be a child of MacOS/start-epsilon. So passing special ulimit or environment

variable settings to it can’t be done by simply wrapping this script in another. The MacOS/start-epsilon

8 Chapter 2. Getting Started

script sources a script file named ~/.epsilon/start-epsilon.rc, if it exists, which can set up any

special environment or ulimit setting you want, and loads any resources defined in your ~/.Xresources

file.

When Epsilon runs under Mac OS X, certain keyboard issues arise. This section explains how to

resolve them.

• Mac OS X normally reserves the function keys F9 through F12 for its own use. Epsilon also uses

these keys for various functions. You can set Mac OS X to use different keys for these four functions,

system-wide, but the simplest approach is to use alternative keys in Epsilon.

For the undo and redo commands on F9 and F10, the undo-changes and redo-changes commands on

Ctrl-F9 and Ctrl-F10 make fine replacements. Or you can run undo and redo using their alternative

key bindings Ctrl-X u and Ctrl-X r, respectively.

For the previous-buffer and next-buffer commands on F11 and F12, you can use their alternative key

bindings, Ctrl-X < and Ctrl-X >, respectively.

• Under X11, Epsilon uses the Command key as its Alt modifier key. X11’s Preferences should be set

so the “Enable key equivalents under X11” option is disabled (called “Enable Keyboard Shortcuts” in

older X11 versions); otherwise the X11 system will reserve for itself many key combinations that use

the Command key. Alternatively, you can substitute multi-key sequences like Escape f for the key

combination Alt-f. See the alt-prefix command.

• When Epsilon for Mac OS X runs as a console program because X11 is not installed, it uses the

TERM environment variable and the terminfo database of terminal characteristics. If you run Epsilon

under a terminal program like Terminal and the TERM setting doesn’t match the terminal program’s

actual behavior, some things won’t work right. As of Mac OS X version 10.4, it appears that no

setting for TERM exactly matches Terminal’s default behavior, but the “xterm-color” setting comes

closest. Select this option from Terminal’s Preferences.

With the xterm-color setting, function keys F1-F4 may not work right; the commands on these keys

almost all have alternative bindings you can use instead: For F1 (the help command), use the key

labeled “Help” on Mac keyboards that have one, or type Alt-? or Ctrl-_. For F2 (the named-command

command), use the Alt-x key combination instead. For F3 (the pull-word command), use the Ctrl-〈Up〉
key. For F4 (the bind-to-key command), type Alt-x bind-to-key. Or you can change Terminal’s settings

for these keys, or the terminfo database, so they match. But the best way to avoid these issues entirely

is to install X11 so Epsilon can run as an X11 program, as above.

2.4 Installing Epsilon for DOS

An older version of Epsilon for DOS is also provided on the CD-ROM, for users who must use DOS.

The Win32 console version, described previously, and the DOS version have a similar appearance, and

both will run in Windows, but of the two, only the Win32 console version can use long file names or the

clipboard in all 32-bit versions of Windows. The DOS version also lacks a number of other features in the

Win32 console version. If you wish to run Epsilon from a command line prompt (a DOS box) within any

32-bit version of Windows, use the Win32 console version, not the DOS version, for the best performance

and feature set.

To install Epsilon for DOS, cd to the \DOS directory on the Epsilon CD-ROM. Run Epsilon’s

installation program by typing:

install

2.5. Installing Epsilon for OS/2 9

Follow the directions on the screen to install Epsilon. The installation program will ask before it

modifies or replaces any system files. The DOS executable is named epsdos.exe. A list of files provided

with Epsilon starts on page 17.

2.5 Installing Epsilon for OS/2

An older version of Epsilon for OS/2 is also provided on the CD-ROM. To install Epsilon for OS/2, start a

command prompt and cd to the \OS2 directory on the Epsilon CD-ROM. Run Epsilon’s installation program

by typing:

install

Follow the directions on the screen to install Epsilon. The installation program will ask before it

modifies or replaces any system files. The OS/2 executable is named epsilon.exe. A list of files provided

with Epsilon starts on page 17.

2.6 Tutorial

Once you install Epsilon, put the distribution medium away. If you’ve never used Epsilon or EMACS

before, you should run the tutorial to become acquainted with some of Epsilon’s simpler commands.

The easiest way to run the tutorial is to start Epsilon and select Epsilon Tutorial from the Help menu. (If

you’re running a version of Epsilon without a menu bar, you can instead press the F2 key in Epsilon and

type the command name tutorial. Or you can start Epsilon with the -teach flag.)

The tutorial will tell you everything else you need to know to use the tutorial, including how to exit the

tutorial.

2.7 Invoking Epsilon

You can start Epsilon for Windows using the icon created by the installer. Under other operating systems,

you can run Epsilon by simply typing “epsilon”.

Depending on your installation options, you can also run Epsilon for Windows from the command line.

Under Windows, type “epsilon” to run the more graphical version of Epsilon, or “epsilonc” to run the Win32

console version of Epsilon. “Epsdos” runs the DOS version, if one is installed.

The first time you run Epsilon, you will get a single window containing an empty document. You can

give Epsilon the name of a file to edit on the command line. For example, if you type

epsilon sample.c

then Epsilon will start up and read in the file sample.c. If the file name contains spaces, surround the entire

name with double-quote characters.

epsilon "a sample file.c"

When you name several files on the command line, Epsilon reads each one in, but puts only up to three

in windows (so as not to clutter the screen with tiny windows). You can set this number by modifying the

max-initial-windows variable.

If you specify files on the command line with wild cards, Epsilon will show you a list of the files that

match the pattern in dired mode. See page 130 for more information on how dired works. File names that

contain only extended wildcard characters like , ; [or], and no standard wildcard characters like * or ?, will

10 Chapter 2. Getting Started

be interpreted as file names, not file patterns. (If you set the variable expand-wildcards to 1, Epsilon will

instead read in each file that matches the pattern, as if you had listed them explicitly. Epsilon for Unix does

this too unless you quote the file pattern.)

Epsilon normally shows you the beginning of each file you name on the command line. If you want to

start at a different line, put “+number” before the file’s name, where number indicates the line number to go

to. You can follow the line number with a :column number too. For example, if you typed

epsilon +26 file.one +144:20 file.two

then you would get file.one with the cursor at the start of line 26, and file.two with the cursor at line 144,

column 20. You can instead specify a character offset using the syntax “+pnumber” to go to character offset

number in the buffer.

Windows users running the Cygwin environment may wish to configure Epsilon to accept Cygwin-style

file names on the command line. See the cygwin-filenames variable for details.

By default, Epsilon will also read any files you were editing in your previous editing session, in addition

to those you name on the command line. See page 134 for details.

If you’re running an evaluation version of Epsilon or a beta test version, you may receive a warning

message at startup indicating that soon your copy of Epsilon will expire. You can disable or delay this

warning message (though not the expiration itself). Create a file named no-expiration-warning in

Epsilon’s main directory. Put in it the maximum number of days warning you want before expiration.

2.8 Configuration Variables: The Environment and The Registry

Epsilon for Unix uses several environment variables to set options and say where to look for files. Epsilon

for Windows stores such settings in the System Registry, under the key

HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon. Epsilon’s setup program will generally create all

necessary registry keys automatically.

We use the term configuration variable to refer to any setting that appears as an environment variable

under Unix, or a registry entry under Windows. There are a small number of settings that are stored in

environment variables on all platforms; these are generally settings that are provided by the operating

system. These include COMSPEC, TMP or TEMP, EPSRUNS, and MIXEDCASEDRIVES.

Under Windows, the installation program creates a registry entry similar to this:

HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath=~;c:\epsilon

Of course, the actual entry, whether it’s an environment variable setting or an entry in the system

registry, would contain whatever directory Epsilon was actually installed in, not c:\epsilon.

If you have more than one version of Epsilon on your computer, you may want each to use a different

set of options. You can override many of the configuration variables listed below by using a configuration

variable whose name includes the specific version of Epsilon in use. For example, when Epsilon needs to

locate its help file, it normally uses a configuration variable named EPSPATH. Epsilon version 6.01 would

first check to see if a configuration variable named EPSPATH601 existed. If so, it would use that variable. If

not, it would then try EPSPATH60, then EPSPATH6, and finally EPSPATH. Epsilon does the same sort of

thing with all the configuration variables it uses, with the exception of DISPLAY, EPSRUNS, TEMP, and

TMP.

Epsilon uses a similar procedure to distinguish registry entries for the Win32 console mode version

from registry entries for the Win32 GUI version of Epsilon. For the console version, it checks registry

names with an -NTCON suffix before the actual names; for the GUI version it checks for a -WIN suffix. So

Epsilon 10.2 for Win32 console would seek an EPSPATH configuration variable using the names

2.8. Configuration Variables: The Environment and The Registry 11

EPSPATH102-NTCON, EPSPATH102, EPSPATH10-NTCON, EPSPATH10, EPSPATH-NTCON, and

finally EPSPATH, using the first one it finds.

For example, the Windows installation program for Epsilon doesn’t actually add the EPSPATH entry

shown above to the system registry. It really uses an entry like

HKEY_CURRENT_USER\SOFTWARE\Lugaru\Epsilon\EpsPath80=c:\epsilon

where EpsPath80 indicates that the entry should be used by version 8.0 of Epsilon, or version 8.01, or 8.02,

but not by version 8.5. In this way, multiple versions of Epsilon can be installed at once, without overwriting

each other’s settings. This can be helpful when upgrading Epsilon from one version to the next.

Here we list all the configuration variables that Epsilon can use. Remember, under Windows, most of

these names refer to entries in the registry, as described above. Under Unix, these are all environment

variables.

CMDCONCURSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command

line when you use the start-process command with a numeric argument. It overrides

CMDSHELLFLAGS. See page 140.

CMDSHELLFLAGS If defined, Epsilon puts the contents of this variable before the command line when

it runs a subshell that should execute a single command and exit.

COMSPEC Epsilon for Windows needs a valid COMSPEC environment variable in order to run another

program. Normally, the operating system automatically sets up this variable to give the file name of

your command processor. If you change the variable manually, remember that the file must actually

exist. Don’t include command line options for your command processor in the COMSPEC variable. If

a configuration variable called EPSCOMSPEC exists, Epsilon will use that instead of COMSPEC.

(For Unix, see SHELL below.)

DISPLAY Epsilon for Unix tries to run as an X11 program if this environment variable is defined, using the

X server display it specifies.

EEL The EEL compiler looks for a configuration variable named EEL before examining its command line,

then “types in” the contents of that variable before the compiler’s real command line. See page 379.

EPSCOMSPEC See COMSPEC above.

EPSCONCURCOMSPEC If defined, Epsilon for Windows runs the shell command processor named by

this variable instead of the one named by the EPSCOMSPEC or COMSPEC variables, when it starts a

concurrent process. See page 140.

EPSCONCURSHELL If defined, Epsilon for Unix runs the shell command processor named by this

variable instead of the one named by the EPSSHELL or SHELL variables, when it starts a concurrent

process. See page 140.

EPSCUSTDIR Epsilon uses the directory named here as its customization directory (see page 13) instead

of the usual one (under \Users or \Documents and Settings, for Windows, or at ~/.epsilon,

for Unix). The directory must already exist, or Epsilon will ignore this variable.

EPSILON Before examining the command line, Epsilon looks for a configuration variable named

EPSILON and “types in” the value of that variable to the command line before the real command line.

See page 13.

EPSMIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon

doesn’t change the case of file names on the listed drives. See page 119 for details.

12 Chapter 2. Getting Started

EPSPATH Epsilon uses this configuration variable to locate its files. See page 12.

EPSRUNS When Epsilon runs another program, it sets this environment variable to indicate to the other

program that it’s running within Epsilon. A setting of C indicates the subprocess is running within

Epsilon’s concurrent process. A setting of P indicates the subprocess is running via the filter-region

command or similar. A setting of Y indicates Epsilon ran the process in some other way, such as via

the shell command.

EPSSHELL See SHELL below.

ESESSION Epsilon uses this variable as the name of its session file. See page 134.

INTERCONCURSHELLFLAGS If defined, Epsilon uses the contents of this variable as the command

line to the shell command processor it starts when you use the start-process command without a

numeric argument. It overrides INTERSHELLFLAGS. See page 140.

INTERSHELLFLAGS If defined, Epsilon uses the contents of this variable as a subshell command line

when it runs a subshell that should prompt for a series of commands to execute. See page 140.

MIXEDCASEDRIVES This variable can contain a list of drive letters. If the variable exists, Epsilon

doesn’t change the case of file names on the listed drives. See page 119 for details.

NOFOCUSCLICK If defined, when you click on an Epsilon window under Windows while another

program has the focus, Epsilon will get the focus but will otherwise ignore the mouse click. By

default, it treats mouse clicks the same whether or not they switch the focus to Epsilon, setting point

to the character you clicked on.

PATH The operating system uses this variable to find executable programs such as epsilon.exe. Make sure

this variable includes the directory containing Epsilon’s executable files if you want to conveniently

run Epsilon from the command line.

SHELL Epsilon for Unix needs a valid SHELL environment variable in order to run another program. If a

configuration variable called EPSSHELL exists, Epsilon will use that instead of SHELL. (See

COMSPEC above for the non-Unix equivalent.)

TEMP Epsilon puts any temporary files it creates in this directory, unless a TMP environment variable

exists. See the description of the -fs flag on page 14.

TMP Epsilon puts any temporary files it creates in this directory. See the description of the -fs flag on page

14.

2.8.1 How Epsilon Finds its Files

Sometimes Epsilon needs to locate one of its files. For example, Epsilon needs to read an .mnu file like

gui.mnu or epsilon.mnu to determine what commands go in its menu bar.

Epsilon searches for the file in each directory named by the EPSPATH configuration variable. This

configuration variable should contain a list of directories, separated by semicolons (or for Unix, colons).

Epsilon will then look for the file in each of these directories. Under Windows, a directory named ~ in an

EPSPATH variable has a special meaning. It refers to the current user’s customization directory. See the

next section.

If there is no EPSPATH configuration variable, Epsilon constructs a default one. It consists of the user’s

customization directory, then the parent of the directory containing Epsilon’s executable. For Unix, the

default EPSPATH also contains the directory /usr/local/epsilonVER (where VER indicates the current

version, such as 10.01).

2.9. Epsilon Command Line Flags 13

If the name of the directory with Epsilon’s executable doesn’t start with bin, or its parent doesn’t start

with eps (they do, in a normal installation), Epsilon uses the directory containing Epsilon’s executable, not

its parent, in the default EPSPATH.

Some flags can change the above behavior. The -w32 flag makes Epsilon look for files in the directory

containing the Epsilon executable before trying the EPSPATH. The -w8 flag keeps Epsilon from including

the executable’s directory or its parent in the default EPSPATH.

The EEL compiler also uses the EPSPATH environment variable. See page 379.

2.8.2 The Customization Directory

Epsilon searches for some files in a user-specific customization directory. It also creates files like its

initialization file einit.ecm there. (See page 154, and the edit-customizations command.)

To locate your customization directory, switch to Epsilon’s #messages# buffer. Epsilon writes the

name of its customization directory to this buffer when it starts up. Or run the edit-customizations command,

which opens the einit.ecm file located in this directory.

Under Linux, FreeBSD, and Mac OS X, the customization directory is ~/.epsilon.

Under Windows, the customization directory is located in the Lugaru\Epsilon subdirectory within the

current user’s Application Data directory, which varies by version of Windows. Here are some typical

locations:

For Windows Vista and later:

\Users\username\AppData\Roaming\Lugaru\Epsilon

For Windows 2000/XP:

\Documents and Settings\username\Application Data\Lugaru\Epsilon

For Windows NT:

\Winnt\Profiles\username\Application Data\Lugaru\Epsilon

For Windows 95/98/ME, when user login is enabled:

\Windows\Profiles\username\Application Data\Lugaru\Epsilon

For Windows 95/98/ME, when user login is disabled:

\Windows\Application Data\Lugaru\Epsilon

You can force Epsilon to use a different customization directory by defining a configuration variable

named EPSCUSTDIR. See page 10 for more on configuration variables.

2.9 Epsilon Command Line Flags

When you start Epsilon, you may specify a sequence of command line flags (also known as command-line

options, or switches) to alter Epsilon’s behavior. Flags must go before any file names.

Each flag consists of a minus sign (“-”), a letter, and sometimes a parameter. You can use the special

flag -- to mark the end of the flags; anything that follows will be interpreted as a file name even if it starts

with a - like a flag.

If a parameter is required, you can include a space before it or not. If a parameter is optional (-b, -m,

-p) it must immediately follow the flag, with no space.

14 Chapter 2. Getting Started

Before examining the command line, Epsilon looks for a configuration variable (see page 10) named

EPSILON and “types in” the value of that variable to the command line before the real command line. Thus,

if you define a Unix environment variable:

export EPSILON=-m250000 -smine

then Epsilon would behave as if you had typed

epsilon -m250000 -smine myfile

when you actually type

epsilon myfile

Here we list all of the flags, and what they do:

+number Epsilon normally shows you the beginning of each file you name on the command line. If you

want to start at a different line, put “+number” before the file’s name, where number indicates the line

number to go to. You can follow the line number with a colon and a column number if you wish.

-add This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,

and exit. Epsilon ignores the flag if there’s no prior instance. If you want to configure another

program to run Epsilon to edit a file, but use an existing instance of Epsilon if there is one, just include

this flag in the Epsilon command line. See page 136 for details on Epsilon’s server support.

-bfilename Epsilon normally reads all its commands from a state file at startup. (See the -s flag below.)

Alternately, you can have Epsilon start up from a file generated directly by the EEL compiler. These

bytecode files end with a “.b” extension. This flag says to use the bytecode file with name filename, or

“epsilon” if you leave out the filename. You may omit the extension in filename. You would rarely use

this flag, except when building a new version of Epsilon from scratch. Compare the -l flag.

-dvariable!value You can use this flag to set the values of string and integer variables from the command

line. The indicated variable must already exist at startup. You can also use the syntax

-dvariable=value, but beware: if you run Epsilon for Windows via a .BAT or .CMD file, the system

will replace any =’s with spaces, and Epsilon will not correctly interpret the flag.

-dir dirname Epsilon interprets any file names that follow on the command line relative to this directory.

-fdfilename This flag tells Epsilon where to look for the on-line documentation file. Normally, Epsilon

looks for a file named edoc. This flag tells Epsilon to use filename for the documentation file. If you

provide a relative name for filename, then Epsilon will search for it; see page 12. Use a file name, not

a directory name, for filename.

-fsdirnames This switch tells Epsilon what directories to use for temporary files, such as Epsilon’s swap

file, which it uses when you edit files too big for available memory, or the eshell file it creates in some

environments to help capture the output of a process. Dirnames should indicate a list of one or more

directories, separated by semicolons (colons under Unix). Epsilon will use the first directory named as

long as there is space on its device; then it will switch to the second directory, and so forth. If it cannot

find any available space, it will ask you for another directory name.

If you don’t use this switch, Epsilon will create any temporary files it needs in the directory named by

the TMP environment variable. If TMP doesn’t exist, Epsilon tries TEMP, then picks a fallback

location. Epsilon calls its swap file eswap, but it will use another name (like eswap0, eswap1, etc.) to

avoid a conflict with another Epsilon using this file.

2.9. Epsilon Command Line Flags 15

-geometry When Epsilon for Unix runs as an X program, it recognizes this standard X11 flag. It specifies

the size and position of Epsilon’s window, using the format WIDTHxHEIGHT+XOFF+YOFF. The WIDTH

and HEIGHT values are in characters. The XOFF and YOFF values are in pixels, measured from the top

left corner of the screen. You can use - instead of + as the offset separator to positon relative to the

right or bottom edge of the screen instead. You may omit trailing values (for instance, just specify

width and height).

-kanumber This switch turns off certain keyboard functions to help diagnose problems. It’s followed by a

number, a bit pattern made by summing the bit values that follow.

For Windows, the value 1 tells Epsilon not to translate the Ctrl-2 key combination to Ctrl-@.

(Ctrl-Shift-2 always produces Ctrl-@.) The value 8 tells Epsilon to be more conservative when

writing text on the screen, at the price of some performance; it may help with fonts that use

inconsistent character sizes, or with display driver compatibility issues. The value 16 makes text a

little darker, and sometimes helps with display driver compatibility too.

A value of 128 tells Epsilon for Windows not to apply the Ctrl key to those ASCII characters that

have no Control version in ASCII. For instance, the ASCII code includes characters Ctrl-A and Ctrl-\,

but not Ctrl-9 or Ctrl-(. Epsilon for Windows will construct a non-ASCII key code for the latter pair

unless you use this bit. (Under X11, Epsilon always does this.)

For Unix, bits in this flag can set which X11 modifier keys indicate an Alt key. By default, Epsilon

chooses an appropriate key, but you can use 1 or 2 to force modifier key 1 or 2, respectively. The

number is a bit pattern specifying which of the five possible X11 modifier keys will be used as an Alt

key, using the values 1, 2, 4, 8, and 16. The value 32 tells Epsilon under X11 not to translate the Ctrl-2

key combination to NUL (as 1 for Windows does).

Both Windows and X11 GUI versions recognize the 64 bit, which tells Epsilon not to translate the

Ctrl-6 combination into Ctrl-^, or Ctrl-〈Minus〉 on the main keyboard into Ctrl-_.

-ksnumber This flag lets you adjust the emphasis Epsilon puts on speed during long operations versus

responsiveness to the abort key. Higher numbers make Epsilon slightly faster overall, but when you

press the abort key, Epsilon may not respond as quickly. Lower numbers make Epsilon respond more

quickly to the abort key, but with a performance penalty. The default setting is -ks100.

-lbytecode Giving this switch makes Epsilon load a bytecode file named bytecode.b after loading the state

file. If you give more than one -l flag on the command line, the files load in the order they appear.

Compare the -b flag.

-mbytes This switch controls how much memory Epsilon uses for the text of buffers. Epsilon interprets a

number less than 1000 as a number of kilobytes, otherwise, as bytes. You may explicitly specify

kilobytes by ending bytes with ‘k’, or megabytes by ending bytes with ‘m’. Specify -m0 to use as

little memory as possible, and -m to put no limit on memory use.

If you read in more files than will fit in the specified amount of memory, or if despite a high limit, the

operating system refuses Epsilon’s requests for more memory, Epsilon will swap portions of the files

to disk. By default, Epsilon puts no limits on its own memory usage.

-noinit This flag tells Epsilon not to read any einit.ecm customization file.

-nologo In some environments Epsilon prints a short copyright message when it starts. This flag makes it

skip displaying that message.

-noserver This flag tells Epsilon for Windows or Unix that it should not register itself as a server so as to

accept messages from other instances of Epsilon. By default, Epsilon will receive messages from

future instances of Epsilon that are started with the -add flag, or (for Windows) sent via file

associations or DDE. See page 136 for details. The flag -nodde is a synonym.

16 Chapter 2. Getting Started

-pfilename This overrides the ESESSION configuration variable to control the name of the session file that

Epsilon uses. When you specify a file name, Epsilon uses that for the session file, just as with

ESESSION. Because the -p0 and -p1 flags enable and disable sessions (see the next item), the given

filename must not begin with a digit.

-pnumber This flag controls whether or not Epsilon restores your previous session when it starts up. By

default, Epsilon will try to restore your previous window and buffer configuration. The -p flag with

no number toggles whether Epsilon restores the session. Give the -p0 flag to disable session restoring

and saving, and the -p1 flag to enable session restoring and saving. This flag understands the same

values as the preserve-session variable; see its description for other options.

-quickup Epsilon uses this flag to help perform certain updates. It searches for and loads a bytecode file

named quickup.b. This flag is similar to the -l flag above, but the -quickup flag doesn’t require any

EEL functions to run. For that reason, it can replace and update any EEL function.

-rcommand Giving this switch makes Epsilon try to run a command or keyboard macro named command at

startup. If the command doesn’t exist, nothing happens. If you specify more than one -r flag on the

command line, they execute in the order they appear. Use the syntax -rcmdname=param or

-rcmdname!param to run an EEL subroutine and pass it a value; the subroutine must be defined to

accept a single parameter of char * type.

-sfilename When Epsilon starts up, it looks for a state file named epsilon-v13.sta. The state file contains

definitions for all of Epsilon’s commands. You can create your own state file by using the write-state

command. This switch says to use the state file with the name filename. Epsilon will add the

appropriate extension if you omit it. Specify a file name for filename, not a directory name. Of course,

the file name may include a directory or drive prefix. If you specify a relative file name, Epsilon will

search for it. See page 12. See also the -b flag, described above.

-sendonly The startup script in Epsilon for Mac OS X uses this flag in combination with the -add flag. It

makes Epsilon exit with an error code whenever no prior instance was found to receive the -add

command line.

-server:servername The command line flag -server may be used to alter the server name for an instance of

Epsilon. An instance of Epsilon started with -server:somename -add will only pass its command line

to a previous instance started with the same -server:somename flag. See page 136. The flag -dde is a

synonym.

-teach This flag tells Epsilon to load the on-line tutorial file at startup. See page 9.

-vcx x indicates the number of columns you want displayed while in Epsilon. For example, use “-vc132”

for 132 columns. See the -vl flag, described below. See the -geometry flag for the equivalent in

Epsilon for Unix.

-vcolor Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one

based on the type of display in use and its mode. This flag forces Epsilon to use a full-color color

scheme, regardless of the type of the display.

-vlx x indicates the number of screen lines you want to use while in Epsilon. Also See the -vc switch,

described above. See -geometry for the equivalent in Epsilon for Unix.

-vmono Epsilon normally tries to determine whether to use a monochrome color scheme or a full-color one

based on the type of display in use and its mode. This flag forces Epsilon to use its monochrome color

scheme, regardless of the type of the display.

2.10. File Inventory 17

-vt (Unix only) This flag forces Epsilon to run as a curses-style terminal program, not an X11 program. By

default Epsilon for Unix runs as an X program whenever an X display is specified (either through a

DISPLAY environment variable or a -display flag), and a terminal program otherwise.

-vv This flag instructs Epsilon to split the screen vertically, not horizontally, when more than one file is

specified on the command line.

-vx and -vy These flags let you specify the position of Epsilon’s window in Epsilon for Windows. For

example, -vx20 -vy30 positions the upper left corner of Epsilon’s window at pixel coordinates

20x30. See -geometry for the equivalent in Epsilon for Unix.

-wnumber This flag controls several directory-related settings. Follow it with a number.

The -w1 flag tells Epsilon to remember the current directory from session to session. Without this

flag, Epsilon will remain in whatever current directory it was started from. Epsilon always records the

current directory when it writes a session file; this flag only affects whether or not Epsilon uses this

information when reading a session file.

The -w2 and -w4 flags have no effect in this version of Epsilon.

The -w8 flag tells Epsilon not to look for its own files in the parent of the directory containing the

Epsilon executable. See page 12.

The -w16 flag tells Epsilon to set its current directory to the directory containing the first file named

on its command line. If you edit files by dragging and dropping them onto a shortcut to Epsilon, you

may wish to use this flag in the shortcut.

The -w32 flag tells Epsilon to look for its own files in the directory containing the Epsilon executable

before searching the EPSPATH. See page 12.

You can combine -w flags by adding their values together. For example, -w9 makes Epsilon

remember the current directory and exclude its executable’s parent directory from the default

EPSPATH. These -w flags are cumulative, so -w1 -w8 works the same as -w9. Omitting the number

discards all prior -w flags on the command line, so -w9 -w -w32 acts like just -w32.

All Windows program icons for Epsilon invoke it with -w1 so that Epsilon remembers the current

directory.

-wait This flag tells Epsilon to locate an existing instance of Epsilon, pass it the rest of the command line,

and wait for the user in that instance to invoke the resume-client command. (Epsilon ignores the flag if

there’s no prior instance.) If you want to configure another program to run Epsilon to edit a file, but

use an existing instance of Epsilon, just include this flag in the Epsilon command line. See page 136

for details on Epsilon’s server support.

2.10 File Inventory

Epsilon consists of the following files:

setup.exe, setup.w02 (Windows only) Epsilon’s installation program.

epsilon.exe The 32-bit Epsilon for Windows executable program.

epsilonc.exe The Epsilon executable program for Win32 console mode.

epsdos.exe The Epsilon executable program for DOS-only systems.

epsdos.ico and epsdos.pif These files help the DOS version of Epsilon to run under Windows.

18 Chapter 2. Getting Started

eel.exe Epsilon’s compiler. You need this program if you wish to add new commands to Epsilon or modify

existing ones.

eel_lib.dll Under Windows, Epsilon’s compiler eel.exe requires this file. Epsilon itself also uses this file

when you compile from within the editor.

icudt*.dat, eunicode.dll These files help provide Unicode support.

conagent.pif, concur16.exe, concur16.ico, and concur16.pif Epsilon for Windows requires these files to

provide its concurrent process feature.

lugeps1.386 Epsilon for Windows requires this file under Windows 95/98/ME to provide its concurrent

process feature. It’s normally installed in your Windows System directory.

inherit.exe and inherit.pif Epsilon for Windows uses these files to execute another program and capture its

output.

sheller.exe and sheller.pif Epsilon for Windows 95/98/ME uses these files as well to execute another

program and capture its output.

edoc.hlp This Windows help file provides help on Epsilon.

epshlp.dll Epsilon’s help file communicates with a running copy of Epsilon so it can display current key

bindings or variable values and let you modify variables from the help file. It uses this file to do that.

sendeps.exe Epsilon for Windows uses this file to help create desktop shortcuts to Epsilon, or Send To

menu entries.

VisEpsil.dll Epsilon for Windows includes this Developer Studio extension that lets Developer Studio pass

all file-opening requests to Epsilon.

mspellcmd.exe Epsilon’s speller uses this helper program to get suggestions from the MicroSpell speller.

winpty.exe and win-askpass.exe The secure shell (ssh) and secure file transfer (scp) features in Epsilon for

Windows use these helper programs to interact with Cygwin’s ssh program.

The installation program puts the following files in the main Epsilon directory, normally \Program

Files\Eps13 under Windows and /usr/local/epsilon13.17 under Unix.

epsilon-v13.sta This file contains all of Epsilon’s commands. Epsilon needs this file in order to run. If you

customize Epsilon, this file changes. The name includes Epsilon’s major version.

original.sta This file contains a copy of the original version of epsilon-v13.sta at the time of installation.

edoc Epsilon’s on-line documentation file. Without this file, Epsilon can’t provide basic help on commands

and variables.

info\epsilon.inf Epsilon’s on-line manual, in Info format.

info\dir A default top-level Info directory, for non-Unix systems that may lack one. See Info mode for

details.

lhelp* This directory contains files for the HTML version of Epsilon’s documentation. The lhelp helper

program reads them.

epswhlp.hlp and epswhlp.cnt Epsilon uses these files to provide its search-all-help-files command under

Windows.

2.10. File Inventory 19

eteach Epsilon’s tutorial. Epsilon needs this file to give the tutorial (see page 9). Otherwise, Epsilon does

not need this file to run.

colclass.txt One-line descriptions of each of the different color classes in Epsilon. The set-color command

reads this file.

brief.kbd The brief-keyboard command loads this file. It contains the bindings of all the keys used in Brief

emulation, written in Epsilon’s command file format.

epsilon.kbd The epsilon-keyboard command loads this file. It contains the standard Epsilon key bindings

for all the keys that are different under Brief emulation, written in Epsilon’s command file format.

epsilon.mnu Epsilon for Unix uses this file to construct its menu bar, except in Brief mode.

brief.mnu In Brief mode, Epsilon for Unix uses this file to construct its menu bar.

gui.mnu Epsilon for Windows uses this file to construct its menu bar.

latex.env The tex-environment command in LaTeX mode (Alt-Shift-E) gets its list of environments from

this file. You can add new environments by editing this file.

lugaru.url This file contains a link to Lugaru’s World Wide Web site. If you have an Internet browser

installed under Windows, you can open this file via its file association and connect to Lugaru’s Web

site. The view-lugaru-web-site command uses this file.

readme.txt This file contains miscellaneous notes, and describes any features or files we added after we

printed this manual. You can use the Alt-x release-notes command to read it.

unwise.exe, unwise.ini If you used the Windows-based installer, you can uninstall Epsilon by running this

program.

install.log The Windows-based installer creates this file to indicate which files it installed. Uninstalling

Epsilon requires this file.

*.h The installation program copies a number of “include files” to the subdirectory “include” within

Epsilon’s main directory. These header files are used if you decide to compile an Epsilon extension or

add-on written in its EEL extension language.

eel.h Epsilon’s standard header file, for use with the EEL compiler.

codes.h Another standard header file, with numeric codes. The eel.h file includes this one automatically.

filter.h A header file defining the contents of Epsilon’s Common File Open/Save dialogs under Windows.

*.e These files contain source code in EEL to all Epsilon’s commands. The installation program copies

them to the subdirectory “source” within Epsilon’s main directory.

epsilon.e This file loads all the other files and sets up Epsilon.

makefile You can use this file, along with a “make” utility program, to help recompile the above Epsilon

source files. It lists the source files and provides command lines to compile them.

The directory “changes” within Epsilon’s main directory contains files that document new features

added in Epsilon 9 and earlier versions. See the online documentation for details on changes in more recent

versions. Other files in this directory may be used to help incorporate old customizations, when updating

from Epsilon 7 or earlier. See page 160 for information on updating to a new version of Epsilon.

Chapter 3

General Concepts

21

This chapter describes the framework within which the commands operate. The chapter entitled

“Commands by Topic”, which starts on page 35, goes into detail about every Epsilon command.

If you have never used Epsilon before, you should run the tutorial now. This chapter discusses some

general facilities and concepts used throughout Epsilon by many of the commands. You will find the

discussion much clearer if you’ve used the tutorial, and have become accustomed to Epsilon’s general style.

To run the tutorial, start Epsilon and select Epsilon Tutorial from the Help menu. (You can also press

the F2 key in Epsilon and type the command name tutorial, or start Epsilon with the -teach flag.)

3.1 Buffers

In Epsilon’s terminology, a buffer contains text that you can edit. You can think of a buffer as Epsilon’s copy

of a file that you have open for editing. Actually, a buffer may contain a copy of a file, or it may contain a

new “file” that you’ve created but have not yet saved to disk.

To edit a file, you read the file into a buffer, modify the text of the buffer, and write the buffer to the file.

A buffer need not necessarily correspond to a file, however. Imagine you want to write a short program from

scratch. You fire up Epsilon, type the text of the program into a buffer, then save the buffer to a file.

Epsilon does not place any limitation on the number of active buffers during an editing session. You can

edit as many buffers at the same time as you want. This implies that you can edit as many files, or create as

many files, or both, as you desire. Each document or program or file appears in its own buffer.

3.2 Windows

Epsilon displays your buffers to you in windows. You can have one window or many windows. You can

change the number and size of windows at any time. You may size a window to occupy the entire display, or

to occupy as little space as one character wide by one character high.

Each window can display any buffer. You decide what a window displays. You can always get rid of a

window without worrying about losing the information the window displays: deleting a window does not

delete the buffer it displays.

Each window displays some buffer, and several windows can each display the same buffer. This comes

in handy if you want to look at different parts of a buffer at the same time, say the beginning and end of a

large file.

A buffer exists whether or not it appears in some window. Suppose a window displays a buffer, and you

decide to refer to another file. You can read that file into the current window without disturbing the old

buffer. You peruse the new buffer, then return to the old buffer.

You may find this scheme quite convenient. You have flexibility to arrange your buffers however you

like on the screen. You can make many windows on the screen to show any of your buffer(s), and delete

windows as appropriate to facilitate your editing. You never have to worry about losing your buffers by

deleting or changing your windows.

Epsilon has many commands to deal with buffers and windows, such as creating, deleting, and changing

the size of windows, reading files into a buffer, writing buffers out to files, creating and deleting buffers, and

much more. We describe these in detail in the chapter “Commands by Topic”, which starts on page 35.

3.3 Epsilon’s Screen Layout

To see what buffers and windows look like, refer to figure 3.1. This shows what the screen looks like with

only one window. It shows what the screen looks like when you edit a file named screen.1.

22 Chapter 3. General Concepts

Figure 3.1: What Epsilon looks like with one window.

The top section of the screen displays some of the text of the window’s buffer. Below that appears the

mode line. The mode line begins with the name of the file shown in that buffer. If the buffer isn’t associated

with any file, Epsilon substitutes the buffer name, in parentheses.

Next comes the name of the current major mode, followed by any minor modes, all surrounded by

square brackets. (See page 23.)

Then Epsilon shows the current column and line numbers (the first counting from zero, the second

counting from 1), and the percentage of the buffer before the cursor. A star (*) at the end of the line means

that you have changed the buffer since the last time you saved it to disk. (See the mode-format variable for

information on customizing the contents of the mode line.) The text area and the mode line collectively

constitute the window.

Below the mode line, on the last line of the screen, appears the echo area. Epsilon uses this area to

prompt you for information or to display messages (in the figure it’s empty). For example, the command to

read a file into a buffer uses the echo area to ask you for the file name. Regardless of how many windows

you have on the screen, the echo area always occupies the bottommost screen line.

When Epsilon displays a message in the echo area, it also records the message in the #messages#

buffer (except for certain transient messages). See the message-history-size variable to set how Epsilon

keeps the buffer from excessive size by dropping old messages.

Epsilon has an important concept called the editing point, or simply point. While editing a buffer, the

editing point refers to the place that editing “happens”, as indicated by the cursor. Point refers not to a

character position, but rather to a character boundary, a place between characters. You can think of point as,

roughly, the leftmost edge of the cursor. Defining the editing point as a position between characters rather

than at a particular character avoids certain ambiguities inherent in the latter definition.

Consider, for example, the command that goes to the end of a word, forward-word. Since point always

refers to a position between characters, point moves right after the last letter in the word. So the cursor itself

would appear underneath the first character after the word. The command that moves to the beginning of the

word, backward-word, positions point right before the first character in the word. In this case, the cursor

itself would appear under the first character in the word.

When you want to specify a region, this definition for point avoids whether characters near each end

belong to the region, since the ends do not represent characters themselves, but rather character boundaries.

Figure 3.2 shows Epsilon with 3 windows. The top window and bottom window each show the buffer

“main”. Notice that although these two windows display the same buffer, they show different parts of the

3.4. Different Keys for Different Uses: Modes 23

Figure 3.2: Epsilon with three windows.

buffer. The mode line of the top window says 0%, but the mode line of the bottom window says 58%. The

middle window displays a different buffer, named “other”. If the cursor appears in the middle window and

you type regular letters (the letters of your name, for example), they go into the buffer named “other” shown

in that window. As you type the letters, the point (and so the cursor) stays to the right of the letters.

In general, the current window refers to the window with the cursor, or the window where the “editing

happens”. The current buffer refers to the buffer displayed by the current window.

3.4 Different Keys for Different Uses: Modes

When you edit a C program, your editor should behave somewhat differently than when you write a letter, or

edit a Lisp program, or edit some other kind of file.

For example, you might want the third function key to search forward for a comment in the current

buffer. Naturally, what the editor should search for depends on the programming language in use. In fact,

you might have PHP in the top window and C++ in the bottom window.

To get the same key (in our example, the third function key) to do the right thing in either window,

Epsilon allows each buffer to have its own interpretation of the keyboard.

We call such an interpretation a mode. Epsilon comes with several useful modes built in, and you can

add your own using the Epsilon Extension Language (otherwise known as EEL, pronounced like the aquatic

animal).

Epsilon uses the mode facility to provide the dired command, which stands for “directory edit”. The

dired command displays a directory listing in a buffer, and puts that buffer in dired mode. Whenever the

current window displays that buffer, several special keys do things specific to dired mode. For example, the

‘e’ key displays the file listed on the current line of the directory listing, and the ‘n’ key moves down to the

next line of the listing. See page 130 for a full description of dired mode.

Epsilon also provides C mode, which knows about several C indenting styles (see page 81) and is used

for all C-like languages. Fundamental mode is a general-purpose editing mode used for scratch buffers and

plain text files. And there are many other modes, some associated with specific commands (like hex mode,

diff mode, or grep mode) and many more supporting individual programming languages or other file types.

See the section starting on page 80.

24 Chapter 3. General Concepts

Almost every mode has an associated command, named after the mode, that puts the current buffer in

that mode. The c-mode and fundamental-mode commands put the current buffer into those modes, for

instance.

Press F1 m to display help on the current buffer’s major mode.

The mode name that appears in a mode line suggests the keyboard interpretation active for the buffer

displayed by that window. When you start Epsilon with no particular file to edit, Epsilon uses Fundamental

mode, so the word “Fundamental” appears in the mode line. Other words may appear after the mode name

to signal changes, often changes particular to that buffer. We call these minor modes.

For example, the auto-fill-mode command sets up a minor mode that automatically types a 〈Return〉 for

you when you type near the end of a line. (See page 73.) It displays “Fill” in the mode line, after the name

of the major mode. A read-only buffer display “RO” to indicate that you won’t be able to modify it. There is

always exactly one major mode in effect for a buffer, but any number of minor modes may be active.

Epsilon lists all active minor modes after the major mode’s name.

Here are some common minor modes:

Fill indicates auto-filling is in effect for the current buffer. See page 73.

RO indicates the buffer is read-only. See page 112.

Pager is similar to RO, indicating the buffer is read-only and that 〈Space〉 and 〈Backspace〉 page forward

and back, but this behavior isn’t conditioned on the readonly-pages variable as read-only mode’s is.

Def indicates Epsilon is defining a keyboard macro. See page 145.

Susp indicates defining or running a keyboard macro has been suspended. See page 146.

Narrow indicates only a section of the buffer is being displayed, and the rest has been hidden. See page

166.

Sp indicates Epsilon will highlight misspelled words in the current buffer. See page 77.

Along with any minor modes, Epsilon will sometimes also display the name of a type of file translation

(one of DOS, Binary, Unix, or Mac). See page 115. It may also display the name of an encoding, such as

UTF-8, OEM, or windows-1258. See page 127.

3.5 Keystrokes and Commands: Bindings

Epsilon lets you redefine the function of nearly all the keys on the keyboard. We call the connection between

a key and the command that runs when you type it a binding.

For example, when you type the 〈Down〉 key, Epsilon runs the down-line command. The down-line

command, as the name suggests, moves the point down by one line. So when you type the 〈Down〉 key,

point moves down by one line.

You can change a key’s binding using the bind-to-key command. The command asks for the name of a

command, and for a key. Thereafter, typing that key causes the indicated command to run. Using

bind-to-key, you could, for example, configure Epsilon so that typing 〈Down〉 would run the

forward-sentence command instead of the down-line command.

This key-binding mechanism provides a great deal of flexibility. Epsilon uses it even to handle the

alphabetic and number keys that appear in the buffer when you type them. Most of the alphabetic and

number keys run the command normal-character, which simply inserts the character that invoked it into the

buffer.

3.6. Repeating: Numeric Arguments 25

Out of the box, Epsilon comes with a particular set of key bindings that make it resemble the EMACS

text editor that runs on many kinds of computers. Using the key-binding mechanism and the bind-to-key

command, you could rearrange the keyboard to make it resemble another editor’s keyboard layout. That is

exactly what the brief-keyboard command does; it rearranges the keyboard commands to make Epsilon work

like the Brief text editor. See page 148.

Epsilon provides over 400 commands that you can bind to keys, and you can write brand new

commands to do almost anything you want, and assign them to whatever keys you choose. See page 147 for

more information on the bind-to-key command.

Some commands have no default binding. You can invoke any command, bound or not, by giving its

name. The command named-command, normally bound to Alt-X, prompts for a command name and

executes that command. For example, if you type

Alt-X down-line

followed by pressing the 〈Enter〉 key, the cursor moves down one line. Of course, you would find it easier in

this example to simply type the 〈Down〉 key.

3.6 Repeating: Numeric Arguments

You can prefix a numeric argument, or simply an argument, to a command. This numeric argument

generally functions as a repeat count for that command. You may enter a numeric argument in several ways.

You may type Ctrl-U and then the number. You can also enter a numeric argument by holding down the Alt

key and typing the number using the number keys across the top of the keyboard. Then you invoke a

command, and that command generally repeats that number of times.

For example, suppose you type the four characters Ctrl-U 2 6 Ctrl-N. The Ctrl-N key runs the command

named down-line, which moves point down one line. But given a numeric argument of 26, the command

moves point down 26 lines instead of 1 line. If you give a numeric argument of -26 by typing a minus key

while typing the 26, the down-line command would move point up 26 lines. You can get the same effect as

Ctrl-U 2 6 Ctrl-N by holding down the Alt key and typing 26 on the main keyboard, then typing Ctrl-N.

(Remember to release the Alt key first; otherwise you’d get Alt-Ctrl-N.)

You can give a numeric argument to any Epsilon command. Most commands will repeat, as our

example did above. But some commands use the numeric argument in some other way, which can vary from

command to command. Some commands ignore the numeric argument. We describe all the commands in

the chapter titled “Commands by Topic”, which starts on page 35.

3.7 Viewing Lists

Sometimes Epsilon needs to show you a list of information. For example, when it asks you for the name of a

file to edit, you might request a list of possible files to edit (see the next section). In such cases, Epsilon will

display the list of items in a pop-up window. While in a pop-up window, one line will stand out in a different

color. If you press 〈Enter〉, you select that item. To select another item, you can use normal Epsilon

commands such as 〈Up〉 and 〈Down〉 to move to the next and previous items, or 〈PageDown〉 and 〈PageUp〉
to go to the next or previous windowful of items. You can even use Epsilon’s searching commands to find

the item you want. If you don’t want any item on the list, you can simply type another response instead.

If you want to select one of the items and then edit it, press Alt-E. Epsilon will copy the highlighted line

out of the list so can edit it.

26 Chapter 3. General Concepts

3.8 Typing Less: Completion & Defaults

Whenever Epsilon asks you for some information (for instance, the name of a file you want to edit), you can

use normal Epsilon commands to edit your response. For example, Control-A moves to the beginning of the

response line. Most commands will work here, as long as the command itself doesn’t need to prompt you for

more information.

At many prompts, Epsilon will automatically type a default response for you, and highlight it. Editing

the response will remove the highlight, while typing a new response will replace the default response. You

can set the variable insert-default-response to zero if you don’t want Epsilon to type in a response at

prompts.

If you type a Control-R or Control-S, Epsilon will type in the default text. This is especially useful if

you’ve told Epsilon not to automatically insert the default response, but it can also come in handy when

you’ve mistakenly deleted or edited the default response, and you want to get it back. It’s also convenient at

prompts where Epsilon doesn’t automatically type the default response, such as search prompts. Epsilon

keeps separate defaults for the regular expression and non-regular expression replace commands, and for the

regular expression and non-regular expression search commands. Epsilon will never overwrite what you

actually type with a default, and indeed will only supply a default if you haven’t yet specified any input for

the response.

Another way to retrieve a previous response is to type Alt-E. While Ctrl-R and Ctrl-S provide a

“suggested response” in many commands, Alt-E always types in exactly what you typed to that prompt last

time. For example, at the prompt of the write-file command, Ctrl-S types in the name of the directory

associated with the file shown in the current window, while Alt-E types in the last file name you typed at a

write-file prompt. See page 28.

Alt-G provides yet another suggested response; it’s often the name of the “current thing” for this

prompt; in a search-and-replace command, for instance, Alt-G when typing the replacement text inserts the

search text. In the write-file example, Alt-G inserts the current name of the file.

Sometimes Epsilon shows you the default in square brackets []. This means that if you just press

〈Enter〉 without entering anything, Epsilon will use the value between the square brackets. Often you can

use the Ctrl-S or Alt-E keys to pull in that value, perhaps so that you can use regular Epsilon commands to

edit the response string.

Epsilon can also retrieve text from the buffer at any prompt. Press the Alt-〈Down〉 key or Alt-Ctrl-N to

grab the next word from the buffer and insert it in your response. Press the key again to retrieve successive

words. This is handy if there’s a file name in the buffer that you now want to edit, for example. The keys

Alt-〈PageDown〉 or Alt-Ctrl-V behave similarly, but retrieve from the current position to the end of the line.

You can also use pull completion to retrieve text at a prompt that isn’t at the current position, but

elsewhere in the buffer. Begin typing the word you want to retrieve; then press Ctrl-〈Up〉 (or Ctrl-〈Down〉)
to grab the previous (or next) word in the buffer that starts with what you’ve typed. F3 is the same as

Ctrl-〈Up〉. See page 94 for details.

Whenever Epsilon asks for the name of something (like the name of a command, file, buffer, or tag),

you can save keystrokes by performing completion on what you type. For example, suppose you type Alt-X

to invoke a command by name, then type the letter ‘v’. Only one command begins with the letter ‘v’, the

visit-file command. Epsilon determines that you mean the visit-file command by examining its list of

commands, and fills in the rest of the name. We call this process completion.

To use completion, type a 〈Space〉 and Epsilon will fill in as much of the name as possible. The letters

Epsilon adds will appear as if you had typed them yourself. You can enter them by typing 〈Enter〉, edit them

with normal editing commands, or add more letters. If Epsilon cannot add any letters when you ask for

completion, it will pop up a list of items that match what you’ve typed so far. To disable automatic pop-ups

on completion, set the completion-pops-up variable to zero.

3.8. Typing Less: Completion & Defaults 27

Figure 3.3: Typing ‘?’ shows all of Epsilon’s commands.

For example, four commands begin with the letters “go”, goto-beginning, goto-end, goto-line, and

goto-tag. If you type “go”, and then press 〈Space〉, Epsilon fills in “goto-” and waits for you to type more.

Type ‘b’ and another 〈Space〉, to see “goto-beginning”. Epsilon moves the cursor one space to the right of

the last letter, to indicate a match. Press 〈Enter〉 to execute the goto-beginning command.

The 〈Esc〉 key works just like the 〈Space〉 key, except that if a single match results from the completion,

Epsilon takes that as your response. This saves you a keystroke, but you don’t have the opportunity to check

the name before continuing. The 〈Tab〉 key does the same thing. However, inside a dialog under Windows,

these two keys perform their usual Windows functions of canceling the dialog, and moving around in the

dialog, respectively. They aren’t used for completion.

Typing a question mark during completion causes Epsilon to display a list of choices in a pop-up

window. Recall that completion works with buffer and file names, as well as with command names. For

example, you can get a quick directory listing by giving any file command and typing a question mark when

asked for the file name. Press the Ctrl-G key to abort the command, when you’ve read the listing. (See the

dired command on page 130 for a more general facility.)

Figure 3.3 shows you what Epsilon looks like when you type Alt-X (the named-command command),

and then press ‘?’ to see a list of the possible commands. Epsilon shows you all its commands in a pop-up

window. Epsilon provides many more commands than could fit in the window, so Epsilon shows you the first

window-full. At this point, you could press 〈Space〉 or 〈PgDn〉 to see the next window-full of commands, or

use searching or other Epsilon commands to go to the item you desire. If you want the highlighted item,

simply press 〈Enter〉 to accept it. If you type Alt-E, Epsilon types in the current item and allows you to edit

it. Type any normal character to leave the pop-up window and begin entering a response by hand.

Figure 3.4 shows what the screen looks like if you type ‘w’ after the Alt-X, then type ‘?’ to see the list

of possible completions. Epsilon lists the commands that start with ‘w’.

You can set variables to alter Epsilon’s behavior. The menu-width variable contains the width of the

pop-up window of matches that Epsilon creates when you press ‘?’. (Unix only. In Windows, drag the

dialog’s border to change its size.) The search-in-menu variable controls what Epsilon does when you

press ‘?’ and then continue typing a response. If it has a value of zero, as it does by default, Epsilon moves

from the pop-up window back to the response area, and editing keys like 〈Left〉 navigate in the response. If

28 Chapter 3. General Concepts

Figure 3.4: Typing “w?” shows all commands that start with ‘w’.

search-in-menu has a nonzero value, Epsilon moves in the pop-up menu of names to the first name that

matches what you’ve typed, and stays in the pop-up window. (If it can’t find a match, Epsilon moves back to

the prompt as before.)

During file name completion, Epsilon can ignore files with certain extensions. The

ignore-file-extensions variable contains a list of extensions to ignore. By default, this variable has the

value ‘|.obj|.exe|.o|.b|’, which makes file completion ignore files that end with .obj, .exe, .o, and .b.

Each extension must appear between ‘|’ characters. You can augment this list using the set-variable

command, described on page 151.

Similarly, the only-file-extensions variable makes completion look only for files with certain

extensions. It uses the same format as ignore-file-extensions, a list of extensions surrounded by |

characters. If the variable holds a null pointer, Epsilon uses ignore-file-extensions as above.

Completion also restricts its matches using the ignore-file-basename and ignore-file-pattern

variables, which use patterns to match the names of files to be excluded. When the pattern the user types

doesn’t match any files due to such exclusions, Epsilon temporarily removes exclusions and lists matching

files again.

3.9 Command History

Epsilon maintains a list of your previous responses to all prompts. To select a prompt from the list, press the

Alt-〈Up〉 key or Alt-Ctrl-P. Then use the arrow keys or the mouse to choose a previous response, and press

〈Enter〉. If you want to edit the response first, press Alt-E.

For example, when you use the grep command to search in files for a pattern, you can press Alt-〈Up〉 to

see a list of file patterns you’ve used before. If the pattern \windows\system*.inf appeared on the list,

you could position the cursor on it and then press Alt-E. Epsilon would copy the pattern out of the list so

you can edit it, perhaps replacing *.inf with *.ini. Both patterns would then appear in the history list

next time. Or you could just press 〈Enter〉 in the list of previous responses to use the same pattern.

You can also use Alt-E at any prompt to retrieve the last response without showing a list of responses

3.10. Mouse Support 29

first. For example, Ctrl-X Ctrl-F Alt-E will insert the full name of the last file you edited with the find-file

command.

Except in certain searching commands, you can press 〈Up〉 or Ctrl-P instead of Alt-〈Up〉 key or

Alt-Ctrl-P. These normally behave the same, but you can set the recall-prior-response-options

variable to make the non-Alt versions of the keys select older command history responses without

displaying a list of all of them.

3.10 Mouse Support

Epsilon supports a mouse under Windows and under X11 in Unix. You can use the left button to position

point, or drag to select text. Double-clicking selects full words. (When a pop-up list of choices appears on

the screen, double-clicking on a choice selects it.) Use shift-clicking to extend or contract the current

selection by repositioning the end of the selection. Holding down the Alt key while selecting produces a

rectangle selection.

Once you’ve selected a highlighted region, you can drag it to another part of the buffer. Move the mouse

inside the highlighted region, hold down a mouse button and move the mouse to another part of the buffer

while holding down the button. The mouse cursor changes to indicate that you’re dragging text. Release the

mouse button and the text will move to the new location. To make a copy of the text instead of moving it,

hold down the Control key while dropping the text.

Dragging text with the mouse also copies the text to a kill buffer, just as if you had used the

corresponding keyboard commands to kill the text and yank it somewhere else. When you drag a

highlighted rectangular region of text, Epsilon’s behavior depends upon the whether or not the buffer is in

overwrite mode. In overwrite mode, Epsilon removes the text from its original location, replacing it with

spaces. Then it puts the text in its new location, overwriting whatever text might be there before. In insert

mode, Epsilon removes the text from its original location and shifts text to its right leftwards to fill the space

it occupied. Then it shifts text to the right in the new location, making room for the text.

You can use the left button to resize windows by dragging window corners or borders. For pop-up

windows only, dragging the title bar moves the window.

A pop-up window usually has a scroll bar on its right border. Drag the box or diamond up and down to

scroll the window. Click on the arrows at the top or bottom to scroll by one line. Click elsewhere in the

scroll bar to scroll by a page. In some environments, ordinary tiled windows have a scroll bar that pops up

when you move the mouse over the window’s right-hand border, or (for windows that extend to the right

edge of the screen), when you move the mouse past the right edge. The toggle-scroll-bar command toggles

whether tiled windows have pop-up scroll bars or permanent scroll bars.

Under X11, you can adjust the speed at which Epsilon scrolls due to mouse movements by setting the

scroll-rate variable. It contains the number of lines to scroll per second. The scroll-init-delay

variable contains the delay in hundredths of a second from the time the mouse button goes down and Epsilon

scrolls the first time, to the time Epsilon begins scrolling repeatedly.

In Epsilon for Windows, the right button displays a context menu (which you can modify by editing the

file gui.mnu). In other versions, the right mouse button acts much like the left button, but with a few

differences: On window borders, the right button always resizes windows, rather than scrolling or moving

them. When you double-click with the right mouse button on a subroutine name in a buffer in C mode,

Epsilon goes to the definition of that subroutine using the pluck-tag command (see page 48). To turn off this

behavior in a particular buffer, set the buffer-specific variable mouse-goes-to-tag to zero. To make the

right button jump to a subroutine’s definition when you double-click in any buffer, not just C mode buffers,

set the default value of this variable to one. If you don’t want C mode to automatically set this variable

nonzero, set the variable c-mode-mouse-to-tag to zero.

30 Chapter 3. General Concepts

You can click (or hold) the middle mouse button and drag the mouse to pan or auto-scroll—the speed

and direction of scrolling varies as you move the mouse. This works on wheeled mice or on any mouse with

three buttons. When you click the middle mouse button while holding down the Shift key, Epsilon pastes

text instead. See the mouse-center-yanks variable to change its behavior.

Epsilon for Windows or Unix (under X11) also recognizes wheel rolling on wheeled mice, and scrolls

the current window when you roll the wheel. See the wheel-click-lines variable for more details.

Under X11, some programs automatically make any text you select using the mouse available to be

pasted in other programs. See the variable mouse-selection-copies to turn on this behavior for Epsilon.

3.11 The Menu Bar

The Windows GUI version of Epsilon provides a customizable menu bar and tool bar. To modify the menu

bar, edit the file gui.mnu. See the next section for details. You can turn it off by adding (set-gui-menu 0)

to your einit.ecm file (see page 154). To modify the tool bar, you can redefine the EEL command

standard-toolbar in the file menu.e.

Figure 3.5: Epsilon’s text-based menu bar.

Other versions of Epsilon provide a text-based menu bar, which is hidden by default. Most of the

customization variables described below only apply to the text-based menu bar.

You can have Epsilon display a menu bar all the time with the toggle-menu-bar command, or press

Alt-F2 (the show-menu command) to display it at any time, and hide it again after you select a command.

When you use the menu bar to invoke a command that needs additional input, Epsilon automatically brings

up a list of options (as if you typed ‘?’) so that you can select one without using the keyboard.

You can change the contents of the menu bar by editing the appropriate .mnu file. See the next section.

If you hold down the Shift or Ctrl keys while selecting a menu bar command, Epsilon will run the

command with a numeric argument of 1. This is handy for commands that behave differently when given a

3.11. The Menu Bar 31

numeric argument. When you select an item on the text-based menu bar, Epsilon flashes the selected item.

The menu-bar-flashes variable holds the number of flashes (default two).

By default, Epsilon displays key bindings for menu items. Set the variable menu-bindings to zero to

disable this feature. (Epsilon for Windows ignores this variable and always displays such bindings.) Epsilon

computes bindings dynamically the first time it displays a particular menu column. (For several commands

with multiple bindings, the menu file selects a particular binding to display.) The rebuild-menu command

makes Epsilon reconstruct its menus: use this command after setting menu-bindings or editing and saving

a menu file.

By default, when you click on the text-based menu bar but release the mouse without selecting a

command, Epsilon leaves the menu displayed until you click again. Set the menu-stays-after-click

variable to zero if you want Epsilon to remove the menu when this happens.

3.11.1 Customizing Epsilon’s Menu

You can change the contents of Epsilon’s menu bar by editing a menu file, which uses an .mnu extension.

Epsilon stores the name of its menu file in the variable menu-file, except for Epsilon for Windows which

uses the variable gui-menu-file instead. Set the appropriate variable to make Epsilon use a different

menu file.

Emulations for Brief and CUA set these variables to make Epsilon use an alternative menu suitable for

those emulations, but by default, Epsilon for Windows uses a file named gui.mnu, while all other versions

use the file epsilon.mnu. If you put a customized version of an .mnu file in your customization directory (see

page 13), Epsilon will use it instead of the factory version.

The first line of a menu file holds the main menu bar. Each menu entry must have spaces on both sides.

Each of the submenus that follow begins with a line that has the submenu title from the main menu (again,

with spaces on both sides), then the width in characters of the submenu to create, not including command

bindings. The individual menu entries follow, each line containing the menu item name, one or more tab

characters, and the definition (normally the name of an Epsilon command to execute). A line starting with a

tab puts a blank line in the menu. An actual blank line ends the submenu. A line starting with # is a

comment.

If an entry contains a binding (meaning that text before the first tab character extends past the column

width indicated for that submenu), Epsilon uses the binding text as-is. Otherwise, Epsilon adds bindings

when it first displays the submenu.

Open in Notepad %notepad "%f"

A menu item usually specifies the name of an Epsilon command to run (actually any EEL function that

takes no parameters will work), but you can instead put % followed by the command line for an external

program Epsilon should run. The command line is interpreted as a file name template, which means you can

pass the the name of the current file name, or parts of the name, using % sequences, like %f for the full file

name. (See page 115.)

Search the web !"c:\path\to\chrome.exe" https://google.com

!"c:\path\to\chrome.exe" https://google.com/search?q=!

Note: Above is actually one long line.

Or instead of the name of an Epsilon command, you can put the full path to an external program to run,

surrounded by ! characters. Optionally, following the second ! character, you can put a second command

line with a third ! within it. If there’s a highlighted region when the menu item is run, Epsilon will use this

second command line and substitute the text of the highlighted region for the third ! character.

32 Chapter 3. General Concepts

Or instead of an Epsilon command name, you can put the name of a Windows help file with a $

character before it. Epsilon for Windows will then display that help file.

3.11. The Menu Bar 33

Chapter 4

Commands by Topic

35

This chapter lists all the Epsilon commands, grouped by topic. Each section ends with a summary of the

keys, and the names you would use to invoke the commands by name, or to rebind them to other keys.

4.1 Getting Help

You can get help on Epsilon by typing F1, the help key. The help key will provide help at any time. If you

type it during another command, help simply pops up a description of that command. Otherwise, the help

command asks you to type an additional key to indicate what sort of help you want. Many of these options

are also available directly from Epsilon’s Help menu item, in versions with a menu bar.

The help command actually uses various commands which you can invoke individually. Here are the

keys you can use at the help prompt.

Pressing A invokes the apropos command, which asks for a string, looks through the one-line

descriptions of all the commands and variables, then pops up a list of commands or variables (and their

descriptions) that contain the string, along with their key bindings. Highlighted words are links to the full

documentation.

(The Info, HTML-based, and WinHelp formats of Epsilon’s full manual each include their own search

function. These will perform full-text searches throughout Epsilon’s manual, often finding many more

matches than apropos finds by searching one-line descriptions.)

Help’s K option invokes the describe-key command. It prompts for a key and provides full

documentation on what that key does.

The C option invokes the command describe-command, which provides full documentation on the

command whose name you specify, and also tells which keys invoke that command.

The B option invokes the command show-bindings, which asks for a command name and gives you the

keys that run that command.

The I option invokes the command info, which starts Info mode. Info mode lets you read the entire

Epsilon manual, as well as any other documentation you may have in Info format. See page 37.

The F option is a shortcut into Epsilon’s manual in Info mode. It prompts for some text, then looks up

that text in the index of Epsilon’s online manual. Just press 〈Enter〉 to go to the top of the manual. This

option invokes the command epsilon-info-look-up; the command epsilon-manual-info goes to the top of

Epsilon’s documentation without prompting.

The Ctrl-C option prompts for the name of an Epsilon command, then displays an Info page from

Epsilon’s online manual that describes the command.

The Ctrl-K option prompts for a key, then displays an Info page from Epsilon’s online manual that

describes the command it runs.

The Ctrl-V option prompts for an Epsilon variable’s name, then displays an Info page from Epsilon’s

online manual that describes that variable.

The H option displays Epsilon’s manual in HTML format, by running a web browser. It prompts for a

topic, which can be a command or variable name, or any other text. (The browser will try to find an exact

match for what you type; if not, it will search for web pages containing that word.) When you’re looking at

Epsilon’s manual in Info mode, using one of the previous commands, this command will default to showing

the same topic in a browser.

The W option, in Epsilon for Windows versions prior to Vista, displays Epsilon’s WinHelp help file.

Like the Info-format manual, it contains the complete text of the Epsilon manual. (Windows Vista and later

no longer support WinHelp natively, so such users should select HTML or Info help formats instead. It’s

possible to install WinHelp onto later Windows systems, then enable its macros with a registry entry, if you

prefer this style of help. See Microsoft’s web site.)

36 Chapter 4. Commands by Topic

The Q option invokes the command what-is, which asks for a key and tells you what command would

run if you typed that key.

The R option invokes the describe-variable command, which asks for a variable name and displays the

help on that variable.

The L option invokes the show-last-keys command, which pops up a window that displays the last 60

keystrokes you typed.

The M option displays help on the major mode of the current buffer. For example, when you’re editing

a C file, this command displays help on C mode.

The T option shows context-sensitive help on the word at point. The help source varies based on the

buffer’s mode. See page 96.

The V command displays Epsilon’s version number and similar information.

The ? option displays information on the help command itself, including its options, just as typing the

help key again would.

The B and Q options tell you about bindings without showing you the associated documentation on the

command. In contrast to the first three options, these two display their information in the echo area, instead

of popping up a window.

The wall-chart command creates a table showing the commands invoked by all the keys. It builds a chart

in a buffer named “wall”. The wall chart includes any changes you may have made to the normal key

bindings. You can print it and attach it to any convenient wall using the print-buffer command.

Epsilon’s help system keeps track of any changes that you make to Epsilon. For example, if you

completely remap the keyboard, Epsilon’s help system will know about it and still give you correct key

binding information. And Epsilon’s help system will also keep track of any commands or keyboard macros

that you write and add to Epsilon.

The release-notes command reads and displays the release notes for this version of Epsilon.

Some of Epsilon’s help commands use the on-line documentation file, edoc. This file contains

descriptions for each of Epsilon’s commands and variables. See the description of the -fd flag on page 14.

While some help commands provide help using a specific format like WinHelp or HTML help, others

change their format based on the current platform. For instance, pressing the help key at a prompt shows

help using WinHelp on earlier Windows systems, using HTML help on Vista and later Windows version

(which don’t include WinHelp) and on Unix under X11, and using popup help windows on Unix systems in

console mode. You can select a different preferred help format by setting the variables

epsilon-help-format-win-gui, epsilon-help-format-win-console, and

epsilon-help-format-unix-gui.

Summary: F1, Alt-?, Ctrl-_ help

F1 A apropos

F1 K describe-key

F1 C describe-command

F1 R describe-variable

F1 L show-last-keys

F1 Q, F6 what-is

F1 B, F5 show-bindings

F1 Ctrl-C info-goto-epsilon-command

F1 Ctrl-K info-goto-epsilon-key

F1 Ctrl-V info-goto-epsilon-variable

F1 V about-epsilon

4.1. Getting Help 37

F1 F epsilon-info-look-up

wall-chart

release-notes

epsilon-manual

epsilon-manual-info

4.1.1 Info Mode

Epsilon’s Info mode lets you read documentation in Info format. You can press F1 i to start Info mode. One

example of documentation available in Info format is Epsilon’s manual.

An Info document is divided into nodes. Each node describes a specific topic. Nodes are normally

linked together into a tree structure.

Every node has a name, which appears on the very first line of the node. The first line might look like

this:

File: cp, Node: Files, Next: More Options, Prev: Flags, Up: Top

That line also indicates that the node named “More Options” comes next after this “Files” node. And it

says which node comes before it, and which node is its parent. (Some nodes don’t have a “Next” or a “Prev”

or an “Up” node.) In Info mode, the keys N, P, and U move to the current node’s Next node, its Prev node,

or its Up node (its parent node).

You can scroll through a node with the usual Epsilon commands, but Info mode also lets you use

〈Space〉 to page forward and 〈Backspace〉 to page back. When you’re at the end of a node, the 〈Space〉 key

goes on to the next one, walking the tree structure so you can read through an entire Info file. The

〈Backspace〉 key does the reverse; it goes to the previous node when you press it and you’re already at the

top of a node. (The keys] and [move ahead and back similarly, but don’t page; use them when you don’t

want to see any more of the current node.)

Some nodes have menus. They look like this:

* Menu:

* Buffers::

* Flags::

* Switches: Flags.

Press the M key to select an item from a menu, then type the name of the item (the part before the :

character). You can press 〈Space〉 to complete the name, or type just part of the name. The first two menu

items let you type Buffers or Flags and go to a node with that same name; the last item lets you type

Switches but Epsilon will go to a node named Flags.

You can also press a digit like 1, 2, 3 to go to the corresponding node in the current node’s menu. Press

0 to go to the last node, whatever its number. So in the menu above, either 3 or 0 would go to the Flags node.

Typically when you select a node from a menu, that node’s Up will lead back to the node with the menu.

A node can also have cross-references. A cross-reference looks like this: *Note: Command History::.

Use the F key to follow a cross reference; it completes like M does.

Instead of typing M or F followed by a node name, you can use 〈Tab〉 and 〈Backtab〉 to move around in

a node to the next or previous menu item or cross-reference, then press 〈Enter〉 to follow it. Or you can

double-click with the mouse to follow one.

38 Chapter 4. Commands by Topic

Epsilon keeps a history of the Info nodes you’ve visited, so you can retrace your steps. Press L to go to

the last Info node you were at before this one. Press L repeatedly to revisit earlier nodes. When you’re done

looking at Info documentation, press Q to exit Info mode.

Info documentation is tree-structured. Normally each separate program has its own file of

documentation, and the nodes within form a tree. Each Info file normally has a node named “top” that’s the

top node in its tree. Then all the trees are linked together in a directory file named “dir”, which contains a

menu listing all the available files. The T key goes to the top node in the current file. The D key goes to the

top node in the directory file. The wrap-info-mode variable controls how long lines display.

When a node name reference contains a word in parentheses, like (epsilon)Language Modes, it

indicates the node is in a file whose name is inside the parentheses. (Otherwise the node must be in the

current file.) If you omit the node name and just say (epsilon), the Top node is implied.

When a complete path to an Info file isn’t specified (as is usually the case), Epsilon looks along an Info

path. First it looks in each directory of the colon-separated list in the variable info-path-unix (or, in

non-Unix versions of Epsilon, the semicolon-separated list in info-path-non-unix). These paths may use

%x to indicate the directory containing Epsilon’s executable. If the Info file still isn’t found, Epsilon tries

directories listed in any INFOPATH environment variable.

Press S to search in an Info file. You can use the same keys as in other Epsilon search commands to

perform a regular expression search, word search, or control case folding. This command will jump from

node to node if necessary to find the next match. If you use normal searching keys like Ctrl-S or Ctrl-R, they

will report a failing search if there are no more matches in the current node. Press Ctrl-S or Ctrl-R again to

have Epsilon continue the search into other nodes.

Press I to use an Info file’s index. I 〈Enter〉 simply moves to the first index node in a file. Or you can

type some text, and Epsilon will display each of the nodes in the file that have an index entry containing that

text. Use 〈Comma〉 to advance to the next such entry.

There are a few more Info commands. B goes to the beginning of the current node, like Alt-<. > goes to

the last node of the file, viewed as a hierarchy. G prompts for the name of a node, then goes there. (You can

use it to reach files that might not be linked into the Info hierarchy.) H displays this documentation. And ?

displays a short list of Info commands.

You can navigate to Epsilon’s manual using Info commands, as explained above, but Epsilon also

provides some shortcut commands. Press F1 Ctrl-C to look up an Epsilon command’s full documentation by

command name. Press F1 Ctrl-K, then press any key and Epsilon will show the documentation for whatever

command it runs. Press F1 Ctrl-V to look up a variable. Press F1 f 〈Enter〉 to go to the top of Epsilon’s

documentation tree, or type a topic name before the 〈Enter〉 and Epsilon will look up that word in the index

to Epsilon’s online documentation.

If you write you own Info file, Epsilon provides some commands that help. The info-validate command

checks an Info file for errors (such as using a nonexistent node name). The info-tagify command builds or

updates an Info file’s tag table. (Info readers like Epsilon can find nodes more quickly when a file’s tag table

is up to date, so run this after you modify an Info file.)

Summary: Info mode only: N info-next

Info mode only: P info-previous

Info mode only: U info-up

Info mode only: 〈Space〉 info-next-page

Info mode only: 〈Backspace〉 info-previous-page

Info mode only: [info-backward-node

Info mode only:] info-forward-node

Info mode only: M info-menu

4.1. Getting Help 39

Info mode only: 0, 1, 2, ... info-nth-menu-item

Info mode only: F info-follow-reference

Info mode only: 〈Tab〉 info-next-reference

Info mode only: Shift-〈Tab〉 info-previous-reference

Info mode only: 〈Enter〉 info-follow-nearest-reference

Info mode only: L info-last

Info mode only: Q info-quit

Info mode only: T info-top

Info mode only: D info-directory-node

Info mode only: S info-search

Info mode only: I info-index

Info mode only: 〈Comma〉 info-index-next

Info mode only: > info-last-node

Info mode only: G info-goto

info

info-mode

info-validate

info-tagify

4.1.2 Web-based Epsilon Documentation

Epsilon’s online manual is available in three formats:

• You can read the manual in an Epsilon buffer using Info mode by pressing F1 f. See page 37.

• Users running Microsoft Windows versions prior to Windows Vista can access the WinHelp version

of the manual by pressing F1 w. See page 35 for more information.

• You can view the HTML version of the manual using a web browser by pressing F1 h.

To display the HTML manual, Epsilon starts a documentation server program. This is named lhelp.exe

(or lhelpd in Unix). The documentation server runs in the background, hiding itself from view, and your web

browser communicates with it on a special “port”, as if it were a web server.

The documentation server must be running in order to serve documentation, so a bookmark to a page in

the documentation will only work if the documentation server is running. You can press F1 h in Epsilon to

ensure it’s running. To force an instance of the documentation server to exit, invoke it again with the -q flag.

If your browser is configured to use a proxy, you will typically need to tell it not to use proxy settings

for addresses starting with 127.0.0.1 so that it may connect to the local documentation server.

Epsilon for Unix uses a shell script named goto_url to run a browser. You can edit it if you prefer a

different browser. Epsilon will first look for a customized copy of goto_url in your ~/.epsilon directory.

If there is none, it will search for and invoke any customized copy of goto_url it finds on your path.

Failing that, it will use the standard copy installed in Epsilon’s bin directory. Epsilon for Windows uses the

system’s default browser.

40 Chapter 4. Commands by Topic

4.2 Moving Around

4.2.1 Simple Movement Commands

The most basic commands involve moving point around. Recall from page 22 that point refers to the place

where editing happens.

The Ctrl-F command moves point forward one character, and Ctrl-B moves it back. Ctrl-A moves to the

beginning of the line, and Ctrl-E moves to its end.

Ctrl-N and Ctrl-P move point to the next and previous lines, respectively. They will try to stay in the

same column in the new line, but will never expand a line in order to maintain the column; instead they will

move to the end of the line (but see below). The key Alt-< moves point before the first character in the

buffer, and Alt-> moves point after the last character in the buffer.

You can use the arrow keys if you prefer: the 〈Right〉 key moves forward a character, 〈Left〉 moves back

a character, 〈Down〉 moves down a line, and 〈Up〉 moves up a line. Most commands bound to keys on the

numeric keypad also have bindings on some control or alt key for those who prefer not to use the keypad.

Throughout the rest of this chapter, the explanatory text will only mention one of the bindings in such cases;

the other bindings will appear in the summary at the end of each section.

By default, pressing 〈Right〉 at the end of the line moves to the start of the next line. When you press

〈Down〉 at the end of a 60-character line, and the next line only has 10 characters, Epsilon moves the cursor

back to column 10. You can change this by setting the buffer-specific virtual-space variable (by default

zero). If you set it to one, the 〈Up〉 and 〈Down〉 keys will stay in the same column, even if no text exists

there. If you set it to two, in addition to 〈Up〉 and 〈Down〉, the 〈Right〉 and 〈Left〉 keys will move into places

where no text exists, always remaining on the same line of the buffer. Setting virtual-space to two only

works correctly on lines longer than the window when Epsilon has been set to scroll long lines (the default),

rather than wrapping them (see page 101). Some commands behave unexpectedly on wrapped lines when

virtual-space is two.

When you move past the bottom or top of the screen using 〈Up〉 or 〈Down〉, Epsilon scrolls the window

by one line, so that point remains at the edge of the window. If you set the variable scroll-at-end

(normally 1) to a positive number, Epsilon will scroll by that many lines when 〈Up〉 or 〈Down〉 would leave

the window. Set the variable to 0 if you want Epsilon to instead center the current line in the window.

Summary: Ctrl-A, Alt-〈Left〉 beginning-of-line

Ctrl-E, Alt-〈Right〉 end-of-line

Ctrl-N, 〈Down〉 down-line

Ctrl-P, 〈Up〉 up-line

Ctrl-F, 〈Right〉 forward-character

Ctrl-B, 〈Left〉 backward-character

Alt-<, Ctrl-〈Home〉 goto-beginning

Alt->, Ctrl-〈End〉 goto-end

4.2.2 Moving in Larger Units

Words

Epsilon has several commands that operate on words. A word usually consists of a sequence of letters,

numbers, and underscores. The Alt-F and Alt-B commands move forward and backward by words, and the

Alt-D and Alt-〈Backspace〉 commands kill forward and backward by words, respectively. Like all killing

4.2. Moving Around 41

commands, they save away what they erase (see page 56 for a discussion on the killing commands).

Epsilon’s word commands work by moving in the appropriate direction until they encounter a word edge.

The word commands use a regular expression to define the current notion of a word. They use the

buffer-specific variable word-pattern. This allows different modes to have different notions of what

constitutes a word. Most built-in modes, however, make word-pattern refer to the variable

default-word, which you can modify. See page 63 for information on regular expressions, and page 151

for information on setting this variable.

You can set the forward-word-to-start variable nonzero if you want Epsilon to stop at the start of a

word instead of at its end when moving forward.

Summary: Alt-F, Ctrl-〈Right〉 forward-word

Alt-B, Ctrl-〈Left〉 backward-word

Alt-〈Backspace〉 backward-kill-word

Alt-D kill-word

Sentences

For sentences, Epsilon has the Alt-E and Alt-A keys, which move forward and backward by sentences, and

the Alt-K key, which deletes forward to the end of the current sentence. A sentence ends with one of the

characters period, !, or ?, followed by any number of the characters ", ’,),], followed by two spaces or a

newline. A sentence also ends at the end of a paragraph. The next section describes Epsilon’s notion of a

paragraph.

You can set the sentence-end-double-space variable to change Epsilon’s notion of a sentence. The

commands in this section will require only one space at the end of a sentence, and paragraph filling

commands will use one space as well. Note that Epsilon won’t be able to distinguish abbreviations from the

ends of sentences with this style.

Summary: Alt-E forward-sentence

Alt-A backward-sentence

Alt-K kill-sentence

Paragraphs

For paragraphs, the keys Alt-] and Alt-[move forward and back, and the key Alt-H puts point and mark

around the current paragraph. Blank lines (containing only spaces and tabs) always separate paragraphs, and

so does the form-feed character ^L.

You can control what Epsilon considers a paragraph using two variables.

If the buffer-specific variable indents-separate-paragraphs has a nonzero value, then a paragraph

also begins with a nonblank line that starts with a tab or a space.

If the buffer-specific variable tex-paragraphs has a nonzero value, then Epsilon will not consider as

part of a paragraph any sequence of lines that each start with at sign or period, if that sequence appears next

to a blank line. And lines starting with \begin or \end, or with %, \[, \], or $$, or ending with \\, will also

delimit paragraphs.

42 Chapter 4. Commands by Topic

Summary: Alt-], Alt-〈Down〉 forward-paragraph

Alt-[, Alt-〈Up〉 backward-paragraph

Alt-H mark-paragraph

Parenthetic Expressions

Epsilon has commands to deal with matching parentheses, square brackets, curly braces, and similar

delimiters. We call a pair of these characters with text between them a level. You can use these level

commands to manipulate expressions in many programming languages, such as Lisp, C, and Epsilon’s own

embedded programming language, EEL.

A level can contain other levels, and Epsilon won’t get confused by the inner levels. For example, in the

text “one (two (three) four) five” the string “(two (three) four)” constitutes a level. Epsilon recognizes that

“(three)” also constitutes a level, and so avoids the mistake of perhaps calling “(two (three)” a level. In each

level, the text inside the delimiters must contain matched pairs of that delimiter. In many modes, Epsilon

knows to ignore delimiters inside strings or comments, when appropriate.

Epsilon typically recognizes the following pairs of enclosures: ‘(’ and ‘)’, ‘[’ and ‘]’, ‘{’ and ‘}’. The

command Ctrl-Alt-F moves forward to the end of the next level, by looking forward until it sees the start of

a level, and moving to its end. The command Ctrl-Alt-B moves backward by looking back for the end of a

level and going to its beginning. The Ctrl-Alt-K command kills the next level by moving over text like

Ctrl-Alt-F and killing as it travels, and the Alt-〈Del〉 command moves backward like Ctrl-Alt-B and kills as

it travels. A mode may define a different set of grouping characters, such as < and > for HTML mode.

The Alt-) key runs the find-delimiter command. Use it to temporarily display a matching delimiter. The

command moves backward like Ctrl-Alt-B and pauses for a moment, showing the screen, then restores the

screen as before. The pause normally lasts one half of a second, or one second if the command must

temporarily reposition the window to show the matching delimiter. You can specify the number of

hundredths of a second to pause by setting the variables near-pause and far-pause. Also, typing any key

will immediately restore the original window context, without further pause.

The show-matching-delimiter command inserts the key that invoked it by calling normal-character and

then invokes find-delimiter to show its match. The maybe-show-matching-delimiter command is similar, but

only invokes find-delimiter if the Matchdelim variable is nonzero. In Fundamental mode, the ‘)’, ‘]’ and ‘}’

keys run maybe-show-matching-delimiter.

In some modes, when the cursor is over or next to a delimiter, Epsilon will automatically seek out its

matching delimiter and highlight them both. (The auto-show-adjacent-delimiter variable controls

whether highlighting occurs when next to a delimiter, not on it.) See the descriptions of the individual

modes for more information.

Summary: Alt-) find-delimiter

Ctrl-Alt-F forward-level

Ctrl-Alt-B backward-level

Ctrl-Alt-K kill-level

Alt-〈Del〉 backward-kill-level

show-matching-delimiter

4.2. Moving Around 43

4.2.3 Searching

Epsilon provides a set of flexible searching commands that incorporate incremental search. In the

incremental-search command, Epsilon searches as you type the search string. Ctrl-S begins an incremental

search forward, and Ctrl-R starts one in reverse. Any character that normally inserts itself into the buffer

becomes part of the search string. In an incremental search, Ctrl-S and Ctrl-R find the next occurrence of the

string in the forward and reverse directions, respectively. With an empty search string, Ctrl-S or Ctrl-R will

either reverse the direction of the search, or bring in the previously used search string. (To retrieve older

search strings, see page 28.)

You can use 〈Backspace〉 to remove characters from the search string, and enter control characters and

meta characters (characters with the eighth bit set) in the search string by quoting them with Ctrl-Q. (Type

Ctrl-Q Ctrl-J to search for a 〈Newline〉 character.) Use the Ctrl-G abort command to stop a long search in

progress.

Typing 〈Enter〉 or 〈Esc〉 exits from an incremental search, makes Epsilon remember the search string,

and leaves point at the match in the buffer.

While typing characters into the search string for incremental-search, a Ctrl-G quits and moves point

back to the place the search started, without changing the default search string. During a failing search,

however, Ctrl-G simply removes the part of the string that did not match.

If you type an editing key not mentioned in this section, Epsilon exits the incremental search, then

executes the command bound to the key.

You can make Epsilon copy search text from the current buffer by typing Alt-〈Down〉. Epsilon will

append the next word from the buffer to the current search string. This is especially convenient when you see

a long variable name, and you want to search for other references to it. (It’s similar to setting the mark and

moving forward one word with Alt-F, then copying the text to a kill buffer and yanking it into the current

search string.) Similarly, Alt-〈PageDown〉 appends the next line from the current buffer to the search string.

These two keys are actually available at almost any Epsilon prompt, though they’re especially useful when

searching. Alt-Ctrl-N and Alt-Ctrl-V are synonyms for Alt-〈Down〉 and Alt-〈PageDown〉, respectively.

While Alt-〈Down〉 and Alt-〈PageDown〉 copy text from the buffer at point, using the word pulling keys

F3, Ctrl-〈Up〉 or Ctrl-〈Down〉 copies text into the search string from other parts of the buffer; see page 94.

You can change how Epsilon interprets the search string by pressing certain keys when you type in the

search string. Pressing the key a second time restores the original interpretation of the search string.

• Pressing Ctrl-C toggles the state of case folding. While case folding, Epsilon considers upper case and

lower case the same when searching, so a search string of “Word” would match “word” and “WORD”

as well.

Epsilon remembers the state of case folding for each buffer separately, using the buffer-specific

variable case-fold. When you start to search, Epsilon sets its default for case folding based on that

variable’s value for the current buffer. Toggling case folding with Ctrl-C won’t affect the default. Use

the toggle-case-fold command to do this, or set the case-fold variable using the set-variable

command described on page 151 to change the default for case folding.

• Pressing Ctrl-W toggles word searching. During word searching, Epsilon only looks for matches

consisting of complete words. For instance, word searching for ‘a’ in this sentence finds only one

match (the one in quotes), but five when not doing word searching. You can type multiple words

separated by spaces, and Epsilon will recognize them no matter what whitespace characters separate

them (for instance, if they’re on successive lines).

• Pressing Ctrl-T makes Epsilon interpret the search string as a regular expression search pattern, as

described on page 63. Another Ctrl-T turns off this interpretation. If the current search string denotes

44 Chapter 4. Commands by Topic

an invalid regular expression, Epsilon displays “Bad R-E Search: <string>” instead of its usual

message “R-E Search: <string>” (where <string> refers to the search string). (When word and

regular expression modes are combined, the entire pattern must start and end on a word boundary. Use

</word> to match word boundaries within it.)

• Pressing Ctrl-O toggles incremental searching. In an incremental search, most editing commands will

exit the search, as described above. But you may want to edit the search string itself. If you turn off

the “incremental” part of incremental search with the Ctrl-O key, Epsilon will let you use the normal

editing keys to modify the search string.

In non-incremental mode, Epsilon won’t automatically search after you type each character, but you

can tell it to find the next match by typing Ctrl-S or Ctrl-R (depending on the direction). This

performs the search but leaves you in search mode, so you can find the next occurrence of the search

string by typing Ctrl-S or Ctrl-R again. When you press 〈Enter〉 to exit from the search, Epsilon will

search for the string you’ve entered, unless you’ve just searched with Ctrl-S or Ctrl-R. (In general, the

〈Enter〉 key causes a search if the cursor appears in the echo area. If, on the other hand, the cursor

appears in a window showing you a successful search, then typing the 〈Enter〉 key simply stops the

search.) A numeric argument of n to a non-incremental search will force Epsilon to find the nth

occurrence of the indicated string.

Epsilon interprets the first character you type after starting a search with Ctrl-S or Ctrl-R a little

differently. Normally, Ctrl-S starts an incremental search, with regular expression searching and word

searching both disabled. If you type Ctrl-T or Ctrl-W to turn one of these modes on, Epsilon will also turn

off incremental searching. Epsilon also pulls in a default search string differently if you do it immediately. It

will always provide the search string from the last search, interpreting the string as it did for that search. If

you retrieve a default search string at any other time, Epsilon will provide the last one consistent with the

state of regular expression mode (in other words, the last regular expression pattern, if in regular expression

mode, or the last non-regular-expression string otherwise).

There are other ways besides Ctrl-S or Ctrl-R to retrieve previous search strings. You can press Alt-〈Up〉
or Ctrl-Alt-P to display a list of previous search patterns. Press 〈Enter〉 to select one. Or you can press Alt-g

at a search prompt to retrieve the search string from your last search in the current buffer only. This can

differ from the default search string you get when you use Ctrl-S or Ctrl-R, since those are not per-buffer.

The Ctrl-Alt-S and Ctrl-Alt-R commands function like Ctrl-S and Ctrl-R, but they start in

regular-expression, non-incremental mode. You can also start a plain string search in non-incremental mode

using the string-search and reverse-string-search commands. Some people like to bind these commands to

Ctrl-S and Ctrl-R, respectively. Also see the search-positions-at-start variable.

Keep in mind that you can get from any type of search to any other type of search by typing the

appropriate subcommands to a search. For example, if you meant to do a regex-search but instead typed

Ctrl-S to do an incremental search, you could enter regex mode by typing Ctrl-T. Figure 4.1 summarizes the

search subcommands.

When you’re at the last match of some text in a buffer, and tell incremental search to search again by

pressing Ctrl-S, Epsilon displays “Failing” to indicate no more matches. If you press Ctrl-S once more,

Epsilon will wrap to the beginning of the buffer and continue searching from there. It will display

“Wrapped” to indicate it’s done this. If you keep on search, eventually you’ll pass your starting point again;

then Epsilon will display “Overwrapped” to indicate that it’s showing you a match you’ve already seen. A

reverse search works similarly; Epsilon will wrap to the end of the buffer when you keep searching after a

search has failed. (You can set the search-wraps variable to zero to disable wrapping.)

In some modes like Info mode, where a buffer displays a single part of some larger collection of text,

pressing Ctrl-S at a failing search results in a continued search, instead of wrapping. Epsilon displays

“Continued” to indicate (in the case of Info mode) that it’s searching through other nodes.

4.2. Moving Around 45

Ctrl-S or Ctrl-R Switch to a new direction, or find the next occurrence in the same direction,

or pull in the previous search string.

normal key Add that character to the search string.

〈Backspace〉 Remove the last character from the search string.

Ctrl-G Stop a running search, or (in incremental mode) delete characters until the search suc-

ceeds, or abort the search, returning to the starting point.

Ctrl-O Toggle incremental searching.

Ctrl-T Toggle regular expression searching.

Ctrl-W Toggle word searching. Matches must consist of complete words.

Ctrl-C Toggle case folding.

〈Enter〉 Exit the search.

Ctrl-D or 〈Del〉 Delete the current match and exit the search (but see the

search-delete-match variable).

Ctrl-Q Quote the following key, entering it into the search string even if it would normally run

a command.

help key Show the list of search subcommands.

other keys If in incremental mode, exit the search, then execute the key normally. If not incre-

mental mode, edit the search string.

Figure 4.1: The search subcommands work in all search and replace commands.

The forward-search-again and reverse-search-again commands search forward and backward

(respectively) for the last-searched-for search string, without prompting. The search-again command

searches in the same direction as before for the same search string.

The search-region command restricts searching to the current region, which will be highlighted during

the search command.

If you highlight a region before searching, Epsilon uses it as an initial search string if it’s not very long.

Set the search-in-region variable to make Epsilon instead restrict matches it finds to the highlighted

region, like the search-region command. Also see the search-defaults-from variable.

You can change the function of most keys in Epsilon by rebinding them (see page 147). But Epsilon

doesn’t implement the searching command keys listed above with the normal binding mechanism. The EEL

code for searching refers directly to the keys Ctrl-C, Ctrl-W, Ctrl-T, Ctrl-O, Ctrl-Q, 〈Enter〉, and 〈Esc〉, so to

change the function of these keys within searching you must modify the EEL code in the file search.e.

Epsilon looks at your current bindings to determine which keys to use as the help key and backspace key. It

looks at the abort_key variable to determine what to use as your abort key, instead of Ctrl-G. (See page

99.) Epsilon always recognizes Ctrl-S and Ctrl-R as direction keys, but you can set two variables

fwd-search-key and rev-search-key to key codes. These will then act as “synonyms” to Ctrl-S and

Ctrl-R, respectively.

When you select a searching command from the menu or tool bar (rather than via a command’s

keyboard binding), Epsilon for Windows runs the dialog-search or dialog-reverse-search command, to

display a search dialog.

Most of the keys described above also work in dialog-based searching. However, dialog searching is

46 Chapter 4. Commands by Topic

never incremental, so Ctrl-O doesn’t toggle incremental searching in a dialog. And Ctrl-Q doesn’t quote the

following character, because dialog searching doesn’t support directly entering special characters.

To match special characters in dialog-based searching, you can enable regular expression searching, and

then enter them using syntax like <Tab> or <#13>. See page 64. In replacement text, add a # first, as in

#<Newline> or #<#13>. See page 72.

Summary: Ctrl-S incremental-search

Ctrl-R reverse-incremental-search

Ctrl-Alt-S regex-search

Ctrl-Alt-R reverse-regex-search

string-search

reverse-string-search

search-again

forward-search-again

reverse-search-again

search-region

dialog-search

dialog-reverse-search

toggle-case-fold

Searching Multiple Files

Epsilon provides a convenient grep command that lets you search a set of files. The command prompts you

for a search string (all of the search options described above apply) and for a file pattern. By default, the

grep interprets the search string as a regular expression (see page 63). To toggle regular expression mode,

press Ctrl-T at any time while typing the search string. The command then scans the indicated files, puts a

list of matching lines in the grep buffer, then displays the grep buffer in the current window. Each line

indicates the file it came from.

With a numeric argument, this command searches through buffers instead of files. Instead of prompting

for a file name pattern, Epsilon prompts for a buffer name pattern, and only operates on those buffers whose

names match that pattern. Buffer name patterns use a simplified file name pattern syntax: * matches zero or

more characters, ? matches any single character, and character classes like [a-z] may be used too. The

buffer-grep command is an equivalent way to search buffers, handy if you want to bind it to its own key.

When grep prompts for a file pattern, it shows you the last file pattern you searched inside square

brackets. You can press 〈Enter〉 to conveniently search through the same files again. (See the

grep-default-directory variable to control how Epsilon interprets this default pattern when the current

directory has changed.)

By default file patterns you type are interpreted relative to the current buffer’s file; see

grep-prompt-with-buffer-directory to change this. To repeat a file pattern from before, press

Alt-〈Up〉 or Ctrl-Alt-P. (See page 28 for details.) You can use extended file patterns to search in multiple

directories; see page 128.

Epsilon skips over any file with an extension listed in grep-ignore-file-extensions; by default

some binary file types are excluded. It also skips over files matched by the grep-ignore-file-pattern

or grep-ignore-file-basename variables (the latter matched against just the base name of the file, not

its path, the former matched against the entire file name). The grep-ignore-file-types variable makes

grep skip over files that refer to devices, named pipes, or other sorts of special files. You can set the

4.2. Moving Around 47

use-grep-ignore-file-variables variable to zero temporarily to have Epsilon ignore all these

variables and search every matching file.

In a grep buffer, you can move around by using the normal movement commands. Most alphabetic keys

run special grep commands. The ‘N’ and ‘P’ keys move to the next and previous matches. The Alt-N and

Alt-P keys move to the next and previous files. Alt-] and Alt-[move to the next and previous searches.

You can easily go from the grep buffer to the corresponding locations in the original files. To do this,

simply position point on the copy of the line, then press 〈Space〉, 〈Enter〉, or ‘E’. The file appears in the

current window, with point positioned at the beginning of the matching line. Typing ‘1’ brings up the file in

a window that occupies the entire screen. Typing ‘2’ splits the window horizontally, then brings up the file in

the lower window. Typing ‘5’ splits the window vertically, then brings up the file. Typing the letter ’O’

shows the file in the next window on the screen, without splitting windows any further. Typing ‘Z’ runs the

zoom-window command, then brings up the file.

When Epsilon wants to search a particular file as a result of a grep command, it first scans the buffers to

see if one of them contains the given file. If so, it uses that buffer. If the file doesn’t appear in any buffer,

Epsilon reads the file into a temporary buffer, does the search, then discards the buffer.

If you want Epsilon to always keep the files around in such cases, set the variable grep-keeps-files

to a nonzero value. In that case, grep will simply use the find-file command to get any file it needs to search.

By default, each invocation of grep appends its results to the grep buffer. If you set the variable

grep-empties-buffer to a nonzero value, grep will clear the grep buffer at the start of each invocation.

Also see the grep-show-absolute-path variable to control the format of file names in the grep buffer,

and the wrap-grep variable to control whether grepping sets the current window to wrap long lines.

You can move from match to match without returning to the grep buffer. The Ctrl-X Ctrl-N command

moves directly to the next match. It does the same thing as switching to the grep buffer, moving down one

line, then pressing 〈Space〉 to select that match. Similarly, Ctrl-X Ctrl-P backs up to the previous match.

Actually, Ctrl-X Ctrl-N runs the next-position command. After a grep command, this command simply

calls next-match, which moves to the next match as described above. If you run a compiler in a subprocess,

however, next-position calls next-error instead, to move to the next compiler error message. If you use the

grep command again, or press 〈Space〉 in the grep buffer to select a match, or run next-match explicitly, then

next-position will again call next-match to move to the next match.

Similarly, Ctrl-X Ctrl-P actually runs previous-position, which calls either previous-error or

previous-match, depending upon whether you last ran a compiler or searched across files.

Summary: Alt-F7 grep

Ctrl-X Ctrl-N next-position

Ctrl-X Ctrl-P previous-position

next-match

previous-match

4.2.4 Bookmarks

Epsilon’s bookmark commands let you store the current editing position, so that you can easily return to it

later. To drop a bookmark at point, use the Alt-/ key. For each bookmark, Epsilon remembers the buffer and

the place within that buffer. Later, when you want to jump to that place, press Alt-J. Epsilon remembers the

last 10 bookmarks that you set with Alt-/. To cycle through the last 10 bookmarks, you can press Alt-J and

keep pressing it until you arrive at the desired bookmark.

48 Chapter 4. Commands by Topic

You can set a named bookmark with the Ctrl-X / key. The command prompts you for a letter, then

associates the current buffer and position with that letter. To jump to a named bookmark, use the Ctrl-X J

key. It prompts you for the letter, then jumps to that bookmark.

Instead of a letter, you can specify a digit (0 to 9). In that case, the number refers to one of the

temporary bookmarks that you set with the Alt-/ key. Zero refers to the last temporary bookmark, 1 to the

one before that, and so on.

Whenever one of these commands asks you to specify a character for a bookmark, you can get a list by

pressing ‘?’. Epsilon then pops up a list of the bookmarks you’ve defined, along with a copy of the line that

contains the bookmark. You can simply move to one of the lines and press 〈Enter〉 to select that bookmark.

In a list of bookmarks, press D to delete the highlighted bookmark.

The command list-bookmarks works like the Ctrl-X J key, but automatically pops up the list of

bookmarks to choose from. If you like, you can bind it to Ctrl-X J to get that behavior.

Summary: Alt-/ set-bookmark

Alt-J jump-to-last-bookmark

Ctrl-X / set-named-bookmark

Ctrl-X J jump-to-named-bookmark

list-bookmarks

4.2.5 Tags

Epsilon provides a facility to remember which file defines a particular subroutine or procedure. This can

come in handy if your program consists of several source files. Epsilon can remember this kind of

information for you by using “tags”. A tag instructs Epsilon to look for a particular function at a certain

position in a certain file.

The goto-tag command on Ctrl-X 〈Period〉 prompts for the name of a function and jumps immediately

to the definition of the routine. You can use completion (see page 26) while typing the tag name, or press ‘?’

to select from a list of tags. (Epsilon also shows the defining file of each tag.)

If you don’t give a name, goto-tag goes to the next tag with the same name as the last tag you gave it. If

the same tag occurs several times (for example, if you tag several separate files that each define a main()

function), use this to get to the other tag references, or press ‘?’ after typing the tag name to select the

correct file from a list. If you give goto-tag a nonzero numeric argument, it goes to the next tag without even

asking for a name. When there are several instances of a single tag, you can also use Ctrl-〈NumPlus〉 and

Ctrl-〈NumMinus〉 to move among them.

The pluck-tag command on Ctrl-X 〈Comma〉 first retrieves the routine name adjacent to or to the right

of point, then jumps to that routine’s definition.

If the file containing the definition appears in a window already, Epsilon will change to that window.

Otherwise, Epsilon uses the find-file command to read the file into a buffer and displays it in the current

window. Then Epsilon jumps to the definition, positioning its first line near the top of the window. You can

set the window line to receive the first line of the definition via the show-tag-line variable. It says how

many lines down the definition should go.

You can tell Epsilon to display the definition in a particular window, instead of letting Epsilon decide,

by running goto-tag or pluck-tag with a numeric prefix argument of zero. Then these commands will prompt

for a key to indicate the window. Press an arrow key to display the definition in the next window in that

direction. Press n or p to display the definition in the next or previous window in the window order. Type the

period character . to force the definition to appear in the current window. Press 2 or 5 to split the current

4.2. Moving Around 49

window horizontally or vertically, respectively, and display the definition in the new window, or 1 to delete

all windows but the current one, or z to run the zoom-window command first.

Before Epsilon moves to the tag, it sets a temporary bookmark at your old position, just like the

set-bookmark command on Alt-/. After goto-tag or pluck-tag, press Alt-J or Ctrl-〈NumStar〉 to move back to

your previous position.

Normally, you have to tell Epsilon beforehand which files to look in. The tag-files command on Ctrl-X

Alt-〈Period〉 prompts for a file name or file pattern such as *.c and makes a tag for each routine in the file. It

knows how to recognize routines in C, C++, Java, Perl, Visual Basic, Python, PHP and many other

languages. (Using EEL, you can teach Epsilon to tag additional languages. See page 499.) If you tag a

previously tagged file, the new tags replace all the old tags for that file. You can use extended file patterns to

tag files in multiple directories; see page 128. To easily tag just the current file, press Alt-g at the prompt.

When Epsilon can’t find a tag, it tries retagging the current file before giving up; that means if your program

is confined to one file, you don’t have to tag it first. Set tag-ask-before-retagging nonzero if you want

Epsilon to ask first.

In Perl, PHP, Visual Basic, and Python, Epsilon tags subroutine definitions. In C, C++, Java, EEL and

other C-like languages, tag-files normally tags subroutine and variable definitions, typedef definitions,

structure and union member and tag definitions, enum constants, and #define constants. But it doesn’t tag

declarations (variables that use extern, function declarations without a body). With a numeric prefix

argument, Epsilon includes these too. (Typically you’d do this for header files when you don’t have source

code for the function definitions—system files and library files, for instance.)

You can also set up tag-files to include declarations by default, by setting the tag-declarations

variable. If zero (the default), tag-files only tags definitions. If one, Epsilon tags function declarations as

well. If two, Epsilon tags variable declarations (which use the extern keyword). If three, Epsilon tags both

types of declarations. Using a prefix argument with tag-files temporarily sets tag-declarations to three,

so it tags everything it can. You can also set the tag-which-items variable to make tagging skip certain

types of items, such as structure tag names or #define constants. Set tag-c-preprocessor-skip-pat to

make Epsilon skip certain #if blocks when tagging C mode files.

Set tag-case-sensitive nonzero if you want tagging to consider MAIN, Main and main to be

distinct tags. By default, typing “main” will find any of these.

Epsilon can maintain separate groups of tags, each in a separate file. The select-tag-file command on

Ctrl-X Alt-〈Comma〉 prompts for the name of a tag file, and uses that file for tag definitions.

When Epsilon needs to find a tag file, it searches for a file in the current directory, then in its parent

directory, then in that directory’s parent, and so forth, until it reaches the root directory or finds a file

“default.tag”. If Epsilon finds no file with that name, it creates a new tag file in the current directory. To

force Epsilon to create a new tag file in the current directory, even if a tag file exists in a parent directory, use

the select-tag-file command. Once Epsilon loads a tag file, it continues to use that tag file until you use the

select-tag-file command to select a new one, or delete the buffer named “-tags” (causing Epsilon to search

again the next time you use a tagging command).

You can set the variable initial-tag-file to a relative pathname like “myfile.tag”, if you want

Epsilon to search for that file, or you can set it to an absolute pathname if you want Epsilon to use the same

tag file no matter which directory you use.

The tag system can also use .bsc files from Microsoft Visual Studio 4.1 through 2008. To use .bsc files,

you must set your compiler to generate them, then use the Alt-x configure-epsilon command to download

and install the DLL file that matches your compiler version. See page 50 for details. Finally, use the

select-tag-file command on Ctrl-X Alt-〈Comma〉 to select your .bsc file.

When Epsilon uses a .bsc file, the commands tag-files, retag-files, clear-tags, sort-tags, and the variables

tag-case-sensitive, tag-relative, want-sorted-tags, and tag-by-text do not apply. See

Microsoft compiler documentation for information on generating .bsc and .sbr files.

50 Chapter 4. Commands by Topic

The retag-files command makes Epsilon rescan all the files represented in the current tag file and

generate a new set of tags for each, replacing any prior tags. The clear-tags command makes Epsilon forget

about all the tags in the current tag file. See the tag-options variable if you want the tag-files command to

clear old tags automatically. The untag-files command displays a list of all files mentioned in the current tag

file; you can edit the list by deleting any file names that shouldn’t be included, and when you press Ctrl-X

Ctrl-Z, Epsilon will forget all tags that refer to the file names you deleted.

When Epsilon records a tag, it stores the character position and the text of the line at the tag position. If

the tag doesn’t appear at the remembered character offset, Epsilon searches for the defining line. And if that

doesn’t work (perhaps because its defining line has changed) Epsilon retags the file and tries again. This

means that once you tag a file, it should rarely prove necessary to retag it, even if you edit the file. To save

space in the tag file, you can have Epsilon record only the character offset, by setting the variable

tag-by-text to zero. Because this makes Epsilon’s tagging mechanism faster, it’s a good idea to turn off

tag-by-text before tagging any very large set of files that rarely changes.

By default, Epsilon sorts the tag list whenever it needs to display a list of tag names for you to choose

from. Although Epsilon tries to minimize the time taken to sort this list, you may find it objectionable if you

have many tags. Instead, you can set the want-sorted-tags variable to 0, and sort the tags manually,

whenever you want, using the sort-tags command. You can also tell Epsilon not to automatically save its tag

file by setting the auto-save-tags variable to zero.

Epsilon normally stores file names in its tag file in relative format, when possible. This means if you

rename or copy a directory that contains some source files and a tag file for them, the tag file will still work

fine. If you set the variable tag-relative to 0, Epsilon will record each file name with an absolute

pathname instead.

Summary: Ctrl-X 〈Period〉 goto-tag

Ctrl-X 〈Comma〉 pluck-tag

Ctrl-X Alt-〈Period〉 tag-files

Ctrl-X Alt-〈Comma〉 select-tag-file

Ctrl-〈NumPlus〉 next-tag

Ctrl-〈NumMinus〉 previous-tag

retag-files

clear-tags

untag-files

sort-tags

4.2.6 Source Code Browsing Interface

Epsilon can access source code browsing data generated by some Microsoft compilers. Only the compilers

in Visual Studio versions 4.0 through 2008 support this feature; it has been removed from more recent tools.

To set this up, first you must make sure your compiler generates such data, in the form of a .bsc file.

From Visual Studio, ensure the “Generate browse info” option (Project/Settings, on the C/C++ tab in the

General category) and the “Build browse info file” option (Project/Settings, on the Browse Info tab are both

enabled. Or if you build from the command line, compile with the /FR or /Fr flag to generate .sbr files, then

use the bscmake utility to combine the .sbr files into a .bsc file.

Next, set up Epsilon to use the generated browser file. To do this, run the Alt-x configure-epsilon

command and select the option to install source code browser support. This retrieves the appropriate DLL

and installs it.

4.2. Moving Around 51

You can use the browser database only for source code browsing, or you can tell Epsilon to use it for

tagging as well, instead of using its own tagging methods. To have Epsilon use the same browser database

file for both purposes, use the select-tag-file command on Ctrl-X Alt-〈Comma〉 to select your .bsc file. To

use Epsilon’s built-in tagging, and utilize the browser database only for source code browsing, select your

.bsc file with the select-browse-file command, which sets the browser-file variable.

Once you’ve set up source code browsing, press Ctrl-〈NumSlash〉 (using the / key on the numeric

keypad) to run the browse-symbol command. It will prompt for the name of a symbol (the name of a

function, variable, macro, class, or similar), using the symbol at point as the default. Then it will set a

temporary bookmark at your old position, just like the set-bookmark command on Alt-/. (After using

browse-symbol to navigate to a different part of your code, you can use Alt-J or Ctrl-〈NumStar〉 to move

back to your original location.) Finally, it builds a #symbols# buffer showing all available information on

the symbol.

The #symbols# buffer contains a header section, followed by one section for each distinct use of the

symbol. For instance, if you use the name “cost” for a function, and also use it elsewhere as a local variable

name, and as a structure name somewhere else, there will be three sections, one for each use.

Browser File: c:\Project\project.bsc

Symbol: qsort

Filter all but: Var Func Macro Type Class

Filter all Uses/UsedBy but: Var Func Macro Type Class

qsort (public function) is defined at:

qsort (public function) is used at:

- C:\Program Files\Microsoft Visual Studio\VC98\include\stdlib.h(302):

-- _CRTIMP void __cdecl qsort(void *, size_t, size_t, int (__cdecl *)

- prep_env.c(79): qsort(order, cnt, sizeof(char *), env_compare);

- token.cpp(174): qsort(le, sizeX + sizeY, sizeof(line_entry), hash_cmp);

qsort (public function) is used by:

- make_proc_env (public function)

- tokenize(int *,int *) (static function)

The header section displays the name of the .bsc file used to generate the listing and the symbol being

displayed. It also shows the current filters, which may be used to hide certain uses of a symbol.

Next you will see a list of those lines in your source code that define the specified symbol, followed by

those lines that reference it. In the example above, qsort(), a library function, isn’t defined within the

project source code, so its “is defined at” section is empty. It’s defined in a standard header file, and called

from two places in the project source code. You can position to any of these source code lines and press

〈Enter〉, or double-click the line, and Epsilon will go to the corresponding source file and line.

In the following section, you will see a list of functions that use the qsort() function. You can look up

any one of these symbol names with 〈Enter〉 or double-clicking, and Epsilon will display the symbol listing

for that symbol, replacing the current listing. Afterwards, press the L key to return to viewing the original

symbol. Repeated presses go to earlier symbols. With a numeric argument, the L key displays a list of

recently-viewed symbols; you can select one and have it displayed again.

If the symbol has a definition within the current project, the next section will show the functions and

variables it uses in its definition.

You can set filters, as shown in the header section, to skip over certain kinds of definitions and uses. For

instance, if qsort were the name of a macro as well as a function, you could use the first filter to see only

the macro uses by pressing f. The second filter controls which symbols appear in the uses/used-by section;

52 Chapter 4. Commands by Topic

press b to set it. You can also set the filters by pressing 〈Enter〉 while on the corresponding “Filter:” line in

the browser buffer. These set the browser-filter and browser-filter-usedby variables.

The browser-options variable lets you omit some of the above sections, or simplify the data shown

in other ways, to make browsing quicker. The browse-current-symbol command is a variation on

browse-symbol that doesn’t prompt for a symbol name, but uses the name at point without prompting.

Summary: Ctrl-〈NumSlash〉 browse-symbol

browse-current-symbol

Browse mode only: f browse-set-filter

Browse mode only: b browse-set-usedby-filter

select-browse-file

4.2.7 Comparing

The compare-windows command on Ctrl-F2 finds differences between the contents of the current buffer and

that displayed in the next window on the screen. If called while in the last window, it compares that window

with the first window. The comparison begins at point in each window. Epsilon finds the first difference

between the buffers and moves the point to just before the differing characters, or to the ends of the buffers if

it finds no difference. It then displays a message in the echo area reporting whether or not it found a

difference.

If you invoke compare-windows again immediately after it has found a difference, the command will try

to resynchronize the windows by moving forward in each window until it finds a match of at least

resynch-match-chars characters. It doesn’t necessarily move each window by the same amount, but

instead finds a match that minimizes the movement in the window that it moves the most. It then reports the

number of characters in each window it skipped past.

Normally compare-windows treats one run of space and tab characters the same as any other run, so it

skips over differences in horizontal whitespace. You can set the compare-windows-ignores-space

variable to change this.

The diff command also compares the buffers in two windows, but it will compare and resynchronize

over and over from the beginning to the end of each buffer, producing a report that lists all differences

between the two buffers. It operates line-by-line rather than character-by-character.

When resynchronizing, diff believes it has found another match when diff-match-lines lines in a

row match, and gives up if it cannot find a match within diff-mismatch-lines lines. By default, diff

resynchronizes when it encounters three lines in a row that match. Normally Epsilon uses a smarter

algorithm that’s better at finding a minimum set of differences. With this algorithm,

diff-mismatch-lines isn’t used. But because this algorithm becomes very slow when buffers are large,

it’s only used when at least one of the buffers contains fewer than diff-precise-limit bytes (by default

4 MB).

The diff command reports each difference with a summary line and then the text of the differing lines.

The summary line consists of two line number ranges with a letter between them indicating the type of

change: ‘a’ indicates lines to add to the first buffer to match the second, ‘d’ indicates lines to delete, and ‘c’

indicates lines to change. For example, a summary line in the diff listing of “20,30c23,29” means to remove

lines 20 through 30 from the first buffer and replace them with a copy of lines 23 through 29 from the

second buffer. “11a12” means that adding line 12 from the second buffer right after line 11 in the first buffer

would make them identical. “11,13d10” means that deleting lines 11, 12 and 13 from the first buffer (which

would appear just after line 10 in the second) would make them identical.

4.2. Moving Around 53

After each summary line, diff puts the lines to which the summary refers. The diff command prefixes

lines to delete from the first buffer by “<” and lines to add by “>”.

The visual-diff command is like diff but uses colors to show differences. It constructs a new buffer that

contains all the lines of the two buffers. Lines from the first buffer that don’t appear in the second are

displayed with a red background. Lines in the second buffer that don’t appear in the first have a yellow

background. Lines that are the same in both buffers are colored normally.

This command also does character-by-character highlighting for each group of changed lines. Instead

of simply indicating that one group of lines was replaced by another, it shows which portions of the lines

changed and which did not, by omitting the red or yellow background from those characters. You can set the

variables diff-match-characters and diff-match-characters-limit to alter or turn off this

behavior.

In a visual-diff buffer, the keys Alt-〈Down〉 and Alt-] move to the start of the next changed or common

section. The keys Alt-〈Up〉 and Alt-[move to the previous change or common section.

The merge-diff command is another variation on diff that’s useful with buffers in C mode. It marks

differences by surrounding them with #ifdef preprocessor lines, first prompting for the #ifdef variable name

to use. The resulting buffer receives the mode and settings of the first of the original buffers. The marking is

mechanical, and doesn’t parse the text being marked off, so it may produce invalid code. For example, if an

#if statement differs between the two buffers, the result will contain improperly nested #if statements like

this:

#ifndef DIFFVAR

#if DOSVERSION

#else // DIFFVAR

#if MSDOSVERSION

#endif // DIFFVAR

Therefore, you should examine the output of merge-diff before trying to compile it.

The commands diff, visual-diff, and merge-diff all produce their output in a buffer named #diff#. With a

numeric argument, they prompt instead for the destination buffer name.

The compare-to-prior-version command uses visual-diff to show the differences between the current

version of a buffer and the one saved on disk. It can also compare the current version with the version prior

to a certain number of editing operations. It prompts for the number of editing operations; entering zero

makes it compare the current buffer to the version of it on disk. The command can display its results using

merge-diff or diff instead of visual-diff; see the compare-to-prior-version-style variable.

Like compare-windows and diff, the compare-sorted-windows command compares the contents of the

current buffer with that displayed in the next window on the screen. Use it when you have (for example) two

lists of variable names, and you want to find out which variables appear on only one or the other list, and

which appear on both. This command assumes that you sorted both the buffers. It copies all lines appearing

in both buffers to a buffer named “inboth”. It copies all lines that appear only in the first buffer to a buffer

named “only1”, and lines that appear only in the second to a buffer named “only2”.

The uniq command goes through the current buffer and looks for adjacent identical lines, deleting the

duplicate copies of each repeated line and leaving just one. It doesn’t modify any lines that only occur once.

This command behaves the same as the Unix command of the same name.

The keep-unique-lines command deletes all copies of any duplicated lines. This command acts like the

Unix command “uniq -u”.

The keep-duplicate-lines command deletes all lines that only occur once, and leaves one copy of each

duplicated line. This command acts like the Unix command “uniq -d”.

The following table shows how sample text would be modified by each of the above commands.

54 Chapter 4. Commands by Topic

Sample text Uniq Keep-duplicate-lines Keep-unique-lines

dog dog dog cat

dog cat horse rabbit

cat horse dog

horse rabbit

horse dog

horse

rabbit

dog

Summary: Ctrl-F2, Ctrl-X C compare-windows

compare-sorted-windows

diff

visual-diff

visual-diff-mode

merge-diff

compare-to-prior-version

uniq

keep-unique-lines

keep-duplicate-lines

Visual Diff only: Alt-], Alt-〈Down〉 next-difference

Visual Diff only: Alt-[, Alt-〈Up〉 previous-difference

4.3 Changing Text

4.3.1 Inserting and Deleting

When you type most alphabetic or numeric keys, they appear in the buffer before point. Typing one of these

keys runs the command normal-character, which simply inserts the character that invoked it into the buffer.

When you type a character bound to the normal-character command, Epsilon inserts the character

before point, so that the cursor moves forward as you type characters. Epsilon can also overwrite as you

type. The overwrite-mode command, bound to the 〈Ins〉 key, toggles overwriting for the current buffer. If

you give it a nonzero numeric argument (for example, by typing Ctrl-U before invoking the command, see

page 25), it doesn’t toggle overwriting, but turns it on. Similarly, a numeric argument of zero always turns

off overwriting. Overwriting will occur for all characters except newline, and overwriting never occurs at the

end of a line. In these cases the usual insertion will happen. The buffer-specific variable over-mode

controls overwriting.

The Ctrl-Q key inserts special characters, such as control characters, into the current buffer. It waits for

you to type a character, then inserts it. This command ignores keys that don’t represent characters, such as

〈Home〉 or F3. If you “quote” an Alt key in this way, Epsilon inserts the corresponding character with its

high bit on. You can use this command for inserting characters like Ctrl-Z that would normally execute a

command when typed.

Sometimes you may want to insert a character whose numeric ASCII value you know, but you may not

know which keystroke that character corresponds to. Epsilon provides an insert-ascii command on Alt-# for

this purpose. It prompts you for a numeric value, then inserts the character with that value into the buffer.

By default, the command interprets the value in base 10. You can specify a hexadecimal value by prefixing

4.3. Changing Text 55

the characters “0x” to the number, or an octal value by prefixing the character “0o” to the number, or a

binary value by prefixing “0b”. For example, the numbers “87”, “0x57”, “0o127”, and “0b1010111” all

refer to the same number, and they all would insert a “W” character if given to the insert-ascii command.

You can also use the name of a Unicode character inside angle brackets, like “<square root>”, with

Alt-#. Press ? to see a list of characters with their Unicode names. You can use completion on character

names like this, and search in the list of names as usual.

In most environments you can type graphics characters by holding down the Alt key and typing the

character’s value on the numeric keypad, but see the alt-numpad-keys variable. In some environments,

Epsilon will automatically quote the character so that it’s inserted in the buffer and not interpreted as a

command. (You may need to type a Ctrl-Q first to quote the character in other environments.)

The Ctrl-O command inserts a newline after point (or, to put it another way, inserts a newline before

point as usual, then backs up over it). Use this command to break a line when you want to insert new text in

the middle, or to “open” up some space after point.

The 〈Backspace〉 key deletes the character before point, and the 〈Del〉 key deletes the character after

point. In other words, 〈Backspace〉 deletes backwards, and 〈Del〉 deletes forwards. These commands usually

do not save deleted characters in the kill ring (see the next section).

If you prefix these commands with a numeric argument of n, they will delete n characters instead of

one. In that case, you can retrieve the deleted text from the kill ring with the Ctrl-Y key (see the next

section).

If 〈Backspace〉 or 〈Del〉 follows one of the kill commands, the deleted character becomes part of the

text removed by the kill command. See the following section for information on the kill commands, and the

delete-options variable to change this behavior.

The buffer-specific variable delete-hacking-tabs makes 〈Backspace〉 operate differently when

deleting tabs or spaces. If 1, when 〈Backspace〉 deletes a tab, it first turns the tab into the number of spaces

necessary to keep the cursor in the same column, then deletes one of the spaces. If 2, when 〈Backspace〉
deletes a space, it deletes additional spaces and tabs until it reaches the previous tab column. The first setting

makes 〈Backspace〉 treat tabs more like spaces; the second makes it treats spaces more like tabs. Other bits

in the variable limit the circumstances where 〈Backspace〉 does this; see the variable’s documentation for

details.

The key Alt-\ deletes spaces and tabs surrounding point.

The Ctrl-X Ctrl-O command deletes empty lines adjacent to point, or lines that contain only spaces and

tabs, turning two or more such blank lines into a single blank line. Ctrl-X Ctrl-O deletes a lone blank line. If

you prefix a numeric argument of n, exactly n blank lines appear regardless of the number of blank lines

present originally. With a highlighted region, the command does this at every sequence of one or more blank

lines throughout the region.

Summary: Ctrl-Q quoted-insert

Alt-# insert-ascii

Ctrl-O open-line

Ctrl-H, 〈Backspace〉 backward-delete-character

Ctrl-D, 〈Del〉 delete-character

Alt-\ delete-horizontal-space

Ctrl-X Ctrl-O delete-blank-lines

“normal keys” normal-character

〈Ins〉 overwrite-mode

56 Chapter 4. Commands by Topic

4.3.2 The Region, the Mark, and Killing

Epsilon has many commands to erase characters from a buffer. Some of these commands save the erased

characters away in a special group of buffers called kill buffers, and some do not.

In Epsilon’s terminology, to kill means to delete text and save it away in a kill buffer, and to delete

means simply to remove the text and not save it away. Any consecutive sequence of killing commands will

produce a single block of saved text. The Ctrl-Y command then yanks back the entire block of text, inserting

it before point. (Even when Epsilon deletes text and doesn’t save it, you can usually use the undo command

to recover the text. See page 98.)

The Ctrl-K command kills to the end of the line, but does not remove the line separator. At the end of a

line, though, it kills just the line separator. Thus, use two Ctrl-K’s to completely remove a nonempty line.

Give this command a numeric argument of n to kill exactly n lines, including the line separators. If you give

the Ctrl-K command a negative numeric argument, −n, the command kills from the beginning of the

previous nth line to point.

The kill-current-line command is an alternative to Ctrl-K. It kills the entire line in one step, including the

line separator. The kill-to-end-of-line command kills the rest of the line. If point is at the end of the line, it

does nothing. In Brief mode Epsilon uses these two commands in place of the kill-line command that’s

normally bound to Ctrl-K.

The commands to delete single characters will also save the characters if you give them a numeric

argument (to delete that number of characters) or if they follow a command which itself kills text.

Several Epsilon commands operate on a region of text. To specify a region, move to either end of the

region and press the Ctrl-@ key or the Ctrl-〈Space〉 key. This sets the mark to the current value of point.

Then move point to the other end of the region. The text between the mark and point specifies the region.

When you set the mark with Ctrl-@, Epsilon turns on highlighting for the region. As you move point

away from the mark, the region appears in a highlighted color. This allows you to see exactly what text a

region-sensitive command would operate upon. To turn the highlighting off, type Ctrl-X Ctrl-H. The Ctrl-X

Ctrl-H command toggles highlighting for the region. If you prefix a nonzero numeric argument, it turns

highlighting on; a numeric argument of zero turns highlighting off.

You can also check the ends of the region with the Ctrl-X Ctrl-X command. This switches point and

mark, to let you see the other end of the region. Most commands do not care whether point (or mark) refers

to the beginning or the end of the region.

The mark-whole-buffer command on Ctrl-X H provides a quick way to set point and mark around the

entire buffer.

Another way to select text is to hold down the Shift key and move around using the arrow keys, or the

keys 〈Home〉, 〈End〉, 〈PageUp〉, or 〈PageDown〉. Epsilon will select the text you move through. The

shift-selects variable controls this feature.

The Ctrl-W command kills the region, saving it in a kill buffer. The Ctrl-Y command then yanks back

the text you’ve just killed, whether by the Ctrl-W command or any other command that kills text. It sets the

region around the yanked text, so you can kill it again with a Ctrl-W, perhaps after adjusting the region at

either end. The Alt-W command works like Ctrl-W, except that it does not remove any text from the buffer;

it simply copies the text between point and mark to a kill buffer.

Each time you issue a sequence of killing commands, Epsilon saves the entire block of deleted text as a

unit in one of its kill buffers. The Ctrl-Y command yanks back the last of these blocks. To access the other

blocks of killed text, use the Alt-Y command. It follows a Ctrl-Y or Alt-Y command, and replaces the

retrieved text with an earlier block of killed text. Each time you press Alt-Y, Epsilon substitutes a block

from another kill buffer, cycling from most recent back through the oldest, and then around to the most

recent again.

4.3. Changing Text 57

In normal use, you go to the place you want to insert the text and issue the Ctrl-Y command. If this

doesn’t provide the right text, give the Alt-Y command repeatedly until you see the text you want. If the text

you want does not appear in any of the killed blocks, you can get rid of the block with Ctrl-W, since both

Ctrl-Y and Alt-Y always place point and mark around the retrieved block.

By default, Epsilon provides ten kill buffers. You can set the variable kill-buffers if you want a

different number of kill buffers. Setting this variable to a new value makes Epsilon throw away the contents

of all the kill buffers the next time you execute a command that uses kill buffers.

The Alt-Y command doesn’t do anything if the region changed since the last Ctrl-Y or Alt-Y, so you

can’t lose text with a misplaced Alt-Y. Neither of these commands changes the kill buffers themselves. The

Alt-Y command uses the undo facility, so if you’ve disabled undo, it won’t work.

Epsilon can automatically reindent yanked text. By default it does this in C mode buffers. See page 75

for details. If you invoke Ctrl-Y or Alt-Y with a negative numeric prefix argument, by typing Alt-〈Minus〉
Ctrl-Y for example, the command won’t reindent the yanked text, and will insert one copy. (Providing a

positive numeric prefix argument makes Epsilon yank that many copies of the text. See page 145.)

Each time you issue a sequence of killing commands, all the killed text goes into one kill buffer. When

a killing command follows a non-killing command, the text goes into a new kill buffer (assuming you

haven’t set up Epsilon to have only one kill buffer). You may sometimes want to append a new kill to the

current kill buffer, rather than using the next kill buffer. That would let you yank all the text back at once.

The Ctrl-Alt-W command makes an immediately following kill command append to a kill buffer instead of

moving to a new one.

The Ctrl-Y command can come in handy when entering text for another command. For example,

suppose the current buffer contains a line with “report.txt” on it, and you now want to read in the file with

that name. Simply kill the line with Ctrl-K and yank it back (so as not to change the buffer) then give the

Ctrl-X Ctrl-F command (see page 111) to read in a file. When prompted for the file name, press Ctrl-Y and

the text “report.txt” appears as if you typed it yourself.

Pressing a self-inserting key like ‘j’ while text is highlighted normally deletes the highlighted selection,

replacing it with the key. Pressing 〈Backspace〉 simply deletes the text. You can disable this behavior by

setting the variable typing-deletes-highlight to zero. If you turn off this feature, you may also wish to

set the variable insert-default-response to zero. At many prompts Epsilon will insert a highlighted

default response before you start typing, if this variable is nonzero. You may also wish to set

typing-hides-highlight if you’ve disabled typing-deletes-highlight, so pressing a self-inserting

key turns off highlighting but doesn’t delete anything.

You can use the delete-region command to delete the current region without saving it in a kill buffer;

this is especially useful if you’ve set 〈Backspace〉 so it doesn’t delete highlighted text.

In addition to the above commands which put the text into temporary kill buffers, Epsilon provides

commands to make more permanent copies of text. The Ctrl-X X key copies the text in the region between

point and mark to a permanent buffer. The command prompts you for a letter (or number), then associates

the text with that letter. Thereafter, you can retrieve the text using the Ctrl-X Y key. That command asks you

for the letter, then inserts the corresponding text before point.

Summary: Ctrl-@, Alt-@ set-mark

Ctrl-X Ctrl-H highlight-region

Ctrl-X Ctrl-X exchange-point-and-mark

Ctrl-K kill-line

Ctrl-W kill-region

Alt-W copy-region

Ctrl-Y yank

58 Chapter 4. Commands by Topic

Alt-Y yank-pop

Ctrl-Alt-W append-next-kill

Ctrl-X X copy-to-scratch

Ctrl-X Y insert-scratch

Ctrl-X H mark-whole-buffer

kill-current-line

kill-to-end-of-line

delete-region

4.3.3 Clipboard Access

In Windows, Epsilon’s killing commands interact with the Windows clipboard. Similarly, Epsilon for Unix

interacts with the X11 clipboard when running as an X program. You can kill text in Epsilon and paste it

into another application, or copy text from an application and bring it into Epsilon with the yank command.

All commands that put text on the kill ring will also try to copy the text to the clipboard, if the variable

clipboard-access is non-zero. You can copy the current region to the clipboard without putting it on the

kill ring using the command copy-to-clipboard.

The yank command copies new text from the clipboard to the top of the kill ring. It does this only when

the clipboard’s contents have changed since the last time Epsilon accessed it, the clipboard contains text, and

clipboard-access is non-zero. Epsilon looks at the size of the clipboard to determine if the text on it is

new, so it may not always notice new text. You can force Epsilon to retrieve text from the clipboard by using

the insert-clipboard command, which inserts the text on the clipboard at point in the current buffer.

If you prefer to have Epsilon ignore the clipboard except when you explicitly tell it otherwise, set

clipboard-access to zero. You can still use the commands copy-to-clipboard and insert-clipboard to work

with the clipboard. Unlike the transparent clipboard support provided by clipboard-access, these

commands will report any errors that occur while trying to access the clipboard. If transparent clipboard

support cannot access the clipboard for any reason, it won’t report an error, but will simply ignore the

clipboard. Epsilon also disables transparent clipboard support when running a keyboard macro, unless

clipboard-access is 2.

When the buffer contains syntax-highlighted text, or other text with colors applied to it, you can have

Epsilon construct an HTML version of the text that preserves the coloring. You can then use it in a web

page, or further convert it using an external converter. Run the copy-formatting-as-html command to copy the

current region to the clipboard in HTML format.

By default, when the Win32 Console version of Epsilon puts characters on the clipboard, it lets

Windows translate the characters from the OEM character set to Windows ANSI, so that national characters

display correctly. Epsilon for Windows uses Windows ANSI like other Windows programs, so no translation

is needed. See the description of the clipboard-format variable to change this.

When retrieving text from the clipboard, Epsilon sometimes performs conversions to similar but more

basic characters. For instance, if you paste Unicode U+02DC SMALL TILDE, Epsilon replaces it with the

ASCII tilde character ˜. It performs the opposite conversion when placing text on the clipboard, but only for

characters in the range 128–159. See the clipboard-convert-unicode variable for details.

On Mac OS X systems, Epsilon converts from Mac line termination conventions when you paste text.

The clipboard-convert-mac-lines variable controls this.

X11 has two different methods of transferring text between programs. The more modern method uses

the clipboard, and explicit commands for cutting and pasting text. This is what Epsilon’s commands for

killing and yanking use.

4.3. Changing Text 59

But an older method uses the “primary selection” to transfer text. Traditionally, selecting text with a

mouse sets the text as the primary selection, and the middle mouse button pastes that text into another

program.

In Epsilon the middle mouse button provides panning by default, but when you hold down Shift, it

inserts the primary selection instead. You can set the mouse-center-yanks variable to make the middle

mouse button always insert. Or you can use the yank-x-selection command to yank X’s primary selection

explicitly. Set the mouse-selection-copies variable to make selecting text with the mouse set the

primary selection. This also puts the text into one of Epsilon’s kill buffers.

If you mostly use programs that follow the older X11 convention, you can set Epsilon to do so as well.

Set the clipboard-format variable to 1. Then Epsilon’s cutting and pasting commands will use the

primary selection instead of the clipboard selection.

Summary: copy-to-clipboard

insert-clipboard

copy-formatting-as-html

yank-x-selection

4.3.4 Rectangle Commands

Epsilon regions actually come in four distinct types. Each type has a corresponding Epsilon command that

begins defining a region of that type.

Region Type Command

Normal mark-normal-region

Line mark-line-region

Inclusive mark-inclusive-region

Rectangular mark-rectangle

The commands are otherwise very similar. Each command starts defining a region of the specified type,

setting the mark equal to point and turning on highlighting. If Epsilon is already highlighting a region of a

different type, these commands change the type. If Epsilon is already highlighting a region of the same type,

these commands start defining a new region by setting mark to point again. (You can set the variable

mark-unhighlights to make the commands turn off the highlighting and leave the mark alone in this

case.)

The mark-normal-region command defines the same kind of region as the set-mark command described

in section 4.3.2. (The commands differ in that set-mark always begins defining a new region, even if another

type of region is highlighted on the screen. The mark-normal-region command converts the old region, as

described above.)

A line region always contains entire lines of text. It consists of the line containing point, the line

containing mark, and all lines between the two.

An inclusive region is very similar to a normal region, but an inclusive region contains one additional

character at the end of the region. A normal region contains all characters between point and mark, if you

think of point and mark as being positioned between characters. But if you think of point and mark as

character positions, then an inclusive region contains the character at point, the character at the mark, and all

characters between the two. An inclusive region always contains at least one character (unless point and

mark are both at the end of the buffer).

60 Chapter 4. Commands by Topic

A rectangular region consists of all columns between those of point and mark, on all lines in the buffer

between those of point and mark. The mark-rectangle command on Ctrl-X # begins defining a rectangular

region. In a rectangular region, point can specify any of the four corners of this rectangle.

Some commands operate differently when the current region is rectangular. Killing a rectangular region

by pressing the Ctrl-W key runs the command kill-rectangle. It saves the current rectangle in a kill buffer,

and replaces the rectangle with spaces, so as not to shift any text that appears to the right of the rectangle. To

remove the rectangle and the space it occupied, press Ctrl-U Ctrl-W. This shifts columns of text that

followed the rectangle to the left. (Also see the kill-rectangle-removes variable.)

The Alt-W key runs the command copy-rectangle. It also saves the current rectangle, but doesn’t

modify the buffer. (Actually, it may insert spaces at the ends of lines, or convert tabs to spaces, if that’s

necessary to reach the starting or ending column on one of the lines in the region. But the buffer won’t look

any different as a result of these changes. Most rectangle commands do this.)

The Ctrl-Alt-W key runs the command delete-rectangle. It removes the current rectangle, shifting any

text after it to the left. It doesn’t save the rectangle.

When you use the Ctrl-Y key to yank a kill buffer that contains a rectangle, Epsilon inserts the last

killed rectangle into the buffer at the current column, on the current and successive lines. It shifts existing

text to the right. If you’ve enabled overwrite mode, however, the rectangle replaces any existing text in those

columns. See the yank-rectangle-to-corner variable to set how Epsilon positions point and mark

around the yanked rectangle. You can use the Alt-Y key to cycle through previous kills as usual.

When yanking line regions, the yank-line-retains-position variable serves a similar purpose,

influencing where Epsilon positions the cursor.

The width of a tab character depends upon the column it occurs in. For this reason, if you use the

rectangle commands to kill or copy text containing tabs, and you move the tabs to a different column, text

after the tabs may shift columns. (For example, a tab at column 0 occupies 8 columns, but a tab at column 6

occupies only 2 columns.) You can avoid this problem by using spaces instead of tabs with the rectangle

commands.

The buffer-specific variable indent-with-tabs controls whether Epsilon does indenting with tabs or

only with spaces. Set it to 0 to make Epsilon always use spaces. This variable affects only future indenting

you may do; it doesn’t change your file. To replace the tabs in your file, use the untabify-buffer command.

Note that the bindings shown below for kill-rectangle, copy-rectangle, and delete-rectangle only apply

when there’s a highlighted rectangle.

Summary: Ctrl-X # mark-rectangle

Ctrl-W kill-rectangle

Alt-W copy-rectangle

Ctrl-Alt-W delete-rectangle

mark-line-region

mark-inclusive-region

4.3.5 Capitalization

Epsilon has commands that allow you to change the case of words. Each travels forward, looking for the end

of a word, and changes the case of the letters it travels past. Thus, if you give these commands while inside a

word, only the rest of the word potentially changes case.

The Alt-L key, lowercase-word, turns all the characters it passes to lower case. The Alt-U key,

uppercase-word, turns them all to upper case. The Alt-C key, capitalize-word, capitalizes a word by making

4.3. Changing Text 61

the first letter it travels past upper case, and all the rest lower case. All these commands position point after

the word operated upon.

For example, the Alt-L command would turn “wOrd” into “word”. The Alt-U command would turn it

into “WORD”, and the Alt-C command would turn it into “Word”.

These commands operate on the highlighted region, if there is one. If there is no highlighted region, the

commands operate on the next word and move past it, as described above. The commands work on both

conventional and rectangular regions.

Summary: Alt-C capitalize-word

Alt-L lowercase-word

Alt-U uppercase-word

4.3.6 Replacing

The key Alt-& runs the command replace-string, and allows you to change all occurrences of a string in the

rest of your document to another string. Epsilon prompts for the string to replace, and what to replace it with.

Terminate the strings with 〈Enter〉. After you enter both strings, Epsilon replaces all occurrences of the first

string after point with instances of the second string (but respecting any narrowing restriction; see page 166).

When entering the string to search for, you can use any of the searching subcommands described on

page 43: Ctrl-C toggles case-folding, Ctrl-W toggles word searching, and Ctrl-T toggles interpreting the

string as a regular expression.

To enter special characters in either the search or replace strings, use Ctrl-Q before each. Type Ctrl-Q

Ctrl-C to include a Ctrl-C character. Type Ctrl-Q Ctrl-J to include a 〈Newline〉 character in a search string or

replacement text. Press Alt-g when entering the replacement string to copy the search string.

The key Alt-R runs the command query-replace, which works like replace-string. Instead of replacing

everything automatically, however, the command positions point after each occurrence of the old string and

waits for you to press a key. You may choose whether to replace this occurrence or not:

y or Y or 〈Space〉 Replace it, go on to next occurrence.

n or N or 〈Backspace〉 Don’t replace it, go on to next occurrence.

! Replace all remaining occurrences. The replace-string command works like the query-replace command

followed by pressing ‘!’ when it shows you the first match.

〈Esc〉 Exit and leave point at the match in the buffer.

^ Back up to the previous match.

〈Period〉 Replace this occurrence and then exit.

〈Comma〉 Replace and wait for another command option without going on to the next match.

Ctrl-R Enter a recursive edit. Point and mark go around the match. You may edit arbitrarily. When you exit

the recursive edit with Ctrl-X Ctrl-Z, Epsilon restores the old mark, and the query-replace continues

from the current location.

Ctrl-G Exit and restore point to its original location.

Ctrl-T Toggle regular expression searching. See the next section for an explanation of regular expressions.

62 Chapter 4. Commands by Topic

Ctrl-W Toggle word searching.

Ctrl-C Toggle case folding.

? or help key Provide help, including a list of these options.

anything else Exit the replacement, staying at the current location, and execute this key as a command.

The command regex-replace operates like query-replace, but starts up in regular expression mode. See

page 71.

The command reverse-replace operates like query-replace, but moves backwards. You can also trigger

a reverse replacement by pressing Ctrl-R while entering the search text for any of the replacing commands.

If you invoke any of the replacing commands above with a numeric argument, Epsilon will use word

searching.

If you highlight a region before replacing, Epsilon uses it as an initial search string if it’s not very long.

Set the replace-in-region variable to make Epsilon instead restrict its replacements to the highlighted

region. Also see the search-defaults-from variable.

Replace commands preserve case. Epsilon examines the case of each match. If a match is entirely upper

case, or all words are capitalized, Epsilon makes the replacement text entirely upper case or capitalized, as

appropriate. Epsilon only does this when searching is case-insensitive, and neither the search string nor the

replace string contain upper case letters. For example, if you search for the regular expression

welcome|hello and replace it with greetings, Epsilon replaces HELLO with GREETINGS and

Welcome with Greetings. See the replace-by-case variable to alter the rules Epsilon uses. With a regular

expression replace, you can force parts of the replacement to a particular case; see page 72.

The file-query-replace command on Shift-F7 replaces text in multiple files. It prompts for the search

text, replacement text, and a file name which may contain wildcards. You can use extended file patterns to

replace in files from multiple directories; see page 128. Epsilon skips over any file with an extension listed

in grep-ignore-file-extensions or meeting other criteria, just like the grep command. See page 46 for

details. To search without replacing, see the grep command on page 46.

With a numeric argument, this command searches through buffers instead of files. Instead of prompting

for a file name pattern, Epsilon prompts for a buffer name pattern, and only operates on those buffers whose

names match that pattern. Buffer name patterns use a simplified file name pattern syntax: * matches zero or

more characters, ? matches any single character, and character classes like [a-z] may be used too.

The command delete-matching-lines prompts for a regular expression pattern. It then deletes all lines

after point in the current buffer that contain the pattern. The similar command keep-matching-lines deletes

all lines except those that contain the pattern. As with any searching command, you can press Ctrl-T, Ctrl-W,

or Ctrl-C while typing the pattern to toggle regular expression mode, word mode, or case folding

(respectively).

When you select a replacing command from the menu or tool bar (rather than via a command’s

keyboard binding), Epsilon for Windows runs the dialog-replace or dialog-regex-replace command, to

display a replace dialog. Controls on the dialog replace many of the keys described above.

Summary: Alt-& replace-string

Alt-R, Alt-% query-replace

Shift-F7 file-query-replace

Alt-* regex-replace

reverse-replace

delete-matching-lines

keep-matching-lines

4.3. Changing Text 63

4.3.7 Regular Expressions

Most of Epsilon’s searching commands, described on page 43, take a simple string to search for. Epsilon

provides a more powerful regular expression search facility, and a regular expression replace facility.

Instead of a simple search string, you provide a pattern, which describes a set of strings. Epsilon

searches the buffer for an occurrence of one of the strings contained in the set. You can think of the pattern

as generating a (possibly infinite) set of strings, and the regex search commands as looking in the buffer for

the first occurrence of one of those strings.

The following characters have special meaning in a regex search: vertical bar, parentheses, plus, star,

question mark, square brackets, period, dollar, percent sign, left angle bracket (‘<’), and caret (‘^’). To

match them literally, they must be quoted; see page 64. See the following sections for syntax details and

additional examples.

abc|def Finds either abc or def.

(abc) Finds abc.

abc+ Finds abc or abcc or abccc or

abc* Finds ab or abc or abcc or abccc or

abc? Finds ab or abc.

[abcx-z] Finds any single character of a, b, c, x, y, or z.

[^abcx-z] Finds any single character except a, b, c, x, y, or z.

. Finds any single character except 〈Newline〉.

abc$ Finds abc that occurs at the end of a line.

^abc Finds abc that occurs at the beginning of a line.

%^abc Finds a literal ^abc.

<Tab> Finds a 〈Tab〉 character.

<#123> Finds the character with ASCII code 123.

<p:cyrillic> Finds any character with that Unicode property.

<alpha|1-5&!x-z> Finds any alpha character except x, y or z or digit 1–5.

<^c:*comment>printf Finds uses of printf that aren’t commented out.

<h:0d 0a 45> Finds char sequence with those hexadecimal codes.

Figure 4.2: Summary of regular expression characters.

PLAIN PATTERNS.

In a regular expression, a string that does not contain any of the above characters denotes the set that

contains precisely that one string. For example, the regular expression abc denotes the set that contains, as

its only member, the string ‘abc’. If you search for this regular expression, Epsilon will search for the string

‘abc’, just as in a normal search.

ALTERNATION.

To include more than one string in the set, you can use the vertical bar character. For example, the

regular expression abc|xyz denotes the set that contains the strings ‘abc’ and ‘xyz’. If you search for that

pattern, Epsilon will find the first occurrence of either ‘abc’ or ‘xyz’. The alternation operator (|) always

applies as widely as possible, limited only by grouping parentheses.

GROUPING.

You can enclose any regular expression in parentheses, and the resulting expression refers to the same

64 Chapter 4. Commands by Topic

set. So searching for (abc|xyz) has the same effect as searching for abc|xyz, which works as in the

previous paragraph. You would use parentheses for grouping purposes in conjunction with some of the

operators described below.

Parentheses are also used for retrieving specific portions of the match. A regular expression

replacement uses the syntax #3 to refer to the third parenthesized group, for instance. The find_group()

function provides a similar function for EEL programmers. The special syntax (?:) provides grouping

just like (), but isn’t counted as a group when retrieving parts of the match in these ways.

CONCATENATION.

You can concatenate two regular expressions to form a new regular expression. Suppose the regular

expressions p and q denote sets P and Q, respectively. Then the regular expression pq denotes the set of

strings that you can make by concatenating, to members of P, strings from the set Q. For example, suppose

you concatenate the regular expressions (abc|xyz) and (def|ghi) to yield (abc|xyz)(def|ghi). From

the previous paragraph, we know that (abc|xyz) denotes the set that contains ‘abc’ and ‘xyz’; the

expression (def|ghi) denotes the set that contains ‘def’ and ‘ghi’. Applying the rule, we see that

(abc|xyz)(def|ghi) denotes the set that contains the following four strings: ‘abcdef’, ‘abcghi’, ‘xyzdef’,

‘xyzghi’.

CLOSURE.

Clearly, any regular expression must have finite length; otherwise you couldn’t type it in. But because

of the closure operators, the set to which the regular expression refers may contain an infinite number of

strings. If you append plus to a parenthesized regular expression, the resulting expression denotes the set of

one or more repetitions of that string. For example, the regular expression (ab)+ refers to the set that

contains ‘ab’, ‘abab’, ‘ababab’, ‘abababab’, and so on. Star works similarly, except it denotes the set of zero

or more repetitions of the indicated string.

OPTIONALITY.

You can specify the question operator in the same place you might put a star or a plus. If you append a

question mark to a parenthesized regular expression, the resulting expression denotes the set that contains

that string, and the empty string. You would typically use the question operator to specify an optional

subpart of the search string.

You can also use the plus, star, and question-mark operators with subexpressions, and with

non-parenthesized things. These operators always apply to the smallest possible substring to their left. For

example, the regular expression abc+ refers to the set that contains ‘abc’, ‘abcc’, ‘abccc’, ‘abcccc’, and so

on. The expression a(bc)*d refers to the set that contains ‘ad’, ‘abcd’, ‘abcbcd’, ‘abcbcbcd’, and so on.

The expression a(b?c)*d denotes the set that contains all strings that start with ‘a’ and end with ‘d’, with

the inside consisting of any number of the letter ‘c’, each optionally preceded by ‘b’. The set includes such

strings as ‘ad’, ‘acd’, ‘abcd’, ‘abccccbcd’.

Entering Special Characters

In a regular expression, the percent (‘%’) character quotes the next character, removing any special meaning

that character may have. For example, the expression x%+ refers to the string ‘x+’, whereas the pattern x+

refers to the set that contains ‘x’, ‘xx’, ‘xxx’, and so on.

You can also quote characters by enclosing them in angle brackets. The expression x<+> refers to the

string ‘x+’, the same as x%+. In place of the character itself, you can provide the name of the character

inside the angle brackets. Figure 4.3 lists some of the character names Epsilon recognizes; you can also use

any character name in the Unicode standard, such as <Superscript two>.

4.3. Changing Text 65

<Comma> , <Nul> ^@ <Period> .

<Space> <Star> * <Plus> +

<Enter> ^M <Percent> % <Vbar> |

<Return> ^M <Lparen> (<Question> ?

<Newline> ^J <Rparen>) <Query> ?

<Linefeed> ^J <Langle> < <Caret> ^

<Tab> ^I <Rangle> > <Dollar> $

<Bell> ^G <LSquare> [<Bang> !

<Backspace> ^H <RSquare>] <Exclamation> !

<FormFeed> ^L <Lbracket> [<Quote> '

<Esc> ^[<Rbracket>] <SQuote> '

<Escape> ^[<Dot> . <DQuote> "

<Null> ^@ <Backslash> \ <Tilde> ˜

Figure 4.3: Character mnemonics in regular expressions.

To search for the NUL character (the character with ASCII code 0), use the expression <Nul>, because

an actual NUL character may not appear in a regular expression.

Instead of the character’s name, you can provide its numeric value using the notation <#number>. The

sequence <#number> denotes the character with ASCII code number. For example, the pattern <#0>

provides another way to specify the NUL character, and the pattern abc<#10>+ specifies the set of strings

that begin with ‘abc’ and end with one or more newline characters (newline has ASCII value 10). You can

enter the value in hexadecimal, octal, or binary by prefixing the number with ‘0x’, ‘0o’, or ‘0b’, respectively.

For example, <#32>, <#0x20>, <#0o40>, and <#0b100000> all yield a 〈Space〉 character (ASCII code 32).

Character Classes

In place of any letter, you can specify a character class. A character class consists of a sequence of

characters between square brackets. For example, the character class [adef] stands for any of the following

characters: ‘a’, ‘d’, ‘e’, or ‘f’.

In place of a letter in a character class, you can specify a range of characters using a hyphen: the

character class [a-m] stands for the characters ‘a’ through ‘m’, inclusively. The class [ae-gr] stands for

the characters ‘a’, ‘e’, ‘f’, ‘g’, or ‘r’. The class [a-zA-Z0-9] stands for any alphanumeric character.

To specify the complement of a character class, put a caret as the first character in the class. Using the

above examples, the class [^a-m] stands for any character other than ‘a’ through ‘m’, and the class

[^a-zA-Z0-9] stands for any non-alphanumeric character. Inside a character class, only ^ (when it’s the

first character) and - have special meaning. All other characters stand for themselves, including plus, star,

question mark, etc.

If you need to put a right square bracket character in a character class, put it immediately after the

opening left square bracket, or in the case of an inverted character class, immediately after the caret. For

example, the class []x] stands for the characters ‘]’ or ‘x’, and the class [^]x] stands for any character

other than ‘]’ or ‘x’.

To include the hyphen character - in a character class, it must be the first character in the class, except

for ^ and]. For example, the pattern [^]-q] matches any character except], -, or q.

Any regular expression you can write with character classes you can also write without character

classes. But character classes sometimes let you write much shorter regular expressions.

66 Chapter 4. Commands by Topic

The period character (outside a character class) represents any character except a 〈Newline〉. For

example, the pattern a.c matches any three-character sequence on a single line where the first character is

‘a’ and the last is ‘c’.

You can also specify a character class using a variant of the angle bracket syntax described in the

previous section for entering special characters. The expression <Comma|Period|Question> represents

any one of those three punctuation characters. The expression <a-z|A-Z|?> represents either a letter or a

question mark, the same as [a-zA-Z]|<?>, for example. The expression <^Newline> represents any

character except newline, just as the period character by itself does.

You can also use a few character class names that match some common sets of characters.

Class Meaning

<digit> A digit, 0 to 9.

<alpha> A letter, according to isalpha().

<alphanum> Either of the above.

<word> All of the above, plus the _ character.

<hspace> The same as <Space|Tab>.

<wspace> The same as <Space|Tab|Newline>.

<ascii> An ASCII character, one with a code below 128.

<any> Any character including <Newline>.

Figure 4.4: Character Class Names

You can match all characters with a particular Unicode property, using the syntax <p:hex-digit>.

After the p: part, you can put the name of a binary property as in p:ASCIIHexDigit, a script name as in

p:Cyrillic, or a category name as in p:Zs or p:L. Or you can put the name of an enumerated property, an

equal sign, and a value for that property, like p:block=Dingbats or p:Line_break=Alphabetic. Case

isn’t significant in these names, and certain characters like hyphen and underscore are ignored in property

names.

You can combine character classes using addition, subtraction, or intersection. Addition means a

matching character can be in either of two classes, as in <alpha|digit> to match either alphabetic

characters or digits. Intersection means a matching character must be a member of both classes, as in

<p:HexDigit&p:numeric-type=decimal>, which matches characters with the HexDigit binary Unicode

property that also have a Numeric-Type property of Decimal. Subtraction means a matching character must

be a member of one class but not another, as in <p:currency-symbol&!dollar sign&!cent sign>

which matches all characters with the Currency-Symbol property except for the dollar sign and cent sign

characters.

More precisely, we can say that inside the angle brackets you can put one or more character “rules”,

each separated from the next by either a vertical bar | to add the rules together or & to intersect the rules.

Any rule may have a ! before it to invert that one rule, or you can put a ^ just after the opening < to invert

the entire expression and match its complement.

Each character rule may be a character specification or a range, a character class name from the table

above, or a Unicode property specification using the p: syntax above. A range means two character

specifications with a hyphen between them. And a character specification means either the name of a

character, or # and the numeric code for a character, or the character itself (for any character except >, |, -,

or 〈Nul〉).

Separately, Epsilon recognizes the syntax <h:0d 0a 45> as a shorthand to search for a series of

characters by their hexadecimal codes. This example is equivalent to the pattern <#0x0d><#0x0a><#0x45>.

4.3. Changing Text 67

Regular Expression Examples

• The pattern if|else|for|do|while|switch specifies the set of statement keywords in C and EEL.

• The pattern c[ad]+r specifies strings like ‘car’, ‘cdr’, ‘caadr’, ‘caaadar’. These correspond to

compositions of the car and cdr Lisp operations.

• The pattern c[ad][ad]?[ad]?[ad]?r specifies the strings that represent up to four compositions of

car and cdr in Lisp.

• The pattern [a-zA-Z]+ specifies the set of all sequences of 1 or more letters. The character class part

denotes any upper- or lower-case letter, and the plus operator specifies one or more of those.

Epsilon’s commands to move by words accomplish their task by performing a regular expression

search. They use a pattern similar to [a-zA-Z0-9_]+, which specifies one or more letters, digits, or

underscore characters. (The actual pattern includes national characters as well.)

• The pattern (<Newline>|<Return>|<Tab>|<Space>)+ specifies nonempty sequences of the

whitespace characters newline, return, tab, and space. You could also write this pattern as

<Newline|Return|Tab|Space>+ or as <Wspace|Return>+, using a character class name.

• The pattern /%*.*%*/ specifies a set that includes all 1-line C-language comments. The percent

character quotes the first and third stars, so they refer to the star character itself. The middle star

applies to the period, denoting zero or more occurrences of any character other than newline. Taken

together then, the pattern denotes the set of strings that begin with “slash star”, followed by any

number of non-newline characters, followed by “star slash”. You can also write this pattern as

/<Star>.*<Star>/.

• The pattern /%*(.|<Newline>)*%*/ looks like the previous pattern, except that instead of ‘.’, we

have (.|<Newline>). So instead of “any character except newline”, we have “any character except

newline, or newline”, or more simply, “any character at all”. This set includes all C comments, with or

without newlines in them. You could also write this as /%*<Any>*%*/ instead.

• The pattern <^digit|a-f> matches any character except of one these: 0123456789abcdef.

• The pattern <alpha&!r&!x-z&!p:softdotted> matches all Latin letters except R, X, Y, Z, I and J

(the latter two because the Unicode property SoftDotted, indicating a character with a dot that can be

replaced by an accent, matches I and J). It also matches all non-Latin Unicode letters that don’t have

this property.

AN ADVANCED EXAMPLE.

Let’s build a regular expression that includes precisely the set of legal strings in the C programming

language. All C strings begin and end with double quote characters. The inside of the string denotes a

sequence of characters. Most characters stand for themselves, but newline, double quote, and backslash

must appear after a “quoting” backslash. Any other character may appear after a backslash as well.

We want to construct a pattern that generates the set of all possible C strings. To capture the idea that

the pattern must begin and end with a double quote, we begin by writing

"something"

We still have to write the something part, to generate the inside of the C strings. We said that the inside of a

C string consists of a sequence of characters. The star operator means “zero or more of something”. That

looks promising, so we write

68 Chapter 4. Commands by Topic

"(something)*"

Now we need to come up with a something part that stands for an individual character in a C string. Recall

that characters other than newline, double quote, and backslash stand for themselves. The pattern

<^Newline|"|\> captures precisely those characters. In a C string, a “quoting” backslash must precede the

special characters (newline, double quote, and backslash). In fact, a backslash may precede any character in

a C string. The pattern \(.|<Newline>) means, precisely “backslash followed by any character”. Putting

those together with the alternation operator (|), we get the pattern <^Newline|"|\>|\(.|<Newline>)
which generates either a single “normal” character or any character preceded by a backslash. Substituting

this pattern for the something yields

"(<^Newline|"|\>|\(.|<Newline>))*"

which represents precisely the set of legal C strings. In fact, if you type this pattern into a regex-search

command (described below), Epsilon will find the next C string in the buffer.

Searching Rules

Thus far, we have described regular expressions in terms of the abstract set of strings they generate. In this

section, we discuss how Epsilon uses this abstract set when it does a regular expression search.

When you tell Epsilon to perform a forward regex search, it looks forward through the buffer for the

first occurrence in the buffer of a string contained in the generated set. If no such string exists in the buffer,

the search fails.

There may exist several strings in the buffer that match a string in the generated set. Which one

qualifies as the first one? By default, Epsilon picks the string in the buffer that begins before any of the

others. If there exist two or more matches in the buffer that begin at the same place, Epsilon by default picks

the longest one. We call this a first-beginning, longest match. For example, suppose you position point at the

beginning of the following line,

When to the sessions of sweet silent thought

then do a regex search for the pattern s[a-z]*. That pattern describes the set of strings that start with ‘s’,

followed by zero or more letters. We can find quite a few strings on this line that match that description.

Among them:

When to the sessions of sweet silent thought

When to the sessions of sweet silent thought

When to the sessions of sweet silent thought

When to the sessions of sweet silent thought

When to the sessions of sweet silent thought

When to the sessions of sweet silent thought

Here, the underlined sections indicate portions of the buffer that match the description “s followed by a

sequence of letters”. We could identify 31 different occurrences of such strings on this line. Epsilon picks a

match that begins first, and among those, a match that has maximum length. In our example, then, Epsilon

would pick the following match:

When to the sessions of sweet silent thought

4.3. Changing Text 69

since it begins as soon as possible, and goes on for as long as possible. The search would position point after

the final ‘s’ in ‘sessions’.

In addition to the default first-beginning, longest match searching, Epsilon provides three other regex

search modes. You can specify first-beginning or first-ending searches. For each of these, you can specify

shortest or longest match matches. Suppose, with point positioned at the beginning of the following line

I summon up remembrance of things past,

you did a regex search with the pattern m.*c|I.*t. Depending on which regex mode you chose, you would

get one of the four following matches:

I summon up remembrance of things past, (first-ending shortest)

I summon up remembrance of things past, (first-ending longest)

I summon up remembrance of things past, (first-beginning shortest)

I summon up remembrance of things past, (first-beginning longest)

By default, Epsilon uses first-beginning, longest matching. You can include directives in the pattern

itself to tell Epsilon to use one of the other techniques. If you include the directive <Min> anywhere in the

pattern, Epsilon will use shortest-matching instead of longest-matching. Putting <FirstEnd> selects

first-ending instead of first-beginning. You can also put <Max> for longest-matching, and <FirstBegin>

for first-beginning. These last two might come in handy if you’ve changed Epsilon’s default regex mode.

The sequences <FE> and <FB> provide shorthand equivalents for <FirstEnd> and <FirstBegin>,

respectively. As an example, you could use the following patterns to select each of the matches listed in the

previous example:

<FE><Min>m.*c|I.*t (first-ending shortest)

<FE><Max>m.*c|I.*t or <FE>m.*c|I.*t (first-ending longest)

<FB><Min>m.*c|I.*t or <Min>m.*c|I.*t (first-beginning shortest)

<FB><Max>m.*c|I.*t or m.*c|I.*t (first-beginning longest)

You can change Epsilon’s default regex searching mode. To make Epsilon use, by default, first-ending

searches, set the variable regex-shortest to a nonzero value. To specify first-ending searches, set the

variable regex-first-end to a nonzero value. (Examples of regular expression searching in this

documentation assume the default settings.)

When Epsilon finds a regex match, it sets point to the end of the match. It also sets the variables

matchstart and matchend to the beginning and end, respectively, of the match. You can change what

Epsilon considers the end of the match using the ‘!’ directive. For example, if you searched for ‘I

s!ought’ in the following line, Epsilon would match the underlined section:

I sigh the lack of many a thing I sought,

Without the ‘!’ directive, the match would consist of the letters “I sought”, but because of the ‘!’ directive,

the match consists of only the indicated section of the line. Notice that the first three characters of the line

also consist of ‘I s’, but Epsilon does not count that as a match. There must first exist a complete match in

the buffer. If so, Epsilon will then set point and matchend according to any ‘!’ directive.

OVERGENERATING REGEX SETS.

You can use Epsilon’s regex search modes to simplify patterns that you write. You can sometimes write

a pattern that includes more strings than you really want, and rely on a regex search mode to cut out strings

that you don’t want.

70 Chapter 4. Commands by Topic

For example, recall the earlier example of /%*(.|<Newline>)*%*/. This pattern generates the set of

all strings that begin with /* and end with */. This set includes all the C-language comments, but it includes

some additional strings as well. It includes, for example, the following illegal C comment:

/* inside /* still inside */ outside */

In C, a comment begins with /* and ends with the very next occurrence of */. You can effectively get

that by modifying the above pattern to specify a first-ending, longest match, with

<FE><Max>/%*(.|<Newline>)*%*/. It would match:

/* inside /* still inside */ outside */

In this example, you could have written a more complicated regular expression that generated precisely

the set of legal C comments, but this pattern proves easier to write.

Regular Expression Assertions

You can force Epsilon to reject any potential match that does not line up appropriately with a line boundary,

by using the ‘^’ and ‘$’ assertions. A ‘^’ assertion specifies a beginning-of-line match, and a ‘$’ assertion

specifies an end-of-line match. For example, if you search for ^new|waste in the following line, it would

match the indicated section:

And with old woes new wail my dear times’s waste;

Even though the word ‘new’ occurs before ‘waste’, it does not appear at the beginning of the line, so Epsilon

rejects it.

Other assertions use Epsilon’s angle-bracket syntax. Like the assertions ^ and $, these don’t match any

specific characters, but a potential match will be rejected if the assertion isn’t true at that point in the pattern.

Assertion Meaning

^ At the start of a line.

$ At the end of a line.

<bob> or <bof> At the start of the buffer.

<eob> or <eof> At the end of the buffer.

For example, searching for <bob>sometext<eob> won’t succeed unless the buffer contains only the

eight character string sometext.

You can create new assertions from character classes specified with the angle bracket syntax by adding

[,] or / at the start of the pattern.

Assertion Meaning

<[class> The next character matches class, the previous one does not.

<]class> The previous character matches class, the next one does not.

</class> Either of the above.

The class in the above syntax is a |-separated or &-separated list of one or more single characters,

character names like Space or Tab, character numbers like #32 or #9, ranges of any of these, character class

names like Word or Digit, or Unicode property specifications. See page 66 for details on character classes.

For example, </word> matches at a word boundary, and <]word> matches at the end of a word. The

pattern <]0-9|a-f> matches at the end of a run of hexadecimal digits. The pattern

4.3. Changing Text 71

(cat|[0-9])</digit>(dog|[0-9]) matches cat3 or 4dog, but not catdog or 42. The pattern

<[p:cyrillic> matches at the start of a run of Cyrillic characters.

COLOR CLASS ASSERTIONS.

Another type of assertion matches based on the next character’s color class for syntax highlighting.

<^c:*comment>printf finds uses of printf that aren’t commented out. <[c:perl-string>" finds "

characters that start a string in Perl mode, ignoring those that end it, or appear quoted inside it, or in

comments or other places.

The text after the c: is a simple filename-style pattern that will be matched against the name of the

color class: * matches zero or more characters, ? matches any single character, and simple ranges with []

are allowed. A character with no syntax highlighting applied will match the name “none”. This type of

assertion may start with ^ to invert the matching rules, or with /, [or] to match color boundaries.

To apply more than one assertion to a character, put them in sequence.

<^c:perl-string><^c:*comment>printf finds instances of printf that are in neither Perl strings nor

comments.

You can use the set-color command to see the color class names Epsilon uses.

When you combine assertions with operators * or +, you must use parentheses to specify that the

assertion applies to each character. (<^c:*-comment><any>)+ matches a run of non-comment characters.

Without the parentheses the assertion only applies to the first character of the run.

In extension language code, use the do_color_searching() subroutine if your regular expression

might include syntax highlighting assertions, which ensures the buffer’s syntax highlighting is up to date.

Regular Expression Commands

You can invoke a forward regex search with the Ctrl-Alt-S key, which runs the command regex-search. The

Ctrl-Alt-R key invokes a reverse incremental search. You can also enter regular expression mode from any

search prompt by typing Ctrl-T to that prompt. For example, if you press Ctrl-S to invoke

incremental-search, pressing Ctrl-T causes it to enter regular expression mode. See page 43 for a description

of the searching commands.

The key Alt-* runs the command regex-replace. This command works like the command query-replace,

but interprets its search string as a regular expression.

In the replacement text of a regex replace, the # character followed by a digit n has a special meaning in

the replacement text. Epsilon finds the nth parenthesized expression in the pattern, counting left parentheses

from 1. It then substitutes the match of this subpattern for the #n in the replacement text. For example,

replacing

([a-zA-Z0-9_]+) = ([a-zA-Z0-9_]+)

with

#2 := #1

changes

variable = value;

to

value := variable;

72 Chapter 4. Commands by Topic

If #0 appears in the replacement text, Epsilon substitutes the entire match for the search string. To

include the actual character # in a replacement text, use ##. In a search pattern, you can follow the open

parenthesis with ?: to tell Epsilon not to count it for replacement purposes; that pair of parentheses will

only be used for grouping.

The replacement text can use the syntax #U to force the rest of the replacement to uppercase (including

text substituted from the match using #1 syntax). Using #L or #C forces the remaining text to lowercase, or

capitalizes it, respectively. Using #E marks the end of such case modifications; the following replacement

text will be substituted as-is. For instance, searching for “(<word>+) by (<word>+)” and replacing it

with “#L#2#E By #U#1” will change the match “Two by Four” into “four By TWO”.

When the search string consists of multiple words of literal text separated by the | character, you can

use #S in the replacement text to swap them. For instance, if you search for dog|cat and replace it with #S,

Epsilon replaces instances of dog with cat, and instances of cat with dog. If you have more than two

choices, each choice will be replaced by the next choice in the list.

When you don’t use the above syntax, replacing preserves the case of each match according to specific

rules. See the replace-by-case variable for details.

Characters other than # in the replacement text have no special meaning. To enter special characters,

type a Ctrl-Q before each. Type Ctrl-Q Ctrl-J to include a 〈Newline〉 character in the replacement text. Or

specific characters in the replacement text by name, using the syntax #<Newline>, or by number, such as

#<#0x221a> for the Unicode square root character.

Summary: Ctrl-Alt-S regex-search

Ctrl-Alt-R reverse-regex-search

Alt-* regex-replace

4.3.8 Rearranging

Sorting

Epsilon provides several commands to sort buffers, or parts of buffers.

The sort-buffer command lets you sort the lines of the current buffer. The command asks for the name

of a buffer in which to place the sorted output. The sort-region command sorts the part of the current buffer

between point and mark, in place. The commands reverse-sort-buffer and reverse-sort-region operate like

the above commands, but reverse the sorting order.

By default, all the sorting commands sort the lines by considering all the characters in the line. If you

prefix a numeric argument of n to any of these commands, they will compare lines starting at column n.

When comparing lines of text during sorting, Epsilon normally folds lower case letters to upper case

before comparison, if the case-fold variable has a nonzero value. If the case-fold variable has a value of

0, Epsilon compares characters as-is. However, setting the buffer-specific sort-case-fold variable to 0 or

1 overrides the case-fold variable, for sorting purposes. By default, sort-case-fold has a value of 2,

which means to defer to case-fold.

Summary: sort-buffer

sort-region

reverse-sort-buffer

reverse-sort-region

4.3. Changing Text 73

Transposing

Epsilon has commands to transpose characters, words, and lines. To transpose the words before and after

point, use the Alt-T command. This command leaves undisturbed any non-word characters between the

words. Point moves between the words. The Ctrl-X Ctrl-T command transposes the current and previous

lines and moves point between them.

The Ctrl-T command normally transposes the characters before and after point. However, at the start of

a line it transposes the first two characters on the line, and at the end of a line it transposes the last two. On a

line with one or no characters, it does nothing.

Summary: Ctrl-T transpose-characters

Alt-T transpose-words

Ctrl-X Ctrl-T transpose-lines

Formatting Text

Epsilon has some commands that make typing manuscript text easier.

You can change the right margin, or fill column, using the Ctrl-X F command. By default, it has a value

of 70. With a numeric argument, the command sets the fill column to that column number. Otherwise, this

command tells you the current value of the fill column and asks you for a new value. If you don’t provide a

new value but instead press the 〈Enter〉 key, Epsilon will use the value of point’s current column. For

example, you can set the fill column to column 55 by typing Ctrl-U 55 Ctrl-X F. Alternatively, you can set

the fill column to point’s column by typing Ctrl-X F 〈Enter〉. The buffer-specific variable margin-right

stores the value of the fill column. To set the default value for new buffers you create, use the set-variable

command on F8 to set the default value of the margin-right variable. (See the c-fill-column variable

for the C mode equivalent.) A file’s contents can specify a particular fill column; see page 120.

In auto fill mode, you don’t have to worry about typing 〈Enter〉’s to go to the next line. Whenever a line

gets too long, Epsilon breaks the line at the appropriate place if needed. The auto-fill-mode command

enables or disables auto filling (word wrap) for the current buffer. With a numeric argument of zero, it turns

auto filling off; with a nonzero numeric argument, it turns auto filling on. With no numeric argument, it

toggles auto filling. During auto fill mode, Epsilon shows the word “Fill” in the mode line. The

buffer-specific variable fill-mode controls filling. If it has a nonzero value, filling occurs. To make Epsilon

always use auto fill mode, you can use the set-variable command to set the default value of fill-mode.

In some language modes, Epsilon uses a special version of auto-fill mode that typically only fills text in

certain types of comments. See page 98 for details.

Epsilon normally indents new lines it inserts via auto fill mode so they match the previous line. The

buffer-specific variable auto-fill-indents controls whether or not Epsilon does this. Epsilon indents

these new lines only if auto-fill-indents has a nonzero value. Set the variable to 0 if you don’t want

this behavior.

During auto filling, the normal-character command first checks to see if the line extends past the fill

column. If so, the extra words automatically move down to the next line.

The 〈Enter〉 key runs the command enter-key, which behaves like normal-character, but inserts a

newline instead of the character that invoked it. Epsilon binds this command to the 〈Enter〉 key, because

Epsilon uses the convention that Ctrl-J’s separate lines, but the keyboard has the 〈Enter〉 key yield a Ctrl-M.

In overwrite mode, the 〈Enter〉 key simply moves to the beginning of the next line.

The Alt-Q command fills the current paragraph. The command fills each line by moving words between

lines as necessary, so the lines but the last become as long as possible without extending past the fill column.

74 Chapter 4. Commands by Topic

If the screen shows a highlighted region, the command fills all paragraphs in the region. The fill-region

command fills all paragraphs in the region between point and mark, whether or not the region is highlighted.

If you give a numeric prefix argument of five or less to the above filling commands, they unwrap lines in

a paragraph, removing all line breaks. Alt-2 Alt-Q is one quick way to unwrap the current paragraph. With a

numeric argument greater than 5, the paragraph is filled using that value as a temporary right margin. (Note

that C mode places a different fill command on Alt-Q, and it interprets an argument to mean “fill using the

current column as a right margin”.)

Alt-Shift-Q runs the prefix-fill-paragraph command. It fills the current paragraph while preserving any

run of spaces, punctuation, and other non-alphanumeric characters that appears before each of the lines in

the paragraph. Highlight a region first and it will fill all the paragraphs within in this manner. With a

numeric argument, it fills the paragraph using the current column as the right margin, instead of the

margin-right variable.

The fill-indented-paragraph command is similar; it fills the current paragraph as above, but tries to

preserve only indentation before each line of the paragraph. It’s better than prefix-fill-paragraph when the

paragraph to be filled contains punctuation characters and similar that should be filled as part of the

paragraph, not considered part of the prefix.

The mail-fill-paragraph command on Ctrl-C Alt-Q is similar to prefix-fill-paragraph, but specialized for

the quoting rules of email that put > or # before each line. It preserves email quoting characters at the starts

of lines, treating other characters as part of the paragraph.

Press Ctrl-C > to add email-style quoting to the current paragraph (or highlighted region). Press Ctrl-C

< to remove such quoting.

These mail-formatting commands use the mail-quote-pattern, mail-quote-skip, and

mail-quote-text variables.

Summary: Ctrl-X F set-fill-column

Alt-q fill-paragraph

Alt-Shift-Q prefix-fill-paragraph

Ctrl-C Alt-Q mail-fill-paragraph

Ctrl-C > mail-quote-region

Ctrl-C < mail-unquote

fill-indented-paragraph

fill-region

auto-fill-mode

〈Enter〉 enter-key

4.3.9 Indenting Commands

Epsilon can help with indenting your program or other text. The 〈Tab〉 key runs the indent-previous

command, which makes the current line start at the same column as the previous non-blank line.

Specifically, if you invoke this command with point in or adjacent to a line’s indentation, indent-previous

replaces that indentation with the indentation of the previous non-blank line. If point’s indentation exceeds

that of the previous non-blank line, or if you invoke this command with point outside of the line’s

indentation, this command simply inserts a 〈Tab〉. See page 104 for information on changing the width of a

tab.

Epsilon can automatically indent for you when you press 〈Enter〉. Setting the buffer-specific variable

auto-indent nonzero makes Epsilon do this. The way Epsilon indents depends on the current mode. For

4.3. Changing Text 75

example, C mode knows how to indent for C programs. In Epsilon’s default mode, fundamental mode,

Epsilon indents like indent-previous if you set auto-indent nonzero. (Auto-indenting removes trailing

spaces and tabs too.)

In some modes Epsilon not only indents the newly inserted line, but also reindents the existing line.

Variables named after their modes, like c-reindent-previous-line, control this. The

default-reindent-previous-line variable controls this for modes that don’t have their own variable.

When Epsilon automatically inserts new lines for you in auto fill mode, it looks at a different variable to

determine whether to indent these new lines. Epsilon indents in this case only if the buffer-specific variable

auto-fill-indents has a nonzero value.

The Alt-M key moves point to the beginning of the text on the current line, just past the indentation.

The indent-under command functions like indent-previous, but each time you invoke it, it indents more,

to align with the next word in the line above. In detail, it goes to the same column in the previous non-blank

line, and looks to the right for the end of the next region of spaces and tabs. It indents the rest of the current

line to that column after removing spaces and tabs from around point. With a highlighted region, it indents

all lines in the region to that same column.

With a numeric prefix argument, indent-under goes to a different run of non-spaces. For instance, with

an argument of 3, it goes to the previous line and finds the third word after the original column, then aligns

the original line there.

The indent-rigidly command, bound to Ctrl-X Ctrl-I (or Ctrl-X 〈Tab〉), changes the indentation of each

line between point and mark by a fixed amount provided as a numeric argument. For instance, Ctrl-U 8

Ctrl-X Ctrl-I moves all the lines to the right by eight spaces. With no numeric argument, lines move to the

right by the buffer’s tab size (default 8; see page 104), and with a negative numeric argument, lines move to

the left. So, for example, Ctrl-U -1000 Ctrl-X Ctrl-I should remove all the indentation from the lines

between point and mark.

If you highlight a region before pressing 〈Tab〉 (or any key that runs one of the commands

indent-previous or do-c-indent), Epsilon indents all lines in the region by one tab stop, by calling the

indent-rigidly command. You can provide a numeric argument to specify how much indentation you want.

The Shift-〈Tab〉 key moves the cursor back to the previous tab stop. But if you highlight a region before

pressing it, it will remove one tab stop’s worth of indentation. (See the resize-rectangle-on-tab

variable if you want these keys to instead change the region’s shape without moving text.)

The indent-region command, bound to Ctrl-Alt-\, works similarly. It goes to the start of each line

between point and mark and invokes the command bound to 〈Tab〉. If the resulting line then contains only

spaces and tabs, Epsilon removes them.

You can set up Epsilon to automatically reindent text when you yank it. Epsilon will indent like

indent-region. By default, Epsilon does this only for C mode (see the reindent-after-c-yank variable).

To determine whether to reindent yanked text, the yank command first looks for a variable whose name

is derived from the buffer’s mode as it appears in the mode line: reindent-after-c-yank for C mode

buffers, reindent-after-html-yank for HTML mode buffers, and so forth. If there’s no variable by that

name, Epsilon uses the reindent-after-yank variable instead. Instead of a variable, you can write an

EEL function with the same name; Epsilon will call it and use its return value. See the description of

reindent-after-yank for details on what different values do.

The Alt-S command horizontally centers the current line between the first column and the fill column

by padding the left with spaces and tabs as necessary. Before centering the line, the command removes

spaces and tabs from the beginning and end of the line.

With any of these commands, Epsilon indents by inserting as many tabs as possible without going past

the desired column, and then inserting spaces as necessary to reach the column. You can set the size of a tab

76 Chapter 4. Commands by Topic

by setting the tab-size variable. Set the soft-tab-size variable if you want Epsilon to use one setting

for displaying existing tab characters, and a different one for indenting.

If you prefer, you can make Epsilon indent using only spaces. The buffer-specific variable

indent-with-tabs controls this behavior. Set it to 0 using set-variable to make Epsilon use only spaces

when inserting indentation.

If you want 〈Tab〉 to simply indent to the next tab stop, you can bind the indent-to-tab-stop command to

it. To disable smart indenting in a particular language mode, you can bind this command to 〈Tab〉 only in

that mode.

The untabify-region command on Ctrl-X Alt-I changes all tab characters between point and mark to the

number of spaces necessary to make the buffer look the same. The tabify-region command on Ctrl-X

Alt-〈Tab〉 does the reverse. It looks at all runs of spaces and tabs, and replaces each with tabs and spaces to

occupy the same number of columns. The commands tabify-buffer and untabify-buffer are similar, but operate

on the entire buffer, instead of just the region.

Summary: Alt-M to-indentation

〈Tab〉 indent-previous

Shift-〈Tab〉 back-to-tab-stop

Ctrl-Alt-I indent-under

Ctrl-X 〈Tab〉 indent-rigidly

Ctrl-Alt-\ indent-region

Alt-S center-line

Ctrl-X Alt-〈Tab〉 tabify-region

Ctrl-X Alt-I untabify-region

tabify-buffer

untabify-buffer

indent-to-tab-stop

4.3.10 Aligning

The align-region command on Ctrl-C Ctrl-A aligns elements on lines within the current region. It changes

the spacing just before each element, so it starts at the same column on every line where it occurs.

It uses alignment rules specialized for the current mode. By default, it aligns the first “=” character on

each line, and any comments on the lines.

For C mode, Epsilon additionally aligns the names of variables being defined (in simple definitions), the

definitions of macros in #define lines, and the backslash character at the end of preprocessor commands. It

can change

int hour = 3; // The hour.

short int minute = 22; // The minute.

int second = 14; // The second.

#define GET_HOUR() hour // Get the hour.

#define GET_MINUTE() minute // Get the minute.

#define GET_SECOND() second // Get the second.

into

4.3. Changing Text 77

int hour = 3; // The hour.

short int minute = 22; // The minute.

int second = 14; // The second.

#define GET_HOUR() hour // Get the hour.

#define GET_MINUTE() minute // Get the minute.

#define GET_SECOND() second // Get the second.

You can disable individual alignment rules by setting the align-region-rules variable, or increase

the minimum spacing used by all automatic rules by setting the align-region-extra-space variable.

The command can also perform alignments specified manually. Run it with a numeric prefix argument,

and it will prompt for a regular expression pattern that defines the alignment rule. It must consist of two

parenthesized patterns, such that in a regular expression replacement, #1 and #2 would substitute their text.

Alignment will alter the spacing between these two elements. Manual alignment will also prompt for the

amount of additional spacing to be added between the two elements.

To use the built-in mode-based rules, but add extra space, run align-region with a numeric prefix, but

enter nothing for the search pattern. The command will prompt for the amount of additional space and apply

it using the mode’s default alignment rules, as if you had temporarily modified the

align-region-extra-space variable.

Summary: Ctrl-C Ctrl-A align-region

4.3.11 Automatically Generated Text

The copy-file-name command on Ctrl-C Alt-n is a convenient way to put the current buffer’s filename onto

the clipboard. In a dired buffer, it copies the current line’s absolute pathname.

The similar copy-include-file-name on Ctrl-C Alt-i formats the current file’s name as an #include

command for C mode buffers, and similarly for other languages. It looks for a variable with a name of the

form copy-include-file-name-mode, where mode is the current mode name. The variable holds a file

name template (see page 115) which is used to format the current file’s name. If there’s a function by that

name, not a variable, Epsilon simply calls it. The function can call the copy_line_to_clipboard()

subroutine after preparing a suitable line.

The insert-date command on Ctrl-C Alt-d inserts the current time and/or date, according to the format

specified by the date-format variable.

Summary: Ctrl-C Alt-n copy-file-name

Ctrl-C Alt-i copy-include-file-name

Ctrl-C Alt-d insert-date

4.3.12 Spell Checking

The Spell minor mode makes Epsilon highlight misspelled words as you edit.

First configure spell checking by running the spell-configure command. The first time you run it, it will

download and install a set of dictionary files into the “spell” subdirectory of your customization directory.

(See http://www.lugaru.com/spell.html if you need to download it manually.) Then it will ask your region

78 Chapter 4. Commands by Topic

(American, Canadian, British, or British with -ize spellings preferred) and other questions like dictionary

size. (A larger dictionary means rarer words won’t be marked as potential misspellings, but it will miss those

misspellings that happen to result in rare words.) To start, just choose default options for each question.

Use the spell-mode command to make Epsilon highlight misspelled words in the current mode. The

command toggles highlighting; a numeric prefix argument forces it on (if nonzero) or off (if zero). “Sp” in

the mode line indicates Spell minor mode is on. Use the buffer-spell-mode command instead if you want

Epsilon to only highlight misspelled words in the current buffer.

Epsilon remembers whether you want spell checking in a particular mode using a variable like

html-spell-options, whose name is derived from the mode name. If a mode has no associated variable,

Epsilon uses the default-spell-options variable. Each variable contains bits to further customize

spelling rules for that mode. The 0x1 bit says whether misspelled words should be highlighted at all;

spell-mode toggles it. The following table shows the meaning of the other bits in each variable.

Bit Meaning

0x1 Highlight misspelled words.

0x2 Skip words containing an underscore.

0x4 Skip MixedCaseWords (those with internal capitalization).

0x8 Skip uppercase words (those with no lowercase letters).

0x10 Skip words following a digit, like 14th.

0x20 Skip words before a digit, like gr8.

0x200 Don’t remove 's when checking words.

0x1000 Provide faster but less accurate built-in suggestions.

0x2000 Don’t copy the case of the original in built-in suggestions.

0x4000 Add globally ignored words to spell helper’s list.

The spell-correct command can suggest replacements for a misspelled word. It can also record a word

in an ignore list so Epsilon no longer highlights it as a misspelling. Epsilon maintains a global ignore list

named ignore.lst in your customizations directory. That directory also contains its main word list

dictionary espell.lst (which is ordered so that more common words appear closer to the top of the file)

and espell.srt, a (case-sensitively) sorted version of espell.lst.

Epsilon also checks directory-specific, file-specific, and mode-specific ignore lists. When checking a

file named file.html, for example, Epsilon looks for an ignore list file named .file.html.espell in

that same directory, and a directory-specific ignore list file in that directory named .directory.espell. A

mode-specific ignore list file is named ignore.modename.mode.lst, where modename is the current mode

name, and appears in your customization directory.

All these files contain one word per line. Epsilon automatically sorts ignore list files when it uses them.

(Epsilon can optionally use extension-specific ignore lists too. By default this is disabled for simplicity. See

the global-spell-options variable.)

The spell-buffer-or-region command performs spell checking for the current buffer, going to each

misspelled word in turn and asking if you want to correct it or ignore it. With a highlighted region it checks

just that region.

The spell-grep command writes a copy of all lines with spelling errors to the grep buffer, where you can

use the usual grep commands to navigate among them. See page 46 for details.

MAKING SUGGESTIONS

The spell-correct command presents a list of suggestions. Epsilon can generate these in several different

ways. The default method uses the installed dictionary files. A faster, less accurate, but still self-contained

method is available by setting a bit in the current -spell-options variable.

4.3. Changing Text 79

Epsilon can also run an external program to provide suggestions; this is generally very fast and

produces the best suggestions. The spell-configure command configures this. It sets up Epsilon to use aspell

or the older ispell, two free command line spelling programs often installed on Unix systems. It can also set

up Epsilon to use MicroSpell, a commercial spell checking program for Windows systems available from

http://www.microspell.com, by installing a helper program mspellcmd.exe into its directory. In Epsilon for

Mac OS X, it can also use the Mac’s native spelling engine, though this is not available when you run

Epsilon for Mac OS X over a network connection from another computer.

CUSTOMIZING SPELL CHECKING

Epsilon looks for words to be checked using a regular expression pattern. In modes without syntax

highlighting, it uses the pattern in the default-spell-word-pattern variable. In modes with syntax

highlighting, it uses default-color-spell-word-pattern.

This latter pattern makes Epsilon ignore words based on their syntax highlighting color class, so that it

skips over language keywords, variable names, and so forth. It checks words only if the mode colors them

using a color class whose name ends in -text, -comment, or -string. It uses a color class assertion (see

page 71) to do this.

You can define a replacement spell check pattern for any mode by creating a variable whose name is the

mode name followed by -spell-word-pattern. Then Epsilon will use that variable instead of one of the

default variables. For instance, if you want XML mode to check attributes as well as text but not comments,

you could define a variable xml-spell-word-pattern and copy its value from the

default-color-spell-word-pattern variable, changing the color class assertion to

<c:*-text|*-attributes>.

A mode can make the speller ignore words based on adjacent text, in addition to using color class

assertions. Create a variable whose name is the mode’s name followed by

-spell-ignore-pattern-prefix. If it exists, and the regular expression pattern it contains matches the

text just before a word, the speller will skip it. For instance, if in Sample mode a # at the start of a line

indicates a comment, define a variable sample-spell-ignore-pattern-prefix and set it to ^#.*.

Similarly, a variable ending in -spell-ignore-pattern-suffix that matches just after a word will make

the speller ignore the word.

A mode can define an alternative set of dictionaries and ignore files by setting the buffer-specific

spell_language_prefix variable. Set it to a suffix like “-fr” and Epsilon will look for alternative files,

which the mode must supply, ending with that suffix.

Summary: spell-mode

buffer-spell-mode

spell-configure

spell-buffer-or-region

spell-grep

Ctrl-C Ctrl-O spell-correct

4.3.13 Hex Mode

The hex-mode command creates a second buffer that shows a hex listing of the original buffer. You can edit

this buffer, as explained below. Press q when you’re done, and Epsilon will return to the original buffer,

offering to apply your changes.

A hex digit (0-9, a-f) in the left-hand column area moves in the hex listing to the new location.

80 Chapter 4. Commands by Topic

A hex digit (0-9, a-f) elsewhere in the hex listing modifies the listing.

q quits hex mode, removing the hex mode buffer and returning to the original buffer. Epsilon will first offer

to apply your editing changes to the original buffer.

〈Tab〉 moves between the columns of the hex listing.

s or r searches by hex bytes. Type a series of hex bytes, like 0a 0d 65, and Epsilon will search for them. S

searches forward, R in reverse.

Ctrl-S and Ctrl-R temporarily toggle to the original buffer so you can search for literal text. When the

search ends, they move to the corresponding place in the hex listing.

t toggles between the original buffer and the hex mode buffer, going to the corresponding position.

prompts for a new character value and overwrites the current character with it. You can use any of these

formats: ’A’, 65, 0x41 (hex), 0b1100101 (binary), 0o145 (octal).

n or p move to the next or previous line.

g prompts for an offset in hexadecimal, then goes there.

o toggles the hex overwrite submode, which changes how Epsilon interprets keys you type in the rightmost

column of the hex listing. In overwrite mode, printable characters you type in the rightmost column

overwrite the text there, instead of acting as hex digits or commands.

For instance, typing “3as” in the last column while in overwrite mode replaces the next three

characters with the characters 3, a, and s. Outside overwrite mode, they replace the current character

with one whose hex code is 3a, and then begin a search.

To use hex mode commands from overwrite mode, prefix them with a Ctrl-C character, such as Ctrl-C

o to exit overwrite mode. Or move out of the rightmost column with 〈Tab〉 or other movement keys.

? shows help on hex mode.

Summary: hex-mode

4.4 Language Modes

When you use the find-file command to read in a file, Epsilon looks at the file’s extension to see if it has a

mode appropriate for editing that type of file. For example, when you read a .h file, Epsilon goes into C

mode. Specifically, whenever you use find-file and give it a file name “foo.ext”, after find-file reads in the file,

it executes a command named “suffix_ext”, if such a command exists. The find-file command constructs a

subroutine name from the file extension to allow you to customize what happens when you begin editing a

file with that extension.

For example, if you want to enter C mode automatically whenever you use find-file on a “.x” file, you

simply create a command (a keyboard macro would do) called “suffix_x”, and have that command call

c-mode, or even better, an existing suffix_ function. One way is to add a line like this to your einit.ecm file

(see page 154):

(define-macro "suffix-x" "<!suffix-c>")

For another example, you can easily stop Epsilon from automatically entering C mode on a “.h” file by

using the delete-name command to delete the subroutine “suffix-h”. (You can interchange the - and _

4.4. Language Modes 81

characters in Epsilon command names.) Or define a suffix-h macro so it calls the fundamental-mode

command in your einit.ecm file, as above.

Epsilon also has various features that are useful in many different language modes. See the description

of tagging on page 48 and the section starting on page 94.

In addition to the language-specific modes described in the following sections, Epsilon includes modes

that support various Epsilon features. For example, the buffer listing generated by the bufed command on

Ctrl-X Ctrl-B is actually in an Epsilon buffer, and that buffer is in Bufed mode. Press F1 m to display help

on the current mode.

Many language modes will call a hook function if you’ve defined one. For example, C mode tries to call

a function named c_mode_hook(). A hook function is a good place to customize a mode by setting

buffer-specific variables. It can be a keyboard macro or a function written in EEL, and it will be called

whenever Epsilon loads a file that should be in the specified mode.

To customize a mode’s key bindings, see the example for C mode on page 84.

The fundamental-mode command removes changes to key bindings made by modes such as C mode,

Dired mode, or Bufed mode. You can configure Epsilon to highlight matching parentheses and other

delimiters in fundamental mode; see the fundamental-auto-show-delim-chars variable.

Also see page 118 to customize the list of file types shown in File/Open and similar dialogs in Epsilon

for Windows.

Summary: fundamental-mode

4.4.1 Asm Mode

Epsilon automatically enters Asm mode when you read a file with an extension of .asm, .inc, .al, .mac, .ah,

or .asi. In Asm mode, Epsilon does appropriate syntax highlighting, tagging, and commenting. The

compile-buffer command uses the compile-asm-cmd variable in this mode.

Summary: asm-mode

4.4.2 Batch Mode

Epsilon automatically enters Batch mode when you read a file with an extension of .bat, .cmd, or .btm. In

Batch mode, Epsilon does appropriate syntax highlighting, and provides delimiter highlighting using the

auto-show-batch-delimiters and batch-auto-show-delim-chars variables.

Summary: batch-mode

4.4.3 C Mode

The c-mode command puts the current buffer in C mode. C mode provides smart indenting for programs

written in C, C++, C#, Java, Epsilon’s extension language EEL, Objective-C, and other C-like languages.

Pressing 〈Enter〉 or 〈Tab〉 examines previous lines to find the correct indentation. Epsilon supports several

common styles of indentation, controlled by some extension language variables.

The Closeback variable controls the position of the closing brace:

82 Chapter 4. Commands by Topic

Closeback = 0;

if (foo){

bar();

baz();

}

Closeback = 1;

if (foo){

bar();

baz();

}

By placing the opening brace on the following line, you may also use these styles:

Closeback = 0;

if (foo)

{

bar();

baz();

}

Closeback = 1;

if (foo)

{

bar();

baz();

}

Closeback by default has a value of 1.

Use the Topindent variable to control the indentation of top-level statements in a function:

Topindent = 0;

foo()

{

if (bar)

baz();

}

Topindent = 1;

foo()

{

if (bar)

baz();

}

Topindent by default has a value of 1.

The Matchdelim variable controls whether typing),], or } displays the corresponding (, [, or { using

the show-matching-delimiter command. The Matchdelim variable normally has a value of 1, which means

that Epsilon shows matching delimiters. You can change these variables as described on page 151.

In C mode, the 〈Tab〉 key reindents the current line if pressed with point in the current line’s indentation.

〈Tab〉 just inserts a tab if pressed with point somewhere else, or if pressed two or more times successively. If

you set the variable c-tab-always-indents to 1, then the 〈Tab〉 key will reindent the current line,

regardless of your position on the line. If you press it again, it will insert another tab. The 〈Enter〉 key

indents the line it inserts, as well as the current line (but see the c-reindent-previous-line variable).

When you yank text into a buffer in C mode, Epsilon automatically reindents it. This is similar to the

“smart paste” feature in some other editors. You can set the variable reindent-after-c-yank to zero to

disable this behavior. Epsilon doesn’t normally reindent comments when yanking; set the

reindent-c-comments and reindent-one-line-c-comments variables to change that. Also see the

reindent-c-preprocessor-lines variable.

By default, Epsilon uses the value of the buffer-specific tab-size variable to determine how far to

indent. For example, if the tab size has a value of 5, Epsilon will indent the line following an if statement

five additional columns.

If you want the width of a tab character in C mode buffers to be different than in other buffers, set the

variable c-tab-override to the desired value. C mode will change the buffer’s tab size to the specified

number of columns. The eel-tab-override variable does the same in EEL buffers (which use a variation

of C mode). Also see the description of file variables on page 120 for a way in which individual files can

indicate they should use a particular tab size.

4.4. Language Modes 83

If you want to use one value for the tab size and a different one for C indentation, set the buffer-specific

c-indent variable to the desired indentation using the set-variable command. When c-indent has a value

of zero, as it has by default, Epsilon uses the tab-size variable for its indentation. (Actually, the 〈Tab〉 key

in C mode doesn’t necessarily insert a tab when you press it two or more times in succession. Instead, it

indents according to c-indent. If the tab size differs from the C indent, it may have to insert spaces to

reach the proper column.)

In Java files, Epsilon uses the similar variable java-indent to set the column width of one level of

indentation.

The c-case-offset variable controls the indentation of case statements. Normally, Epsilon indents

them one level more than their controlling switch statements. Epsilon adds the value of this variable to its

normal indentation, though. If you normally indent by 8 spaces, for example, and want case statements to

line up with their surrounding switch statements, set c-case-offset to −8.

Similarly, the c-access-spec-offset variable controls the indentation of public:, private:,

protected: (and, for C#, internal:) access specifiers.

The c-label-indent variable provides the indentation of lines starting with labels. Normally, Epsilon

moves labels to the left margin.

Epsilon offsets the indentation of a left brace on its own line by the value of the variable

c-brace-offset. For example, with a tab size of eight and default settings for other variables, a

c-brace-offset of 2 produces:

if (a)

{

b();

}

The variable c-top-braces controls how much Epsilon indents the braces of the top-level block of a

function. By default, Epsilon puts these braces at the left margin. Epsilon indents pre-ANSI K&R-style

parameter declarations according to the variable c-param-decl. Epsilon indents parts of a top-level

structure or union according to c-top-struct, and indents continuation lines outside of any function body

according to c-top-contin. Continuation lines for classes and functions that use C++ inheritance syntax

may be indented according to c-align-inherit.

Additional C mode indentation variables that may be customized include c-indent-after-extern-c,

c-align-break-with-case, c-indent-after-namespace, and reindent-c-preprocessor-lines.

By default, the C indenter tries to align continuation lines under parentheses and other syntactic items

on prior lines. If Epsilon can’t find anything on prior lines to align under, it indents continuation lines two

levels more than the original line. (With default settings, Epsilon indents unalignable continuation lines 8

positions to the right of the original line.) Epsilon adds the value of the variable c-contin-offset to this

indentation, though. If you want Epsilon to indent unalignable continuation lines ten columns less, set

c-contin-offset to −10 (it’s 0 by default).

If aligning the continuation line would make it start in a column greater than the value of the variable

c-align-contin-lines (default 48), Epsilon won’t align the continuation line. It will indent by two

levels plus the value of c-contin-offset, as described above. Also see the c-align-extra-space

variable for an adjustment Epsilon makes for continuation lines that would be indented exactly one level.

As a special case, setting the c-align-contin-lines to zero makes Epsilon never try to align

continuation lines under syntactic features on prior lines. Epsilon will then indent all continuation lines by

one level more than the original line (one extra tab, normally), plus the value of the variable

c-contin-offset.

84 Chapter 4. Commands by Topic

If the continuation line contains only a left parenthesis character (ignoring comments), Epsilon can

align it with the start of the current statement if you set c-align-open-paren nonzero. If the variable is

zero, it’s aligned like other continuation lines.

You can also have Epsilon use less indentation when a line is very wide. The variable

c-align-contin-max-width sets a maximum line width for continuation lines, when nonzero. Set it to

-1 to use the current window’s width.

When a continuation line is wider than that many columns, the c-align-contin-max-offset

variable says what to do about it. If greater than zero, Epsilon indents by that amount past the base line

(similar to how c-contin-offset works). If zero, Epsilon right-aligns the wide line to

c-align-contin-max-width. If negative, it right-aligns but with that amount of extra space.

These “max” variables, unlike c-align-contin-lines, look at the total width of the line, not just the

width of its indentation.

C mode also provides special indenting logic for various macros used in Microsoft development

environments that function syntactically like braces, such as BEGIN_ADO_BINDING(). See the

use-c-macro-rules variable.

In Objective-C code, Epsilon right-aligns the selectors (argument labels) of multi-line messages,

according to the c-align-selectors variable.

In C mode, you can use the find-linked-file command on Ctrl-X Ctrl-L to read the header file included

with a #include or #import statement on the current line, or use the copy-include-file-name on Ctrl-C Alt-i

in a header file to create a suitable #include statement. See the include-directories variable, and the

mac-framework-dirs variable for includes that depend on Macintosh framework search paths.

DISABLING C MODE INDENTING

If you prefer manual indenting, various aspects of C mode’s automatic indentation can be disabled. If

you don’t want keys like # or : or curly braces to reindent the current line, just bind those keys in C mode to

normal-character. Set reindent-after-c-yank and c-reindent-previous-line to zero to disable

reindenting when yanking, and keep indenting commands from fixing up earlier lines. If you want the

〈Enter〉 key to go to the next line without indenting, while Ctrl-J still does both, you can define a keyboard

macro for the former key. Similarly, if you want smart indenting from the 〈Tab〉 key but a plainer indent

from Ctrl-I, you can define that by binding do-c-indent to the former and one of indent-previous,

indent-under, indent-like-tab, or normal-character to Ctrl-I.

(In a Unix terminal environment, Epsilon can’t distinguish keys like 〈Enter〉 and 〈Tab〉 from Ctrl-M and

Ctrl-I, respectively, so you’d need to pick different keys.)

Here is an example of the changes to accomplish this.

~c-tab "#": normal-character

~c-tab ")": normal-character

~c-tab ":": normal-character

~c-tab "]": normal-character

~c-tab "{": normal-character

~c-tab "}": normal-character

(set-variable "reindent-after-c-yank" 0)

(set-variable "c-reindent-previous-line" 0)

(define-macro "plain-enter" "C-QC-J")

~c-tab "<EnterKey>": plain-enter

~c-tab "<TabKey>": do-c-indent

~c-tab "C-I": indent-previous

4.4. Language Modes 85

Pick the customizations you want, modify them as appropriate, and copy them to your einit.ecm

customization file (see page 154). Epsilon will begin using the changes the next time it starts up (or use

load-buffer to load them immediately).

A useful technique when customizing language mode bindings like the above is to run the list-all

command, then copy the particular lines you want to change into your einit.ecm file and modify them. See

page 147.

Summary: c-mode

C Mode only: 〈Tab〉 do-c-indent

C Mode only: { c-open

C Mode only: } c-close

C Mode only: : c-colon

C Mode only: # c-hash-mark

C Mode only:),] show-matching-delimiter

Other C mode Features

In C mode, the Alt-〈Down〉 and Alt-〈Up〉 keys move to the next or previous #if/#else/#endif preprocessor

line. When starting from such a line, Epsilon finds the next/previous matching one, skipping over inner

nested preprocessor lines. Alt-] and Alt-[do the same. Press Alt-i to display a list of the preprocessor

conditionals that are in effect for the current line.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-c-delimiters to zero to disable this feature.

Press Alt-' to display a list of all functions and global variables defined in the current file. You can

move to a definition in the list and press 〈Enter〉 and Epsilon will go to that definition, or press Ctrl-G to

remain at the starting point. By default, this command skips over external declarations. With a prefix

numeric argument, it includes those too. Also see the list-which-definitions variable.

Epsilon normally auto-fills text in block comments as you type, breaking overly long lines. See the

c-auto-fill-mode variable. As with normal auto-fill mode (see page 73), use Ctrl-X F to set the right

margin for filling. Set the c-fill-column variable to change the default right margin in C mode buffers.

Set fill-c-comment-plain nonzero if you want block comments to use only spaces instead of a * on

successive lines.

You can manually refill the current paragraph in a block comment (or in a comment that follows a line

of code) by pressing Alt-q. If you provide a numeric prefix argument to Alt-q, say by typing Alt-2 Alt-q, it

will fill using the current column as the right margin.

Epsilon’s tagging facility isn’t specific to C mode, so it’s described elsewhere (see page 48). But it’s one

of Epsilon’s most useful software development features, so we mention it here too.

Whenever you use the find-file command to read in a file with one of the extensions .c, .h, .e, .y, .cpp,

.cxx, .java, .inl, .hpp, .idl, .acf, .cs, .i, .ii, .m, .mi, .mm., .mmi, or .hxx, Epsilon automatically enters C mode.

See page 80 for information on adding new extensions to this list, or preventing Epsilon from automatically

entering C mode. For file names without a suffix, Epsilon examines their contents and guesses whether the

file is C++, Perl, some other known type, or unrecognizable.

Summary: C Mode only: Alt-], Alt-〈Down〉 forward-ifdef

C Mode only: Alt-[, Alt-〈Up〉 backward-ifdef

86 Chapter 4. Commands by Topic

C Mode only: Alt-q fill-comment

Alt-' list-definitions

Alt-i list-preprocessor-conditionals

4.4.4 Configuration File Mode

Epsilon automatically enters Conf mode when you read a file with an extension of .conf, or (under Unix

only) when you read a non-binary file in the /etc directory. In Conf mode, Epsilon does some generic syntax

highlighting, recognizing # and ; as commenting characters, and highlighting name=value assignments. It

also breaks and fills comments, and provides delimiter highlighting using the

auto-show-conf-delimiters and conf-auto-show-delim-chars variables.

Summary: conf-mode

4.4.5 GAMS Mode

Epsilon automatically enters GAMS mode when you read a file with an extension of .gms or .set. In

addition, if you set the gams-files variable nonzero, it recognizes .inc, .map, and .dat extensions. Epsilon

also uses GAMS mode for files with an unrecognized extension that start with a GAMS $title directive.

The GAMS language is used for mathematical programming.

In GAMS mode, Epsilon does syntax highlighting, recognizing GAMS strings and comments. The

GAMS language permits a file to define its own additional comment character sequences, besides the

standard * and $ontext and $offtext, and Epsilon recognizes most common settings for these.

When the cursor is on a bracket or parenthesis, Epsilon will try to locate its matching bracket or

parenthesis, and highlight them both. If the current character has no match, Epsilon will not highlight it. Set

the variable auto-show-gams-delimiters to zero to disable this feature.

If you use the compile-buffer command to compile a GAMS file, Epsilon will automatically look for the

.lst file produced by GAMS software and translate its format so that the commands next-error and

previous-error work.

Summary: gams-mode

4.4.6 HTML, XML, and CSS Modes

Epsilon automatically enters HTML mode when you read a file with an extension of .htm, .html, .shtml,

.cfml, .cfm, .htx, .asp, .asa, .htt, .jsp, .prx, .cfc, .asx, .ascx, or .aspx. It uses XML mode when you read a file

with an extension of .xml, .cdf, .osd, .wml, .xsl, .xst, .xsd, .xmp, .rdf, .svg, .rss, .xsdconfig, .ui, .xaml,, .sgml,

or .sgm, or when a file identified as HTML has contents that suggest XML. Everything about HTML mode

below also applies to XML mode.

In HTML mode, Epsilon does appropriate syntax highlighting, smart indenting, and brace-matching.

The commenting commands and find-linked-file work too. If a file contains embedded blocks of CSS or

scripting using JavaScript, VBScript, Python, and PHP, Epsilon colors them appropriately, and features like

indenting switch to the rules for those languages within such blocks.

4.4. Language Modes 87

The html-auto-fill-mode variable controls whether Epsilon automatically breaks long lines as you

type. One bit disables this entirely, while others let you customize which lines Epsilon can split (along with

the html-auto-fill-combine variable). The html-auto-indent variable controls when Epsilon indents

these new lines (as well as lines you create by pressing 〈Enter〉).

For XML mode, Epsilon uses the xml-auto-fill-mode, xml-auto-fill-combine, and

xml-auto-indent variables instead.

The html-indenting-rules variable controls whether and how Epsilon does smart indenting. The

html-indent variable sets the width of each level of indentation in HTML text; xml-indent is used for

XML.

The html-no-indent-elements variable lists HTML elements whose contents shouldn’t receive

additional indentation, and the html-paragraph-is-container buffer-specific variable helps Epsilon

indent <p> tags correctly. Epsilon uses the html-empty-elements and coldfusion-empty-elements

variables to decide which elements never use end tags. The html-style-rules variable can be set to

require that all empty elements use self-terminating tags.

The html-reindent-previous-line variable, or for XML mode, the

xml-reindent-previous-line variable, controls whether those modes reindent the current line when

you press 〈Enter〉.

When an HTML or XML file contains embedded scripting, Epsilon must determine its language. If the

file itself doesn’t specify a language (using a syntax like <script language=jscript> or <?php ?>,

for instance), then Epsilon consults one of several variables to choose a default script language. Each of the

variables in figure 4.5 may be set to 1 for Javascript-style coloring, 2 for VBScript-style coloring, 3 for

PHP-style coloring, 4 for Python, 5 for CSS, 10 to ignore those block start delimiters, or 0 for plain coloring

of the block.

Variable Default Embedding Syntax

html-asp-coloring JavaScript <% %> (in HTML mode)

html-php-coloring PHP <? ?> (in HTML mode)

xml-asp-coloring Ignore <% %> (in XML mode)

xml-php-coloring Ignore <? ?> (in XML mode)

html-other-coloring JavaScript <script language=unknown>

Figure 4.5: Variables that control how Epsilon interprets embedded scripting

You can disable coloring of embedded scripting in cases where the script language is explicitly

specified by setting the html-prevent-coloring variable.

As you move about in an HTML or XML buffer, on the mode line Epsilon displays the innermost tags

in effect for the start of the current line. (The html-display-nesting-width variable influences how

many tags will be shown.) It shows an open < to indicate the line begins inside a tag, or ? to indicate a

syntax problem with the tag such as a missing >. Within embedded scripting, it displays the current

function’s name, or the type of scripting. Set the html-display-definition variable to customize this.

When the cursor is on a < or > character, Epsilon will try to locate its matching > or < and highlight

them both. If the current character has no match, Epsilon will not highlight it. Within a start tag or end tag,

Epsilon will use color to highlight it and its matching tag, using a different color to indicate a mismatched

tag. Set the variable auto-show-html-delimiters to customize this.

Press Alt-Shift-L to display a list of all mismatched start or end tags in the current buffer. The list

appears in a grep buffer. See the grep-mode command for navigation details.

88 Chapter 4. Commands by Topic

When the cursor is at a start tag, you can press Alt-= to have Epsilon move to its matching end tag, and

vice versa.

Press Alt-Shift-F to move to the end of the current tag. If the tag is a start tag, Epsilon moves to the end

of its matching end tag. Press Alt-Shift-B to move to the start of the current tag. On an end tag, it moves to

the beginning of its matching start tag. Outside a tag, both commands move by words.

Press Alt-Shift-D to delete the current tag, and if it has a matching end or start tag, that tag as well.

Alt-Shift-E inserts an end tag for the most recent start tag without one.

Mainly useful for XML, the Alt-Shift-R key sorts the attributes of the current tag alphabetically by

attribute name. With a highlighted region, it sorts the attributes of each tag in the region, then aligns

corresponding attributes so they start at the same column in each tag.

Press Alt-i to display the element nesting in effect at point. This is similar to the information Epsilon

displays in the mode line, but more complete. One difference: while the automatic mode line display shows

nesting in effect at the beginning of the current line, and doesn’t change as you move around within a line,

this command uses the current position within the line.

Epsilon can create an HTML version of syntax-highlighted text that preserves its colors. See the

copy-formatting-as-html command.

See page 90 for the similar PHP mode. Also see page 122 for information on viewing http:// URLs with

Epsilon.

Epsilon enters CSS mode when you read a file with a .css extension. It also uses a flavor of CSS mode

when cascading style sheet code is embedded in an HTML file. CSS mode provides syntax highlighting,

commenting, smart indenting using the css-indent variable, and delimiter highlighting using the

auto-show-css-delimiters variable.

Summary: html-mode

xml-mode

css-mode

HTML/XML only: Alt-= html-find-matching-tag

HTML/XML only: Alt-i html-list-element-nesting

HTML/XML only: Alt-Shift-F html-forward-tag

HTML/XML only: Alt-Shift-B html-backward-tag

HTML/XML only: Alt-Shift-D html-delete-tag

HTML/XML only: Alt-Shift-E html-close-last-tag

HTML/XML only: Alt-Shift-L html-list-mismatched-tags

HTML/XML only: Alt-Shift-R xml-sort-by-attribute-name

4.4.7 Ini File Mode

Epsilon automatically enters Ini mode when you read a file with an extension of .ini or .ecm, and with some

files using a .sys or .inf extension. In Ini mode, Epsilon does appropriate syntax highlighting and comment

filling (controlled by a bit in the misc-language-fill-mode variable).

Summary: ini-mode

4.4. Language Modes 89

4.4.8 Makefile Mode

Epsilon automatically enters Makefile mode when you read a file named makefile (or Makefile, etc.) or with

an extension of .mak or .mk. In Makefile mode, Epsilon does appropriate syntax highlighting, and can break

and fill comments. The compile-buffer command uses the compile-makefile-cmd variable in this mode.

Press Alt-i to display a list of the preprocessor conditionals that are in effect for the current line. (For this

command, Epsilon assumes that a makefile uses Gnu Make syntax under Unix, and Microsoft or MKS

makefile syntax elsewhere.)

Summary: makefile-mode

Makefile mode only: Alt-i list-make-preprocessor-conditionals

4.4.9 Perl Mode

Epsilon automatically enters Perl mode when you read a file with an extension of .perl, .pm, .al, .ph, or .pl

(or when you read a file with no extension that starts with a #! line mentioning Perl). The compile-buffer

command uses the compile-perl-cmd variable in this mode.

Epsilon includes a perldoc command that you can use to read Perl documentation. It runs the command

of the same name and displays the result in a buffer. You can double-click on a reference to another perldoc

page, or press 〈Enter〉 to follow a reference at point, or press m to be prompted for another perldoc topic

name.

Epsilon’s syntax highlighting uses the perl-comment color for comments and POD documentation, the

perl-function color for function names, and the perl-variable color for variable names.

Epsilon uses the perl-constant color for numbers, labels, the simple argument of an angle operator

such as <INPUT>, names of imported packages, buffer text after __END__ or __DATA__, here documents,

format specifications (apart from any variables and comments within), and the operators my and local.

A here document can indicate that its contents should be syntax highlighted in a different language, by

specifying a terminating string with an extension. At the moment the extensions .tex and .html are

recognized. So for example a here document that begins with <<"end.html" will be colored as HTML.

Epsilon uses the perl-string color for string literals of all types (including regular expression

arguments to s///, for instance). Interpolated variables and comments are colored appropriately whenever

the string’s context permits interpolation.

Epsilon uses the perl-keyword color for selected Perl operators (mostly those involved in flow

control, like foreach or goto, or with special syntax rules, like tr or format), and modifiers like /x after

regular expressions.

Perl mode’s automatic indentation features use a modified version of C mode. See page 81 for

information on customizing indentation. Perl uses a different set of customization variables whose names all

start with perl- instead of c- but work the same as their C mode cousins. These include

perl-align-contin-lines, perl-brace-offset, perl-closeback, perl-contin-offset,

perl-label-indent, perl-top-braces, perl-top-contin, perl-top-struct, and

perl-topindent. Set perl-tab-override if you want Epsilon to assume that tab characters in Perl files

aren’t always 8 characters wide. Set perl-indent if you want to use an indentation in Perl files that’s not

equal to one tab stop. Set reindent-perl-comments to keep indent-region from reindenting comments.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-perl-delimiters to zero to disable this feature.

90 Chapter 4. Commands by Topic

When you yank blocks of text into a buffer in Perl mode, Epsilon can automatically reindent it. See the

variable reindent-after-perl-yank to enable this behavior. Some Perl syntax is sensitive to

indentation, and Epsilon’s indenter may change the indentation, so you should examine yanked text to make

sure it hasn’t changed.

If you run Perl’s debugger inside Epsilon’s process buffer under Windows, the following environment

variable settings are recommended:

set PERLDB_OPTS=ReadLine=0 ornaments=’’

set EMACS=yes

Summary: perl-mode

perldoc

4.4.10 PHP Mode

Epsilon automatically enters PHP mode when you read a file with an extension of .php, .php3, .php4, or

.sphp. In PHP mode, Epsilon does appropriate syntax highlighting, tagging, and similar tasks. PHP mode is

almost identical to HTML mode. (See page 86.) In both, codes such as <? ?> mark PHP scripting, and

text outside of these markers is treated as HTML.

When the cursor is on a brace, bracket, or parenthesis in PHP code, Epsilon will try to locate its

matching brace, bracket, or parenthesis, and highlight them both. If the current character has no match,

Epsilon will not highlight it. Set the variable auto-show-php-delimiters to zero to disable this feature.

When you use the indent-for-comment command to insert a comment, the php-comment-style

variable controls which type of comment Epsilon inserts. The value 1 (the default) inserts #, the value 2

inserts //, and any other value inserts /*.

PHP mode’s automatic indentation features use a modified version of C mode. See page 81 for

information on customizing indentation. PHP uses a different set of customization variables whose names

all start with php- instead of c- but work the same as their C mode cousins. These include

php-align-contin-lines, php-brace-offset, php-closeback, php-contin-offset,

php-label-indent, php-top-braces, php-top-contin, php-top-struct, and php-topindent. Set

php-indent if you want to use an indentation in PHP files that’s not equal to one tab stop. The

php-top-level-indent variable sets the indentation of PHP code outside any function definition.

PHP’s syntax highlighting shares its color classes with Perl mode. The color class perl-comment, for

instance, defines the color of comments in both languages.

Summary: php-mode

4.4.11 PostScript Mode

Epsilon automatically enters PostScript mode when you read a file with an extension of .ps or .eps, or if it

contains a PostScript marker on its first line. In PostScript mode, Epsilon does appropriate syntax

highlighting, recognizing text strings, comments, and literals like /Name. It also breaks and fills comment

lines.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-postscript-delimiters to zero to disable this feature.

4.4. Language Modes 91

Summary: postscript-mode

4.4.12 Python Mode

Epsilon automatically enters Python mode when you read a file with an extension of .py or .jy. In Python

mode, Epsilon does appropriate syntax highlighting. Tagging, comment filling, and other commenting

commands are also available. Auto-indenting adds an extra level of indentation after a line ending with “:”,

a continuation line, or one with an open delimiter, and repeats the previous indentation otherwise.

Set the python-indent variable to alter the level of indentation Epsilon uses. Tab widths in Python

files are normally set to 8, as required by Python language syntax rules, but you can set the

python-tab-override variable to change this, or python-indent-with-tabs to change whether

Python mode uses tabs for indenting, not purely spaces.

Pressing 〈Backspace〉 to delete a space can delete multiple spaces, as specified by the

python-delete-hacking-tabs variable.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-python-delimiters to zero to disable this feature.

Set compile-python-cmd to modify the command line used by the compile-buffer command for

Python buffer. Set python-language-level to change the list of keywords for syntax highlighting.

Summary: python-mode

4.4.13 Shell Mode

Epsilon automatically enters shell mode when you read a file with an extension of .sh, .csh, .ksh, .bash, .tcsh,

or .zsh, or when you read a file with no extension that starts with a #! line and uses one of these shell names.

In Shell mode, Epsilon does appropriate syntax highlighting, recognizing comments, variables and strings.

In Shell mode, Epsilon uses a tab size setting specified by the shell-tab-override variable.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-shell-delimiters to zero to disable this feature.

Summary: shell-mode

4.4.14 Tcl Mode

Epsilon automatically enters Tcl mode when you read a file with an extension of .tcl or .ttml. In Tcl mode,

Epsilon does appropriate syntax highlighting and smart indenting. Indenting uses the indentation level

specified by the tcl-indent variable. The mode also breaks and fills comment lines.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-tcl-delimiters to zero to disable this feature.

Summary: tcl-mode

92 Chapter 4. Commands by Topic

4.4.15 TeX and LaTeX Modes

Epsilon automatically enters either TeX or LaTeX mode when you read a file with an extension of .tex, .ltx,

.sty, or (in most cases) .cls. (By default it enters LaTeX mode, but see the tex-force-latex command

below.) TeX and LaTeX modes are almost identical, and will be described together.

Keys in TeX/LaTeX mode include Alt-i for italic text, Alt-Shift-I for slanted text, Alt-Shift-T for

typewriter, Alt-Shift-B for boldface, Alt-Shift-C for small caps, Alt-Shift-F for a footnote, and Alt-s for a

centered line.

Alt-Shift-E prompts for the name of a LaTeX environment, then inserts \begin{env} and \end{env}
lines for the one you select. You can press ? to select an environment from a list. (The list of environments

comes from the file latex.env, which you can edit.) Alt-Shift-Z searches backwards for the last

\begin{env} directive without a matching \end{env} directive. Then it inserts the correct \end{env}
directive at point.

For most of these commands, you can highlight a block of text first and Epsilon will insert formatting

commands to make the text italic, slanted, etc. or you can use the command and then type the text to be

italic, slanted, etc.

By default, Epsilon inserts the appropriate LaTeX 2e/3 command (such as \textit for italic text). Set the

variable latex-2e-or-3 to 0 if you want Epsilon to use the LaTeX 2.09 equivalent. (In the case of italic

text, this would be \it.)

The keys ‘{’ and ‘$’ insert matched pairs of characters (either {} or $$). When you type \(or \[,

TeX/LaTeX mode will insert a matching \) or \], respectively. But if you type ‘{’ just before a

non-whitespace character, it inserts only a ‘{’. This makes it easier to surround existing text with braces.

The keys 〈Comma〉 and 〈Period〉 remove a preceding italic correction \/, the " key inserts the

appropriate kind of doublequote sequence like ‘‘ or '', and Alt-" inserts an actual " character.

Some TeX mode commands are slightly different in LaTeX than in pure TeX. Set tex-force-latex to

1 if all your documents are LaTeX, 0 if all your documents are TeX, or 2 if Epsilon should determine this on

a document-by-document basis. In that case, Epsilon will assume a document is LaTeX if it contains a

\begin{document} statement or if it’s in a file with an .ltx, .sty, or .cls extension. By default, Epsilon

assumes all documents use LaTeX.

When the cursor is on a curly brace or square bracket character like {, }, [, or], Epsilon will try to

locate its matching character and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-tex-delimiters to zero to disable this feature.

Set the variable tex-look-back to a bigger number if you want TeX mode to more accurately syntax

highlight very large paragraphs but be slower, or a smaller number if you want recoloring to be faster but

perhaps miscolor large paragraphs. You can customize syntax highlighting using the variables

latex-display-math-env-pat, latex-math-env-pat, and latex-non-text-argument.

The compile-buffer command uses the compile-tex-cmd variable in TeX mode and the

compile-latex-cmd variable in LaTeX mode. You may need to set these if the version of TeX or LaTeX

you use takes some different flags. The MiKTeX version of TeX and LaTeX for Windows, for instance,

works well with Epsilon if you use the flags “-c-style-errors -interaction=nonstopmode”.

If your TeX system uses a compatible DVI previewer, then you can use Epsilon’s jump-to-dvi command

to see the DVI output resulting from the current line of TeX or LaTeX. This requires some setup so that the

DVI file contains TeX source file line number data. See the jump-to-dvi command for details. With such

setup, you can also configure your DVI viewer to run Epsilon, showing the source file and line

corresponding to a certain spot in your DVI file. The details depend on your DVI viewer, but a command

line like epsilon -add +%l %f is typical.

4.4. Language Modes 93

You can use the list-definitions command to see a list of LaTeX labels in the current file and move to

one. The tagging commands (see page 48) also work on labels. See the latex-tag-keywords variable if

you want to make these work on cite tags too, or make other tagging customizations.

In LaTeX mode, the spell checker uses the latex-spell-options variable. Also see the

latex-non-text-argument variable to control how the spell checker treats the parameter of LaTeX

commands like \begin that can take keywords. In TeX mode, the spell checker uses the

tex-spell-options variable.

Summary: Alt-i tex-italic

Alt-Shift-I tex-slant

Alt-Shift-T tex-typewriter

Alt-Shift-B tex-boldface

Alt-Shift-C tex-small-caps

Alt-Shift-F tex-footnote

Alt-s tex-center-line

Alt-Shift-E tex-environment

Alt-Shift-Z tex-close-environment

{ tex-left-brace

$ tex-math-escape

〈Comma〉, 〈Period〉 tex-rm-correction

" tex-quote

Alt-" tex-force-quote

\(tex-inline-math

\[tex-display-math

tex-mode

latex-mode

Alt-Shift-J jump-to-dvi

4.4.16 VHDL Mode

Epsilon automatically enters VHDL mode when you read a file with an extension of .vhdl or .vhd. In VHDL

mode, Epsilon does appropriate syntax highlighting. It also breaks and fills comment lines.

When the cursor is on a parenthesis, Epsilon will try to locate its matching parenthesis, and highlight

them both. If the current character has no match, Epsilon will not highlight it. Set the variable

auto-show-vhdl-delimiters to zero to disable this feature.

Summary: vhdl-mode

4.4.17 Visual Basic Mode

Epsilon automatically enters Visual Basic mode when you read a file with an extension of .vb, .bas, .frm,

.vbs, .ctl, or .dsr (plus certain .cls files as well). In Visual Basic mode, Epsilon does appropriate syntax

highlighting, smart indenting, tagging, and comment filling.

When the cursor is on a brace, bracket, or parenthesis, Epsilon will try to locate its matching brace,

bracket, or parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set the variable auto-show-vbasic-delimiters to zero to disable this feature.

94 Chapter 4. Commands by Topic

Set the vbasic-indent variable to alter the level of indentation Epsilon uses. Set

vbasic-indent-subroutines to change Epsilon’s indenting style. Set the vbasic-indent-with-tabs

variable nonzero if you want Epsilon to indent using a mix of tab characters and spaces, instead of just

spaces.

When you yank blocks of text into a buffer in Visual Basic mode, Epsilon can automatically reindent it.

See the variable reindent-after-vbasic-yank to enable this behavior. The

vbasic-reindent-previous-line variable controls whether pressing 〈Enter〉 to insert and indent a new

line also reindents the existing one.

The vbasic-language-level variable lets you customize which Visual Basic keywords Epsilon

colors.

Summary: vbasic-mode

4.5 More Programming Features

Epsilon has a number of features that are useful when programming, but work similarly regardless of the

programming language. These are described in the following sections. Also see the language-specific

commands described in previous sections, the tagging commands on page 48, and the align-region command

described on page 76.

4.5.1 Navigating in Source Code

In most language modes, you can press Alt-' to display a list of all functions and global variables defined in

the current file. You can move to a definition in the list and press 〈Enter〉 and Epsilon will go to that

definition, or press Ctrl-G to remain at the starting point.

By default, this command skips over external declarations. With a prefix numeric argument, it includes

those too (if the current language has such a notion and the mode supports this). The

list-which-definitions variable lets you customize which types of definitions are shown (in those

modes that can show more than one type). The list-definitions-live-update variable lets you keep

Epsilon from repositioning in the source file window as you navigate in the definitions window or include

source file line numbers in the window title.

Also see Epsilon’s tagging features on page 48, and its interface to Microsoft’s source code browsing

database on page 50.

Summary: Alt-' list-definitions

4.5.2 Pulling Words

The pull-word command bound to the Ctrl-〈Up〉 key (as well as the F3 key) scans the buffer before point, and

copies the previous word to the location at point. If you type the key again, it pulls in the word before that,

and so forth. Whenever Epsilon pulls in a word, it replaces any previously pulled-in word. If you like the

word that has been pulled in, you do not need to do anything special to accept it–Epsilon resumes normal

editing when you type any key except for the few special keys reserved by this command. You can type

Ctrl-〈Down〉 (the pull-word-fwd command) to go in the other direction. Type Ctrl-G to erase the pulled-in

word and abort this command.

4.5. More Programming Features 95

If a portion of a word immediately precedes point, that subword becomes a filter for pulled-in words.

For example, suppose you start to type a word that begins WM, then you notice that the word

WM_QUERYENDSESSION appears a few lines above. Just type Ctrl-〈Up〉 and Epsilon fills in the rest of this

word.

The command provides various visual clues that tell you exactly from which point in the buffer Epsilon

is pulling in the word. If the source is close enough to be visible in the window, it is simply highlighted. If

the pulled-in word comes from farther away, Epsilon shows the context in the echo area, or in a context

window that it pops up (out of the way of your typing).

When there are no more matches before point in the current buffer, Epsilon loads a tag file (see page 48)

and looks for matches there. The pull-word-from-tags variable controls this behavior. In this way, you

can complete on any tagged identifier by typing part of it and pressing F3 or Ctrl-〈Up〉 until the identifier

you want appears.

You can also pull words from the buffer at most prompts. For instance, you can retrieve a long file name

that appears in the buffer into a find-file prompt, or look for other instances of an identifier in a program

without typing the whole identifier. Type the first few characters at a search or grep prompt and press F3 or

Ctrl-〈Up〉 to pull the rest.

Summary: Ctrl-〈Up〉, F3 pull-word

Ctrl-〈Down〉 pull-word-fwd

4.5.3 Accessing Help

This section describes how Epsilon can help you access compiler help files and similar external

documentation. See page 35 for directions on obtaining help on Epsilon itself.

To get help on the word at point, press Shift-F1 to run the context-help command. It provides help on

the keyword at point, selecting the appropriate type of help based on the current mode. See page 96 for

details. In some modes, it uses commands explained in this section.

Epsilon for Unix provides a man command for reading man pages. At its prompt, type anything you

would normally type to the man command, such as -k open to get a list of man pages related to the

keyword “open”. If you don’t use any flags or section names, Epsilon will provide completion on available

topics. For example, type “?” to see all man page topics available. Within man page output, you can

double-click on a reference to another man page, such as echo(1), or press 〈Enter〉 to follow it, or press m

to be prompted for another man page topic. The man command also works with the Cygwin environment

under Windows, if its man program is installed.

The search-man-pages command generates a list of man pages that contain some specified text, putting

its results in the grep buffer. (See page 46.) It first prompts for the search string. You can use Ctrl-T, Ctrl-C,

or Ctrl-W to toggle regular expression, case folding, or word searching behavior, as with grep and other

searching commands.

Then it asks if you want to restrict searching to particular man page sections, such as 1 for commands or

3 for subroutines. Use * to search all sections. Finally, it asks if you want to restrict the search to man page

entries matching a certain file pattern, such as *file* to search only pages whose names contain “file”.

For speed reasons, it searches each man page without processing it through the man command,

searching the man page in source format. By default, it shows only the first match in each page; set the

search-man-pages-shows-all variable to see all matches. The result appears in the grep buffer; when

you view a match from there, Epsilon will then use the man command to display its processed form.

Epsilon also includes a perldoc command for reading Perl documentation. Just like man, it works by

running an external program, in this case the perldoc program that comes with Perl. Run perldoc on the

96 Chapter 4. Commands by Topic

topic perldoc to see the flags you can use with it, such as -f to locate the documentation for a specific Perl

function.

You can set up Epsilon for Windows to search for help on a programming language construct (like an

API function or a C++ keyword) in a series of .hlp and .chm (HtmlHelp) files, two older help file formats.

Run the Select Help Files... command on the help menu to select the help files you want to use. This

command adds help files to the Help menu, to the context menu that the secondary mouse button displays,

and to the list of files searched by the Search All Help Files... command on the help menu. The last

command is only available under Windows. Edit the file gui.mnu to further modify the contents of Epsilon’s

menus. Edit the file epswhlp.cnt to modify the list of files searched by Search All Help Files.

If you highlight a word in the buffer before running a help command, Epsilon will search for help on

that keyword. Otherwise Epsilon will display either a list of available keywords or the table of contents for

the help file you selected.

Summary: man

perldoc

search-man-pages

select-help-files

search-all-help-files

4.5.4 Context-Sensitive Help

Pressing Shift-F1 provides help on the keyword at point, using a help rule specific to the current mode.

Some modes have rules that consult compiler documentation, man or Info pages, or search on the web at an

API reference site. You can change the rules by setting variables.

Each mode has an associated variable whose name is formed by adding the mode name to the end of

context-help-rule-. (Characters in the mode name that aren’t valid in EEL identifier names are

removed first; the rest are changed to lowercase.) So HTML mode, for instance, uses a rule variable named

context-help-rule-html.

A mode can define separate rules for Windows and Unix. If a mode named m defines a variable

context-help-rule-m-windows or context-help-rule-m-unix, Epsilon will use it instead of the

usual variable on that platform.

If there’s no variable for the current mode, Epsilon uses the rule in the context-help-default-rule

variable.

Instead of, or in addition to, providing a rule variable, a mode can define an EEL function to force a

different rule variable. Epsilon calls a function named context_help_override_modename for a mode

named modename, if one is defined. That function must fill in its single char * parameter with a

replacement mode name; then Epsilon will look up the corresponding variable, as above. C mode uses this

to provide a different help rule for EEL buffers than for Java or C++ buffers, even though they all use C

mode. HTML mode uses this to provide a different help rule within embedded JavaScript (or other scripting

languages) than it does in plain HTML text.

Each rule variable consists of a rule type, which is a single punctuation character, followed by a

parameter such as a file name or URL. Here are the rule types:

>infofiles looks up the keyword at point in the index of the Info file specified by its parameter. You can list

multiple comma-separated Info file names, and Epsilon will use the first one that contains the

keyword in its index.

4.5. More Programming Features 97

+func runs the specified EEL function func. See below for useful rule functions.

!cmdline runs an external program, using the specified command line. It appends the keyword at point to

the end of the command line. But if the command line contains a * character, Epsilon instead

substitutes the keyword at that position. If the program file name contains spaces, quote it with ". A &

character at the end of the command line makes the command run asynchronously; use it to run a

Windows GUI program. Without &, Epsilon will run the program synchronously, collect its output in a

buffer, and display any output it produces.

=url runs a web browser on the specified URL. A * character in the URL substitutes the keyword at point at

that position; otherwise it’s added to the end of the URL.

$helpfile looks up the keyword at point in a .hlp, .chm, or .col file. These are Windows help file formats,

and this rule type is only available under Windows.

Here are some functions designed to be used in a context rule. To use one in a rule, put a + before its

name in the rule variable.

The context_help_man() subroutine runs Epsilon’s man command on the word at point. (The _ and

- characters are interchangeable in these rules, so you can set a rule to +context-help-man, for instance,

to use this subroutine.)

The context_help_perldoc() subroutine runs Epsilon’s perldoc command on the word at point.

Under Windows, you can set a mode to use help provided by Microsoft’s development environment by

setting its rule to call the context_help_windows_compilers() subroutine. The subroutine tries to

locate the appropriate compiler help system automatically. With certain help systems that have multiple help

collections, it uses the mshelp2-collection variable.

Summary: Shift-F1, F1 t context-help

4.5.5 Commenting Commands

The Alt-; command creates a comment on the current line, using the commenting style of the current

language mode. The comment begins at the column specified by the comment-column variable (by default

40). (However, if the comment is the first thing on the line and indent-comment-as-code is nonzero, it

indents to the column specified by the buffer’s language-specific indentation function.) If the line already

has a comment, this command moves the comment to the comment column. (Also see the align-region

command described on page 76 to align all comments in a region to the same column.)

With a numeric argument, Alt-; searches for the next comment in the buffer and goes to its start. With a

negative argument, Alt-; searches backwards for a comment. Press Alt-; again to reindent the comment.

By default (and in modes that don’t specify a commenting style), comments begin with the ; character

and continue to the end of the line. C mode recognizes both old-style /* */ comments, and the newer

C++-style comments //, and by default creates the latter. Set the variable new-c-comments to 0 if you want

Alt-; to create old-style comments.

The Ctrl-X ; command sets future comments to begin at the current column. With a positive argument,

it sets the comment column based on the indentation of the previous comment in the buffer. If the current

line has a comment, this command reindents it.

With a negative argument (as in Alt-〈Minus〉 Ctrl-X ;), the Ctrl-X ; command doesn’t change the

comment column at all. Instead, it kills any comment on the current line. The command saves the comment

in a kill buffer.

98 Chapter 4. Commands by Topic

You can comment out a region of text by pressing Ctrl-C Ctrl-R. Epsilon adds a comment delimiter to

the start of each line in the region between point and mark. With a numeric argument, as in Ctrl-U Ctrl-C

Ctrl-R, Epsilon removes such a comment delimiter from each line.

The comment commands look for comments using regular expression patterns (see page 63) contained

in the buffer-specific variables comment-pattern (which should match the whole comment) and

comment-start (which should match the sequence that begins a comment, like ‘/*’). When creating a

comment, it inserts the contents of the buffer-specific variables comment-begin and comment-end around

the new comment. When Epsilon puts a buffer in C mode, it decides how to set these variables based on the

new-c-comments variable.

In certain modes, including C and Perl modes, Epsilon normally auto-fills text in block comments as

you type, breaking overly long lines. See the c-auto-fill-mode variable for C and Perl modes,

tex-auto-fill-mode for TeX, html-auto-fill-mode for HTML, xml-auto-fill-mode for XML,

and misc-language-fill-mode in Makefile, VHDL, Visual Basic, Python, PostScript, Conf, and Ini

modes. As with normal auto-fill mode (see page 73), use Ctrl-X F to set the right margin for filling. Set the

c-fill-column variable to change the default right margin in C and Perl mode buffers; margin-right in

other modes.

You can manually refill the current paragraph in a block comment by pressing Alt-q. If you provide a

numeric prefix argument to Alt-q, say by typing Alt-2 Alt-q, it will fill using the current column as the right

margin. By default, Epsilon doesn’t apply auto-filling to a comment line that also contains non-comment

text (such as a C statement with a comment after it on the same line). Use Alt-q to break such lines.

The auto-fill-comment-rules variable lets you customize certain aspects of Epsilon’s behavior

when breaking and filling comment lines.

Summary: Alt-; indent-for-comment

Ctrl-X ; set-comment-column

Alt-〈Minus〉 Ctrl-X ; kill-comment

Ctrl-C Ctrl-R comment-region

4.6 Fixing Mistakes

4.6.1 Undoing

The undo command on F9 undoes the last command, restoring the previous contents of the buffer, or moving

point to its position, as if you hadn’t done the last command. If you press F9 again, Epsilon will undo the

command before that, and so forth.

For convenience, when typing text Epsilon treats each word you type as a single command, rather than

treating each character as its own command. For example, if you typed the previous paragraph and pressed

undo, Epsilon would remove the text “forth.”. If you pressed undo again, Epsilon would remove “so ”.

Epsilon’s undo mechanism considers each subcommand of a complicated command such as

query-replace a separate command. For example, suppose you do a query-replace, and one-by-one replace

ten occurrences of a string. The undo command would then reverse the replacements one at a time.

Epsilon remembers changes to each buffer separately. Say you changed buffer 1, then changed buffer 2,

then returned to buffer 1. Undoing now would undo the last change you made to buffer 1, leaving buffer 2

alone. If you switched to buffer 2 and invoked undo, Epsilon would then undo changes to that buffer.

The redo command on F10 puts your changes back in (it undoes the last undo). If you press undo five

times, then press redo four times, the buffer would appear the same as if you pressed undo only once.

4.6. Fixing Mistakes 99

You can move back and forth undoing and redoing in this way. However, if you invoke a command

(other than undo or redo) that either changes the buffer or moves point, you can not redo any commands

undone immediately before that command. For example, if you type “one two three”, undo the “three”, and

type “four” instead, Epsilon will behave as if you had typed “one two four” all along, and will let you undo

only that.

The commands undo-changes and redo-changes work like undo and redo, except they will

automatically undo or redo all changes to the buffer that involve only movements of point, and stop just

before a change of actual buffer contents.

For example, when you invoke undo-changes, it performs an undo, then continues to undo changes that

involve only movements of point. The undo-changes command will either undo a single buffer modification

(as opposed to movement of point), as a plain undo command would, or a whole series of movement

commands at once. It doesn’t undo any movement commands after undoing a buffer modification, only after

undoing other movement commands. The redo-changes command works similarly.

The Ctrl-F9 key runs undo-changes, and the Ctrl-F10 key runs redo-changes.

The commands undo-by-commands and redo-by-commands are another alternative; they try to group

undo operations on a command-by-command basis.

Use the undo-movements command on Ctrl-F11 to move to the location of previous editing operations.

It uses the same undo information, but without making any changes to the buffer. The redo-movements

command on Ctrl-F12 goes in the opposite direction, toward more recent editing locations.

The buffer-specific variable undo-size determines, in part, how many commands Epsilon can

remember. For example, if undo-size has the value 500,000 (the default), Epsilon will save at most

500,000 characters of deleted or changed text for each buffer. Each buffer may have its own value for this

variable. Epsilon also places an internal limit on the number of commands, related to command complexity.

Epsilon can typically remember about 10,000 simple commands (ignoring any limit imposed by

undo-size) but more complicated commands make the number smaller.

Summary: F9, Ctrl-X U undo

F10, Ctrl-X R redo

Ctrl-F9, Ctrl-X Ctrl-U undo-changes

Ctrl-F10, Ctrl-X Ctrl-R redo-changes

Ctrl-F11 undo-movements

Ctrl-F12 redo-movements

undo-by-commands

redo-by-commands

4.6.2 Interrupting a Command

You can interrupt a command by pressing Ctrl-G, the default abort key. For example, you can use Ctrl-G to

stop an incremental search on a very long file if you don’t feel like waiting. You can set the abort key with

the set-abort-key command. If you interrupt Epsilon while reading a file from disk or writing a file to disk, it

will ask you whether you want to abort or continue. Typing the abort key also cancels any currently

executing keyboard macros. Aborting normally only works when a command checks for it.

Summary: Ctrl-G abort

set-abort-key

100 Chapter 4. Commands by Topic

4.7 The Screen

4.7.1 Display Commands

The Ctrl-L command causes Epsilon to center point in the window. If you give a numeric argument to

Ctrl-L, Epsilon makes the current line appear on that line of the window. For instance, give a numeric

argument of zero to make the current line appear on the topmost line of the window. (The line-to-top

command is another way to do this.) If you give a numeric argument greater than the number of lines the

window occupies, Epsilon will position the current line at the bottom of the window. (The line-to-bottom

command is another way to do this.) When repeated, the Ctrl-L command also completely refreshes the

screen. If some other program has written text on the screen, or something has happened to garble the

screen, use this command to refresh it.

The Alt-〈Comma〉 and Alt-〈Period〉 commands move point to the first and last positions displayed on

the window, respectively.

The Ctrl-Z and Alt-Z commands scroll the text in the window up or down, respectively, by one line.

These scrolling commands will move point as necessary so that point remains visible in the window.

The Ctrl-V and Alt-V commands scroll the text of the window up or down, respectively, by several lines

fewer than the size of the window. These commands move point to the center line of the window.

You can control the exact amount of overlap between the original window of text and the new window

with the window-overlap variable. A positive value for this variable means to use that number of screen

lines of overlap between one window of text and the next (or previous). A negative value for

window-overlap represents a percentage of overlap, instead of the number of screen lines. For example,

the default value for window-overlap of 2 means to use 2 lines of overlap. A value of −25 for

window-overlap means to overlap by 25%.

You can change how Epsilon pages through a file by setting the variable paging-centers-window.

Epsilon normally positions the cursor on the center line of the window as you move from page to page. Set

this variable to zero if you want Epsilon to try to keep the cursor on the same screen line as it pages.

The goto-line command on Ctrl-X G prompts for a line number and then goes to the beginning of that

line in the current buffer. If you prefix a numeric argument, Epsilon will use that as the line number. Use the

format 10:20 to include a column specification; that one goes to line 10, column number 20. Or use a

percent character to indicate a buffer percentage: 25% goes to a line 25% of the way through the buffer. Or

use the format p123 to go to a particular buffer offset, counting by characters.

The Ctrl-X L command shows the number of lines in the buffer and the number of the line containing

point. It also shows the number of bytes the file would occupy if written to disk. This can differ from the

size of the buffer, because the latter counts each line separator as a single character. Such characters require

two bytes when written to disk in the format used in Windows, DOS, and OS/2, however. See page 115 for

information on how Epsilon translates line separator characters. See the mode-format variable if you want

to change how Epsilon displays the current line or column number in the mode line at all times, or

draw-line-numbers if you want Epsilon to display each line’s number in a column to its left.

The Ctrl-X = command displays in the echo area information pertaining to point. It shows the size of

the buffer, the character position in the buffer corresponding to point, that character’s column, and the value

of that character in decimal, hex, and “normal” character representation, as well as the character’s name for

16-bit Unicode characters.

The count-words command displays the number of words in the current buffer. Highlight a region first

and it will count only words in the region. With a numeric argument, it prompts for a search pattern and then

counts the number of instances of that pattern.

Summary: Ctrl-L center-window

4.7. The Screen 101

Ctrl-V, 〈PgDn〉 next-page

Alt-V, 〈PgUp〉 previous-page

Ctrl-Z scroll-up

Alt-Z scroll-down

〈Home〉, Alt-〈Comma〉 beginning-of-window

〈End〉, Alt-〈Period〉 end-of-window

line-to-top

line-to-bottom

Ctrl-X = show-point

Ctrl-X L count-lines

Ctrl-X G goto-line

count-words

4.7.2 Horizontal Scrolling

The Alt-{ and Alt-} commands scroll the text in the window to the left or right, respectively, by one column.

The Alt-{ and Alt-} commands also control how Epsilon displays long lines to you. Epsilon can, for

display purposes, wrap long lines to the next line. Epsilon indicates a wrapped line by displaying a special

continuation character where it broke the line for display purposes. But by default Epsilon displays long

lines by simply scrolling them off the display. To switch from scrolling long lines to wrapping long lines,

use the Alt-} command to scroll to the right, past the end. Epsilon will then wrap long lines.

Similarly, to switch from wrapping long lines to scrolling long lines, press the Alt-{ key. Subsequent

use of the Alt-{ command will then scroll the text in the window to the left, as explained above. Whenever

Epsilon changes from one display scheme to the other, it indicates the change in the echo area. If, due to

scrolling, some of a buffer’s contents would appear past the left edge of the screen, the mode line displays

“<number” to indicate the number of columns hidden to the left.

You can also use the change-line-wrapping command to set whether Epsilon wraps long lines in the

current window, or horizontally scrolls across them.

If you want Epsilon to always wrap long lines, set the default value of the window-specific variable

display-column to -1 using the set-variable command on F8, then save the state using the write-state

command on Ctrl-F3.

In a dialog, another way to handle lines that are too long to fit in a window is to resize the dialog by

moving its borders. Most dialogs in Epsilon for Windows are resizable, and Epsilon will remember the new

size from session to session.

The Alt-PageUp and Alt-PageDown keys scroll horizontally, like Ctrl-V and Alt-V. More precisely, they

move the point left or right on the current line by about half the width of the current window, then reposition

the window so the point is visible. The command jump-to-column on Alt-g prompts for a column number,

then goes to the specified column.

Summary: Alt-{ scroll-left

Alt-} scroll-right

change-line-wrapping

Alt-〈PageUp〉 page-left

Alt-〈PageDown〉 page-right

Alt-g jump-to-column

102 Chapter 4. Commands by Topic

4.7.3 Windows

Epsilon has quite a few commands to deal with creating, changing, and moving windows. Changing the size

or number of the windows never affects the buffers they display.

Normally, each buffer has a single point, but this can prove inconvenient when a buffer appears in more

than one window. For this reason, Epsilon associates a point with each window in that case. Consequently,

you can look at different parts of the same buffer by having the same buffer displayed in different windows

and moving around independently in each of them.

Creating Windows

The Ctrl-X 2 command splits the current window into two windows, one on top of the other, each about half

as large. Each window displays the same buffer that the original did. This command will only split the

window if each new window would occupy at least 1 screen line, not counting the mode line. To edit another

file in a new window, first use Ctrl-X 2, then use one of the file commands described on page 111.

The Ctrl-X 5 command works similarly, but splits the current window so that the two child windows

appear side by side, instead of stacked. This command will only split the window if each new window

would occupy at least 1 column. Since this typically results in narrow windows, the Ctrl-X 5 command also

sets up the windows to scroll long lines, as described on page 101. See the wrap-split-vertically

variable to control this.

When you display the same buffer in several narrow windows side by side, follow mode can be useful.

It operates when the same buffer is displayed in adjacent windows, by linking the windows together so

scrolling and other movement in one is immediately reflected in the others. The follow-mode command

toggles this mode for the current buffer. The follow-mode-overlap variable controls how much the

window text overlaps.

Summary: Ctrl-X 2 split-window

Ctrl-X 5 split-window-vertically

follow-mode

Removing Windows

To get rid of the current window, use the Ctrl-X 0 command. If the previous window can move into the

deleted window’s space, it does. Otherwise, the next window expands into the deleted window’s space.

The Ctrl-X 1 command makes the current window occupy the entire screen, deleting all the other

windows. The Ctrl-X Z command operates like Ctrl-X 1, except that it also remembers the current window

configuration. Later, if you type Ctrl-X Z again, the command restores the saved window configuration.

Summary: Ctrl-X 0, Ctrl-X Ctrl-D kill-window

Ctrl-X 1 one-window

Ctrl-X Z zoom-window

4.7. The Screen 103

Selecting Windows

The Ctrl-X N key moves to the next window, wrapping around to the first window if invoked from the last

window. The Ctrl-X P key does the reverse: it moves to the previous window, wrapping around to the last

window if invoked from the first window.

You can think of the window order as the position of a window in a list of windows. Initially only one

window appears in the list. When you split a window, the two child windows replace it in the list. The top or

left window comes before the bottom or right window. When you delete a window, that window leaves the

list.

You can also change windows with the move-to-window command. It takes a cue from the last key in

the sequence used to invoke it, and moves to a window in the direction indicated by the key. If you invoke

the command with Ctrl-X 〈Right〉, for example, the window to the right of the cursor becomes the new

current window. The Ctrl-X 〈Left〉 key moves left, Ctrl-X 〈Up〉 moves up, and Ctrl-X 〈Down〉 moves down.

If key doesn’t correspond to a direction, the command asks for a direction key.

Summary: Alt-〈End〉, Ctrl-X N next-window

Alt-〈Home〉, Ctrl-X P previous-window

Ctrl-X 〈Up〉, Ctrl-X 〈Down〉 move-to-window

Ctrl-X 〈Left〉, Ctrl-X 〈Right〉 move-to-window

Resizing Windows

The easiest way to resize Epsilon windows is to use the mouse. But Epsilon also provides various ways to

do this via the keyboard.

The Ctrl-X + key runs the command enlarge-window-interactively. After you invoke the command, point

to a window border using the arrow keys. The indicated window border moves so as to make the current

window larger. You can keep pressing arrow keys to enlarge the window. To switch from enlarging to

shrinking, press the minus key. The command Ctrl-X – works like Ctrl-X +, but starts out shrinking instead

of enlarging. Whenever the window looks the right size, press 〈Enter〉 to leave the command.

You can use several other Epsilon commands to resize windows. The Ctrl-〈PgUp〉 key enlarges the

current window vertically, and the Ctrl-〈PgDn〉 key shrinks the current window vertically. They do this by

moving the mode line of the window above them up or down, if possible. Otherwise, the current window’s

mode line moves up or down, as appropriate.

You can also enlarge and shrink windows horizontally. The enlarge-window-horizontally command on

Ctrl-X @ enlarges the current window by one column horizontally and the shrink-window-horizontally

command shrinks it. They do this by moving the left boundary of the current window left or right, if

possible. Otherwise, the current window’s right boundary moves, as appropriate. You can use a numeric

prefix with these commands to adjust by more than one line or column, or in the opposite direction.

Summary: Ctrl-X + enlarge-window-interactively

Ctrl-X – shrink-window-interactively

Ctrl-〈PgUp〉, Ctrl-X ^ enlarge-window

Ctrl-〈PgDn〉 shrink-window

Ctrl-X @ enlarge-window-horizontally

shrink-window-horizontally

104 Chapter 4. Commands by Topic

4.7.4 Customizing the Screen

Epsilon displays tabs in a file by moving over to the next tab stop column. Epsilon normally spaces tabs

every four or eight columns, depending on the mode. You can change the tab stop spacing by setting the

variable tab-size. Another method is to use the set-tab-size command, but this can only set the tab size in

the current buffer. To change the default value for new buffers, set the variable using the set-variable

command.

Many indenting commands take the tab size into account when they indent using spaces and tabs. See

page 75 for information on the indenting commands.

Epsilon can display special characters in four ways. Epsilon normally displays control characters with a

^ prefix indicating a control character (except for the few control characters like ^I that have a special

meaning—^I, for example, means 〈Tab〉). It displays other characters, including national characters, with

their graphic symbol.

In mode 0, Epsilon displays Meta characters (characters with the 8th bit on) by prefixing to them a

“M-”, e.g., Meta C appears as “M-C”. Epsilon display Control-meta characters by prefixing to them “M-^”,

e.g., “M-^C”. Epsilon displays most control characters by prefixing to them a caret, e.g., Control C appears

as “^C”.

In mode 1, Epsilon displays graphic symbols for all control characters and meta characters, instead of

using a prefix as in ^A (except for the few that have a special meaning, like 〈Tab〉 or 〈Newline〉).

In mode 2, Epsilon displays control and meta characters by their hexadecimal ASCII values, with an

“x” before them to indicate hex.

In mode 3, which is the default, Epsilon displays control characters as “^C”, and uses the graphic

symbol for other characters, as described above.

The set-show-graphic command on Ctrl-F6 cycles among these four modes of representation. Providing

a numeric argument of 0, 1, 2, or 3 selects the corresponding mode.

The command change-show-spaces on Shift-F6 makes spaces, tabs, and newline characters in the

buffer visible, by using special graphic characters for each. Pressing it again makes these characters

invisible. The command sets the buffer-specific variable show-spaces.

Set the buffer-specific variable draw-line-numbers to 1 if you want Epsilon to display line numbers.

Each line’s number will appear to its left, in a field whose width is specified by the line-number-width

variable. See the description of draw-line-numbers for details on its line number formatting options. (For

line numbers in printed output, see the print-line-numbers variable.)

Epsilon will usually display a message in the echo area for at least one second before replacing it with a

new message. You can set this time with the see-delay variable. It contains the number of hundredths of a

second that a message must remain visible, before a subsequent message can overwrite it. Whenever you

press a key with messages pending, Epsilon skips right to the last message and puts that up. (Epsilon doesn’t

stop working just because it can’t put up a message; it just remembers to put the message up later.)

Epsilon for Windows can draw a rectangle around the current line to increase its visibility and make it

easier to find the cursor. Set the draw-focus-rectangle variable nonzero to enable this. Set the

draw-column-markers variable if you want Epsilon for Windows to draw a vertical line at a particular

column or columns, to make it easier to edit text that must be restricted to certain columns. (Also see

auto-fill mode described on page 73.)

The set-display-characters command lets you alter the various characters that Epsilon uses to construct

its display. These include the line-drawing characters that form window borders, the characters Epsilon uses

in some of the display modes set by set-show-graphic, the characters it uses to construct the scroll bar, and

the characters Epsilon replaces for the graphical mouse cursor it normally uses in DOS. The command

displays a matrix of possible characters, and guides you through the selection process.

4.7. The Screen 105

Cursor Shapes

You can set variables to modify the text cursor shape Epsilon displays in different situations. Epsilon gets

the cursor shape from one of four variables, depending upon whether or not Epsilon is in overwrite mode,

and whether or not the cursor is positioned in virtual space. (See the description of the virtual-space

variable on page 40.) These variables only apply in text mode, not in Epsilon for Windows or under X11 in

Unix, and in some environments have no effect.

Variable In overwrite mode? In virtual space?

normal-cursor No No

overwrite-cursor Yes No

virtual-insert-cursor No Yes

virtual-overwrite-cursor Yes Yes

Each of these variables contains a code that specifies the top and bottom edges of the cursor, such as

3006, which specifies a cursor that begins on scan line 3 and extends to scan line 6 on a character box. The

topmost scan line is scan line 0.

Scan lines above 50 in a cursor shape code are interpreted differently. A scan line number of 99

indicates the highest-numbered valid scan line (just below the character), 98 indicates the line above that,

and so forth. For example, a cursor shape like 1098 produces a cursor that extends from scan line 1 to the

next-to-last scan line, one scan line smaller at top and bottom than a full block cursor.

The Windows and X11 versions of Epsilon use a similar set of variables to control the shape of the

cursor (or caret, in Windows terminology).

Variable In overwrite mode? In virtual space?

normal-gui-cursor No No

overwrite-gui-cursor Yes No

virtual-insert-gui-cursor No Yes

virtual-overwrite-gui-cursor Yes Yes

Each variable contains a code that specifies the height and width of the caret, as well as a vertical offset,

each expressed as a percentage of the character dimensions. Values close to 0 or 100 are absolute pixel

counts, so a width of 98 is two pixels smaller than a character. A width of exactly zero means use the default

width.

All measurements are from the top left corner of the character. A nonzero vertical offset moves the caret

down from its usual starting point at the top left corner.

In EEL programs, you can use the GUI_CURSOR_SHAPE() macro to combine the three values into the

appropriate code; it simply multiplies the height by 1000 and the offset by 1,000,000, and adds both to the

width. So the default Windows caret shape of GUI_CURSOR_SHAPE(100, 2, 0), which specifies a height

of 100% of the character size and a width of 2 pixels, is encoded as the value 100,002. The value 100100

provides a block cursor, while 99,002,100 makes a good underline cursor. (It specifies a width of 100%, a

height of 2 pixels, and an offset of 99 putting the caret down near the bottom of the character cell.) The

CURSOR_SHAPE() macro serves a similar purpose for text mode versions of Epsilon.

The X11 version of Epsilon can only change the cursor shape if you’ve provided an

Epsilon.cursorstyle:1 resource (see page 7).

Summary: Ctrl-F6 set-show-graphic

Shift-F6 change-show-spaces

106 Chapter 4. Commands by Topic

set-tab-size

set-display-characters

4.7.5 Fonts

The set-font command changes the font Epsilon uses, by displaying a font dialog box and letting you pick a

new font. Modifying the font-fixed variable is another way to set the font.

Epsilon also applies the styles bold, italic and underlined to the selected font for certain types of text,

such as comments. Epsilon treats these styles as if they were part of the foreground color of a particular type

of text. The set-color command lets you set which types of text receive which styles. Also see the variables

font-styles and font-styles-tolerance.

Epsilon for Unix supports setting the font under X11, using set-font or font-fixed, but not the

remaining commands and settings in this section.

You can specify a specific font for use in printing with the set-printer-font command. Similarly, the

set-dialog-font command lets you specify what font to use for Epsilon’s dialog windows (like the one bufed

displays). There are also corresponding variables font-printer and font-dialog.

The command change-font-size supplements set-font by providing additional font choices. Some

Windows fonts include a variety of character cell widths for a given character cell height. (For example,

many of the font selections available in windowed DOS sessions use multiple widths.) Commands like

set-font utilize the standard Windows font dialog, which doesn’t provide any way to select these alternate

widths. The change-font-size command lets you choose these fonts.

The change-font-size command doesn’t change the font name, or toggle bold or italic. You’ll need to

use the set-font command to do that.

Instead, change-font-size lets you adjust the height and width of the current font using the arrow keys.

You can abort to restore the old font settings, or press 〈Enter〉 or 〈Space〉 to keep them. This is a handy way

to shrink or expand the font size. A width or height of 0 means use a suitable default.

Summary: set-font

set-printer-font

set-dialog-font

change-font-size

4.7.6 Setting Colors

This section describes how to set colors in Epsilon. Epsilon comes with many built-in color schemes. Each

color scheme tells Epsilon what color to use for each color class. Color classes correspond to the different

parts of the screen. There are separate color classes for normal text, highlighted text, text in the echo area,

syntax-highlighted comments, and so forth. (See below for a partial list.)

Use the set-color command to select a color scheme from the list of available color schemes. You can

also customize a color scheme by selecting one, selecting a color class within it, and then using the buttons

to select a different foreground or background color, or toggle bold, italic, or underlined styles. The

available styles depend on the selected font, as controlled by the font-styles-tolerance variable.

You can press + and - to expand or collapse categories in the tree of color classes. In dialog-based

versions of set-color, the 〈Right〉 and 〈Left〉 keys also expand and collapse categories. In most versions, you

can also press Ctrl-S or Ctrl-R to search for a color class by name.

4.7. The Screen 107

Epsilon remembers the name of one color scheme for use on text mode displays with only 8 or 16

possible color choices, and a separate scheme for environments like Windows or X11 where it can display

all possible colors. (It also maintains separate schemes for monochrome displays, and for when Epsilon runs

as a Unix terminal program within an xterm and the USE_DEFAULT_COLORS environment variable is

defined; the latter enables a special color scheme that’s designed to inherit the background and foreground

colors of the underlying xterm.)

When you’ve turned off window borders with the toggle-borders command, Epsilon uses color schemes

with particular, fixed names. See page 108.

Another method of customizing a color scheme is to create an EEL file like stdcolor.e. The file

stdcolor.e defines all Epsilon’s built-in color schemes. You can use one of these as a model for your own

color scheme. See page 407 for the syntax of color scheme definitions. You can use the export-colors

command to build an EEL file named mycolors.e that contains all Epsilon’s current color definitions for the

current color scheme. (With a numeric argument, it lists all schemes.)

The Win32 console and Unix terminal versions of Epsilon are limited to the sixteen standard colors for

foreground and background, for a total of 256 possible color combinations, while the Windows GUI and

X11 versions have no such limitation. Internally, all versions of Epsilon store 32 bits of color information

for the foreground and background of each color class. The console and terminal versions convert back to 4

bits of foreground and background when displaying text. In these environments, there are no buttons for

selecting a foreground or background color. Instead, the arrow keys select colors.

The set-color command displays a short description of each color class as you select it. Here we

describe a few of the color classes in more detail:

text Epsilon puts the text of an ordinary buffer in this color. But if Epsilon is doing code coloring in a

buffer, it uses the color classes defined for code coloring instead. For instance, C++ and Java files both

use C mode, and the color classes defined for C mode all start with “c-” and appear farther down in

the list of color classes.

mode-line Epsilon uses this color for the text in the mode line of a tiled window.

horiz-border Epsilon uses this color for the line part of the mode line of a tiled window.

vert-border Epsilon uses this color for the vertical border it draws between tiled windows.

after-exiting Some console versions of Epsilon try to leave the screen in this color when you exit.

Epsilon normally sets this color when it starts up, based on the screen’s colors before you started

Epsilon. Set the restore-color-on-exit variable to zero to disable this behavior, so you can set

the color explicitly and preserve the change in your state file.

debug-text The EEL debugger uses this color when it displays EEL source code.

default Epsilon initializes any newly-defined color classes (see page 400) with this color.

screen-border Epsilon sets the border area around the screen or window to match this color’s

background. Epsilon only uses the background part of this color; the foreground part doesn’t matter.

screen-decoration Epsilon for Windows can draw a focus rectangle or column markers. The foreground

color specified here determines their color. See the draw-focus-rectangle and

draw-column-markers variables.

pull-highlight The pull-word command uses this color for its highlighting.

Summary: set-color

export-colors

108 Chapter 4. Commands by Topic

4.7.7 Code Coloring

Epsilon does syntax-based highlighting for many different programming languages. Set the buffer-specific

variable want-code-coloring to 0 to disable this feature or run the change-code-coloring command. To

change the colors Epsilon uses, see the previous section. (Because certain modes like Perl and HTML use

coloring to quickly parse language syntax, if you don’t want to see the coloring it’s often better to change

the color selections so they’re identical instead of disabling code coloring entirely.)

If you use a very old and slow computer, you may need to tell Epsilon to do less code coloring, in order

to get acceptable response time. Set the variable minimal-coloring to 1 to tell Epsilon to look only for

comments, preprocessor lines, strings, and character constants when coloring. Epsilon will color all

identifiers, functions, keywords, numbers and punctuation the same, using the c-ident color class for all.

This makes code coloring much faster.

When Epsilon begins coloring in the middle of a buffer, it has to determine whether it’s inside a

comment by searching back for comment characters. If you edit extremely large C files with few block

comments, you can speed up Epsilon by telling it not to search so far. Set the variable color-look-back to

the number of characters Epsilon should search through before giving up. Any block comments larger than

this value may not be colored correctly. A value of zero (the default) lets Epsilon search as far as it needs to,

and correctly colors comments of any size.

When Epsilon isn’t busy acting on your keystrokes, it looks through the current buffer and assigns

colors to the individual regions of text, so that Epsilon responds faster as you scroll through the buffer. For

smoother performance, Epsilon doesn’t begin to do this until it’s been idle for a certain period of time,

contained in the idle-coloring-delay variable. This holds the number of hundredths of a second to wait

before computing more coloring information. By default, it’s 100, so Epsilon waits one second. Set it to -1

to disable background code coloring.

Normally Epsilon colors buffers as needed. You can set Epsilon to instead color the entire buffer the

first time it’s displayed. Set the variable color-whole-buffer to the size of the largest buffer you want

Epsilon to entirely color at once.

Summary: change-code-coloring

4.7.8 Window Borders

Under Windows and X11, you can control the title of Epsilon’s main window. The variables

window-caption-file, window-caption-buffer, and window-caption control what appears in

Epsilon’s title bar.

Use the command set-display-look to make Epsilon’s window decoration and screen appearance

resemble that of other editors. It displays a menu of choices. You can select Epsilon’s original look, Brief’s

look, the look of the DOS Edit program (the same as the QBasic program), or the look of the Borland IDE.

The command toggle-borders removes the lines separating Epsilon’s windows from one another, or

restores them.

When there are no window borders, Epsilon provides each window with its own separate color scheme,

in place of the single one selected by set-color. (You can still use set-color to set the individual colors in a

color scheme, but Epsilon doesn’t care which particular color scheme you select when it displays the

contents of individual windows. It does use your selected color scheme for other parts of the screen like the

echo area or screen border.)

4.7. The Screen 109

The color schemes Epsilon uses for borderless windows have names like “window-black”,

“window-blue” and so forth. Epsilon assigns them to windows in order. You can remove one from

consideration using the delete-name command, or create a new one using EEL (see page 407).

The rest of this section describes some of the variables set by the above commands. The set-display-look

command in particular does its work entirely by setting variables. You can make Epsilon use a custom

display look by setting these variables yourself. The variables also allow some customizations not available

through the above commands.

The echo-line variable contains the number of the screen line on which to display the echo area. The

avoid-top-lines and avoid-bottom-lines variables tell Epsilon how many screen lines at the top and

bottom of the screen are reserved, and may not contain tiled windows. By default, echo_line contains the

number of the last screen line, avoid-top-lines is zero, and avoid-bottom-lines is one, to make room

for the echo area.

To Epsilon display text in the echo area whenever it’s idle, set the variables show-when-idle and

show-when-idle-column. See their online documentation for details.

To position the echo area at the top of the screen, set echo-line and avoid-bottom-lines to zero

and avoid-top-lines to one. (If you’re using a permanent mouse menu, set echo-line and

avoid-top-lines one higher.)

To completely fill the screen with text, toggle borders off and set avoid-bottom-lines and

avoid-top-lines to zero. Whenever Epsilon needs to display text in the echo area, it will temporarily

overwrite the last screen line for a moment, and then return to showing buffer text on every line.

You can customize the position and contents of the mode line Epsilon displays for ordinary tiled

windows by setting variables. These variables all start with “mode-”. See the online help for mode-format

for details. Also see the full-path-on-mode-line variable.

You can set several variables to put borders around the screen. If you want Epsilon to always display a

window border at the right edge of the screen, set the variable border-right nonzero. (The

toggle-scroll-bar command, which turns on permanent scroll bars for all windows, sets this variable.)

Epsilon displays a border at the left screen edge if border-left has a nonzero value. Similarly,

border-top and border-bottom variables control borders at the top and bottom edges of the screen, but

only if a tiled window reaches all the way to that edge of the screen. (A menu bar might be in the way.) All

these variables are zero by default. (Toggling all window borders off with the toggle-borders command

overrides these variables.) If the border-inside variable is nonzero (as it is by default), Epsilon displays a

border between side-by-side windows. Set it to zero to eliminate these borders. (The toggle-borders

command sets this variable, among other things.)

Summary: set-display-look

4.7.9 The Bell

Sometimes Epsilon will ring the computer’s bell to alert you to certain conditions. (Well, actually it sounds

more like a beep, but we call it a bell anyway.) You can enable or disable the bell completely by setting the

want-bell variable. Epsilon will never try to beep if want-bell has a value of zero.

For finer control of just when Epsilon rings the bell, you can set the variables listed in figure 4.6 using

the set-variable command, described on page 151. A nonzero value means Epsilon will ring the bell when

the indicated condition occurs. By default, all these variables but bell-on-abort have the value 1, so

Epsilon rings the bell on almost all of these occasions.

In some environments, the beep-duration variable specifies the duration of the beep, in hundredths of

a second. The beep-frequency variable specifies the frequency of the bell in hertz.

110 Chapter 4. Commands by Topic

Variable When Epsilon Beeps, if Nonzero

bell-on-abort You abort with Ctrl-G, or press an unbound key.

bell-on-autosave-error Autosaving can’t write files.

bell-on-bad-key You press an illegal option at a prompt.

bell-on-completion Completion finds no matches.

bell-on-date-warning Epsilon notices that a file has changed on disk.

bell-on-read-error Epsilon cannot read a file.

bell-on-search Search finds no more matches.

bell-on-write-error Epsilon cannot write a file.

Figure 4.6: Variables that control when Epsilon rings the bell

Instead of making a sound for the bell, you can have Epsilon invert the mode line of each window for a

time according to the value of beep-duration by setting beep-frequency to zero, and beep-duration

to any nonzero value.

Under Windows, Epsilon doesn’t use the beep-duration or beep-frequency variables. It uses a

standard system sound instead. Under Unix, Epsilon recognizes a beep-frequency of zero and flashes the

screen in some fashion, but otherwise ignores these variables.

4.8 Buffers and Files

4.8.1 Buffers

The Ctrl-X B command prompts you for a buffer name. The command creates a buffer if one with that name

doesn’t already exist, and connects the buffer to the current window.

The new-file command creates a new buffer and marks it so that Epsilon will prompt for its file name

when you try to save it. It doesn’t prompt for a buffer name, unlike Ctrl-X B, but chooses an unused name.

You can customize the behavior of the new-file command by setting the variables new-file-mode and

new-file-ext. The new-file-mode variable contains the name of the mode-setting command Epsilon

should use to initialize new buffers; the default is the c-mode command. The new-file-ext variable

contains the extension of the file name Epsilon constructs for the new buffer; its default is “.c”.

To get a list of the buffers, type Ctrl-X Ctrl-B. This runs the bufed (for buffer edit) command, described

fully on page 133. Basically, bufed lists your buffers, along with their sizes and the files (if any) contained in

those buffers. You can then easily switch to any buffer by positioning point on the line describing the buffer

and pressing the 〈Space〉 key. The bufed command initially positions point on the buffer from which you

invoked bufed. Press Ctrl-G if you decide not to switch buffers after all.

The Ctrl-X K command eliminates a buffer. It asks you for a buffer name and gets rid of it. If the buffer

has unsaved changes, the command warns you first.

The Ctrl-X Ctrl-K command eliminates the current buffer, just like Ctrl-X K, but without asking which

buffer you want to get rid of. The kill-all-buffers command discards all user buffers.

Whenever Epsilon asks you for a buffer name, it can do completion on buffer names, and will list

matches in a pop-up window if you press ‘?’.

Another way to switch buffers is to press Ctrl-〈Tab〉. This command switches to the buffer you last used.

If you press 〈Tab〉 again while still holding down Ctrl, you can switch to still older buffers. Hold down Shift

as well as Ctrl to move in the reverse order. You can press Ctrl-G to abort and return to the original buffer.

4.8. Buffers and Files 111

You can also change to another buffer using the next-buffer and previous-buffer commands. They select

the next (or previous) buffer and connect it to the current window. You can cycle through all the buffers by

repeating these commands. You can type F12 and F11, respectively, to run these commands. If your

keyboard doesn’t have these keys, you can also type Ctrl-X > and Ctrl-X <.

Summary: Ctrl-X B select-buffer

Ctrl-X Ctrl-B bufed

Ctrl-X K kill-buffer

Ctrl-X Ctrl-K kill-current-buffer

Ctrl-〈Tab〉 switch-buffers

F12, Ctrl-X > next-buffer

F11, Ctrl-X < previous-buffer

kill-all-buffers

new-file

4.8.2 Files

Reading Files

The Ctrl-X Ctrl-F key runs the find-file command. It prompts you for a file name. First, it scans the current

buffers to see if any of them contain that file. If so, the command connects that buffer to the current window.

Otherwise, the command creates a buffer with the same name as the file, possibly modified to make it

different from the names of existing non-empty buffers, then reads the file into that buffer. Most people

consider find-file the command they typically use to edit a new file, or to return to a file read in previously.

Normally Epsilon examines the file’s contents to determine if it’s a binary file, or in Unix or Macintosh

format. If you prefix a numeric argument to find-file, Epsilon asks you for the correct format, as described on

page 115, and for the name of an encoding. (Use the auto-detect encoding if you only want to force

binary, Unix, Macintosh, or Windows format.)

The find-file command examines a file’s name and contents to determine an appropriate language mode

for it. For instance, files with a .c extension are put in C mode. You can override this decision with a “file

variable”. See page 120. You can use the reset-mode command at any time to make Epsilon repeat that

process, setting the buffer to a different mode if appropriate. It can be handy after you’ve temporarily

switched to a different mode for any reason, or after you’ve started creating a new file with no extension and

have now typed the first few lines, enough for Epsilon to auto-detect the proper mode.

If you type 〈Enter〉 without typing any file name when find-file asks for a file, it runs dired on the current

directory. If you give find-file a file name with wild card characters, or a directory name, it runs the dired

command giving it that pattern. See page 130 for a description of the very useful dired command. Also see

page 118 for information on related topics like how to type a file name with 〈Space〉 characters, customize

the way Epsilon prompts for files, and so forth.

By default, at most prompts for file names like find-file’s, Epsilon types in for you the directory portion

of the current file. For example, suppose the current buffer contains a file named “\src\new\ll.c”. If you

invoke find-file , Epsilon will type in “\src\new\” for you. This comes in handy when you want to read

another file in the same directory as the current file. You can simply begin typing another file name if you

want Epsilon to ignore the pre-typed directory name. As soon as Epsilon notices you’re typing an absolute

file pathname, it will erase the pre-typed directory name. See page 118 for details.

You can change the current directory with the cd command on F7. It prompts for a new current

directory, and then displays the full pathname of the selected current directory. You can type the name of a

112 Chapter 4. Commands by Topic

new directory, or just type 〈Enter〉 to stay in the current directory. When you supply a file name, Epsilon

interprets it with respect to the current directory unless it begins with a slash or backslash. If you specify a

drive as part of the directory name, Epsilon will set the current drive to the indicated drive, then switch to the

indicated directory. Press Alt-E when prompted for a directory name, and Epsilon will insert the name of the

directory containing the current file. (If you start a concurrent process, Epsilon can link its current directory

to Epsilon’s; see the use-process-current-directory variable for details.)

The insert-file command on Ctrl-X I prompts for the name of a file and inserts it before point. It sets the

mark before the inserted text, so you can kill it with Ctrl-W. (Also see the insert-file-remembers-file

variable.)

The find-linked-file command on Ctrl-X Ctrl-L looks for a file name in the current buffer, then finds that

file. It works with plain text files, and also understands #include in C-like buffers, in HTML-like

buffers, and various other mode-specific conventions. You can highlight a file name first whenever its

automatic parsing of file names isn’t right. In a process buffer, it looks for error messages, not file names

(unless you’ve first highlighted a file name), and sets the current error message (as used by next-error) to the

current line.

Epsilon uses a built-in list of directories to search for #include files; you can set the

include-directories variable to add to that list. (The copy-include-file-name command also uses this list

of directories.) For files with a .lst extension, it assumes the current line holds a file name, instead of

searching for a pattern that matches a typical file name. This is one way to more easily manage files in a

project that are in many different directories.

The key Ctrl-X Ctrl-V runs the visit-file command. It prompts you for a file name. If the file exists, the

command reads it into the current buffer, and positions point at the beginning. The command discards the

old contents of the buffer, but asks before discarding an unsaved buffer. If no file with the given name exists,

the command clears the current buffer. If you prefix this command with a numeric argument, the command

discards the old buffer content without warning. So if you want to revert to the copy of the file on disk,

disregarding the changes you’ve made since you last saved the buffer, press Ctrl-U Ctrl-X Ctrl-V, followed

by 〈Enter〉. Most people use this command only to explicitly manipulate the file associated with a particular

buffer. To read in a file, use the find-file command, described above.

The revert-file command rereads the current file from disk. If you’ve made any unsaved changes, it

prompts first.

If a file has an extension .gz or .bz2, indicating a compressed file, Epsilon automatically

decompresses it when you read it. See the uncompress-files variable. This feature runs the standard

utility programs gzip (for .gz) and bzip2 (for .bz2); you’ll need to install them if they’re not already

installed. For Windows, the programs provided by the Cygwin environment will work fine.

Summary: Ctrl-X Ctrl-F find-file

F7 cd

Ctrl-X I insert-file

Ctrl-X Ctrl-V visit-file

revert-file

Read-Only Files

Whenever you read a read-only file into a buffer using find-file or visit-file, Epsilon makes the buffer

read-only, and indicates this by displaying “RO” in the modeline. Epsilon keeps you from modifying a

read-only buffer. Attempts to do so result in an error message. In a read-only buffer you can use the 〈Space〉

4.8. Buffers and Files 113

and 〈Backspace〉 keys to page forward and back more conveniently; see the readonly-pages variable to

disable this.

If you want to modify the buffer, you can change its read-only status with the change-read-only

command on Ctrl-X Ctrl-Q. With no numeric argument, it toggles the read-only status. With a non-zero

numeric argument, it makes the buffer read-only; with a numeric argument of zero, it makes the buffer

changeable.

The change-read-only command sets the buffer’s status but doesn’t change the read-only status of its

file. Use the change-file-read-only command to toggle whether or not a file is read-only.

By default, when Epsilon reads a read-only file, it displays a message and makes the buffer read-only.

To make Epsilon do something else instead, you can set the readonly-warning variable, default 3,

according to figure 4.7.

Action 0 1 2 3 4 5 6 7

Display a warning message N Y N Y N Y N Y

Make buffer read-only N N Y Y N N Y Y

Ring the bell N N N N Y Y Y Y

Figure 4.7: Values for the readonly-warning variable.

Sometimes you may want to edit a file that is not read-only, but still have Epsilon keep you from

making any accidental changes to the file. The find-read-only-file command does this. It prompts for a file

name just like find-file and reads it, but marks the buffer read-only so it cannot be modified, and sets it so that

if you should ever try to save the file, Epsilon will prompt for a different name.

Summary: Ctrl-X Ctrl-Q change-read-only

find-read-only-file

change-file-read-only

Saving Files

The Ctrl-X Ctrl-S key writes a buffer to the file name associated with the buffer. If the current buffer

contains no file, the command asks you for a file name.

To write the buffer to some other file, use the Ctrl-X Ctrl-W key. The command prompts for a file name

and writes the buffer to that file. Epsilon then associates that file name with the buffer, so later Ctrl-X Ctrl-S

commands will write to the same file. If the file you specified already exists, Epsilon will ask you to confirm

that you wish to overwrite it. To disable this warning, you can set the variable warn-before-overwrite to

zero. (Setting the variable to zero also prevents several other commands from asking for confirmation before

overwriting a file.) You can use the set-file-name command to set the buffer’s file name without saving the

file.

Before Epsilon saves a file, it checks the copy of the file on disk to see if anyone has modified it since

you read it into Epsilon. This might happen if another user edited the file (perhaps over a network), or if a

program running concurrently with Epsilon modified the file. Epsilon does this by comparing the file’s date

and time to the date and time Epsilon saved when it read the file in. If they don’t match (within a tolerance

determined by the file-date-tolerance variable), Epsilon displays a warning and asks you what you

want to do. You can choose to read the disk version of the file and discard the one already in a buffer,

replace the copy on disk with the copy you’ve edited, or compare the two versions.

114 Chapter 4. Commands by Topic

Epsilon checks the file date of a file each time you switch to a buffer or window displaying that file, and

before you read or write the file. When a file changes on disk and you haven’t modified the copy in memory,

Epsilon automatically reads the new version. (It doesn’t do this automatically if the file on disk is very large,

or substantially smaller than the copy in memory.) You can make Epsilon always ask before reading by

setting the buffer-specific variable auto-read-changed-file to zero.

Set the buffer-specific variable want-warn to 0 if you don’t want Epsilon to ever check the file date or

warn you. Or under Windows, set the file-date-skip-drives variable to make Epsilon ignore file dates

on specific types of drives, such as network drives or floppy disks. Epsilon never checks file dates for URLs.

You can have Epsilon remove any spaces or tabs at the end of each line, before saving a file. See the

c-delete-trailing-spaces and default-delete-trailing-spaces variables.

Similarly, you can have Epsilon make sure files you save end with a line termination character like a

newline by setting the default-add-final-newline variable. To get this behavior only for specific

modes, create a variable with a name like html-add-final-newline and Epsilon will use its setting

instead for buffers in that mode.

Epsilon automatically marks a buffer as “modified” when you change it, and shows this with a star ‘*’

at the end of the buffer’s mode line. When Epsilon writes a buffer to disk or reads a file into a buffer, it

marks the buffer as “unmodified”. When you try to exit Epsilon, it will issue a warning if any buffer

contains a file with unsaved changes.

You may occasionally want to change a buffer’s modified status. You can do this with the

change-modified command. Each time you invoke this command, the modified status of the current buffer

toggles, unless you invoke it with a numeric argument. A nonzero numeric argument sets the modified

status; a numeric argument of zero clears the modified status.

The save-all-buffers command, bound to Ctrl-X S, goes to each buffer with unsaved changes (those

marked modified), and if it contains a file, writes the buffer out to that file. See the

save-all-without-asking variable to alter what Epsilon does when there’s an error saving a file.

The write-region command on Ctrl-X W takes the text between point and mark, and writes it to the file

whose name you provide.

Summary: Ctrl-X Ctrl-S save-file

Ctrl-X Ctrl-W write-file

Alt-˜ change-modified

Ctrl-X S save-all-buffers

Ctrl-X W write-region

set-file-name

Backup Files

Epsilon doesn’t normally keep the previous version of a file around when you save a modified version. If

you want backups of saved files, you can set the buffer-specific variable want-backups to 1, using the

set-variable command described on page 151. If this variable is 1, the first time you save a file in a session,

Epsilon will first preserve the old version by renaming any existing file with that name to a file with the

extension “.bak”. For instance, saving a new version of the file text.c preserves the old version in text.bak.

(If you delete a file’s buffer and later read the file again, Epsilon treats this as a new session and makes a new

backup copy the next time you save.) If want-backups variable is 2, Epsilon will do this each time you save

the file, not just the first time. The backup-by-renaming variable controls whether Epsilon backs up files

by renaming them (faster) or copying them (necessary in some environments to preserve attached attributes).

4.8. Buffers and Files 115

You can change the name Epsilon uses for a backup file by setting the variable backup-name, which

holds a file name template (see the next section). The default setting %p%b.bak uses the same path and base

file name as the original file but replaces the extension with .bak.

Epsilon can automatically save a copy of your file every 500 characters. To make Epsilon autosave, set

the variable want-auto-save to 1. Epsilon then counts keys as you type them, and every 500 keys, saves

each of your modified files to a file with a name like #file.c.asv#. Epsilon uses a template (see above) to

construct this name as well, stored in the variable auto-save-name. Other bits in the want-auto-save

variable let you make auto-saving more verbose, or tell Epsilon not to automatically delete auto-saved files

when exiting, or when the file is saved normally.

You can alter the number of keystrokes between autosaves by setting the variable auto-save-count.

Epsilon also auto-saves after you’ve been idle for 30 seconds; set the auto-save-idle-seconds variable

to alter this number. Very large buffers will never be auto-saved; see the auto-save-biggest-file

variable to alter this.

Sometimes you may want to explicitly write the buffer out to a file for backup purposes, but may not

want to change the name of the file associated with the buffer. For that, use the copy-to-file command on

Ctrl-F7. It asks you for the name of a file, and writes the buffer out to that file, but subsequent Ctrl-X

Ctrl-S’s will save to the original file.

Summary: Ctrl-F7 copy-to-file

File Name Templates

Epsilon uses file name templates to construct one file name from another, such as constructing the name of a

backup file from the original file name. Epsilon also uses these to construct command lines, for example in

the various compile-?-cmd variables that the compile-buffer command uses, or with the % sequence in

.mnu files.

Epsilon copies the template text, substituting pieces of the original file name when it encounters codes

in the template, according to figure 4.8. The sequence %r substitutes a relative pathname to the original file

name, if the file is within the current directory or its subdirectories, or an absolute pathname otherwise.

The sequence %x substitutes the full pathname of the directory containing the Epsilon executable. The

sequence %X substitutes the same full pathname, but this time after converting all Windows long file names

making up the path to their equivalent short name aliases. For example, if the Epsilon executable was in the

directory c:\Program Files\Eps13\bin\, %x would use exactly that pathname, while %X might yield

c:\Progra~1\Eps13\bin\. Under Unix, %X is the same as %x. Either always ends with a path separator

character like / or \.

If any other character follows %, Epsilon puts that character into the resulting file name. You can use

this, for example, to include an actual % character in the result by putting %% in the template.

Line Translation

Most Windows, DOS and OS/2 programs use files with lines separated by the pair of characters Return,

Newline (or Control-M, Control-J). But internally Epsilon separates lines with just the newline character,

Ctrl-J. Epsilon normally translates between the two systems automatically when reading or writing text files

in this format. When it reads a file, it removes all Ctrl-M characters, and when it writes a file, it adds a

Ctrl-M character before each Ctrl-J.

Epsilon will automatically select one of several other translation types when appropriate, based on the

contents of the file you edit. It automatically determines whether you’re editing a regular file, a binary file, a

116 Chapter 4. Commands by Topic

Example 1 Example 2

Code Part c:\dos\read.me /usr/bin

%p Path c:\dos\ /usr/

%b Base read bin

%e Extension .me (None)

%f Full name c:\dos\read.me /usr/bin

%r Relative path dos\read.me /usr/bin

(assuming current

directory is c:\ /usr/mark)

%x Executable path c:\Program Files\Eps13\bin\ /usr/local/epsilon13.17/bin/

%X Alias to path c:\Progra˜1\Eps13\bin\ /usr/local/epsilon13.17/bin/

Figure 4.8: File name template characters.

Unix file, or a Mac file, and uses the proper translation scheme. You can explicitly override this if necessary.

Epsilon determines the file type by looking at the first few hundred thousand bytes of the file, and applying

heuristics. This is quite reliable in practice. However, Epsilon may occasionally guess incorrectly. You can

tell Epsilon exactly which translation scheme to use by providing a numeric argument to a file reading

command like find-file, or a file-writing command like save-file or write-file. Epsilon will then prompt for

which translation scheme to use.

The set-line-translate command sets this behavior for the current buffer. It prompts for the desired type

of translation, and makes future file reads and writes use that translation. Epsilon will display “Binary”,

“Unix”, “DOS”, or “Mac” in the mode line to indicate any special translation in effect. (It omits this when

the “usual” translation is in effect: Unix files in Epsilon for Unix, DOS files in other versions.)

Set the default-translation-type variable if you want to force Epsilon to always use a particular

type of translation when reading existing files, rather than examining their contents and choosing a suitable

type. A value of 0 forces binary, 1 forces DOS/Windows, 2 forces Unix, and 3 forces Macintosh. A value of

5, the default, lets Epsilon autodetect the file type.

Set the new-buffer-translation-type variable if you want Epsilon to create new buffers and files

with a translation type other than the default. For file names that start with ftp://, the

ftp-ascii-transfers variable can changes the meaning of some translation types; see its online help.

For file names in the form of a URL, Epsilon uses the force-remote-translation-type variable

instead of default-translation-type. When it’s not set to 5 to request auto-detection, it makes Epsilon

use one specific translation type for all remote files, bypassing auto-detection.

Setting the fallback-remote-translation-type variable instead lets auto-detection proceed, but

sets the translation type Epsilon uses whenever it can’t determine a type by examining the file, and for new

files. The default value, 5, makes Epsilon for Unix pick Unix, and Epsilon for Windows pick

DOS/Windows. This variable is the remote-file equivalent of new-buffer-translation-type.

Host-specific variables takes precedence over both force-remote-translation-type and

fallback-remote-translation-type, letting you establish separate settings for each remote system.

See these variables’ full descriptions for details.

Epsilon remembers the type of translation you want in each buffer using the buffer-specific variable

translation-type.

You can use the “write-line-translate” file variable to set Epsilon so it auto-detects the translation rule

when reading existing files, but forces all files into a specific mode when saving them. See page 120.

4.8. Buffers and Files 117

Epsilon applies the following heuristics, in order, to determine a file’s type. These may change in future

versions.

A file that contains null bytes is considered binary. A file that has no Ctrl-M Ctrl-J pairs is considered a

Unix file if it contains Ctrl-J characters, or a Macintosh file if it contains Ctrl-M. A file containing a Ctrl-M

character not followed by either Ctrl-M or Ctrl-J is considered binary. So is a file containing a Ctrl-J

character not preceded by a Ctrl-M as well as some Ctrl-M Ctrl-J pairs. Any other files, or files of less than

five characters, are considered to be in standard DOS/Windows format (or in Epsilon for Unix, Unix format).

Bear in mind that Epsilon makes all these decisions after examining only the first few hundred thousand

bytes of a file, and phrases like “contains null bytes” really mean “contains null bytes in its first few hundred

thousand characters.” When Epsilon chooses a file type based on text far from the start of the file, so that the

reason for the choice may not be obvious, it displays a message explaining why it picked that translation

type. The file-read-kibitz variable controls this.

Summary: set-line-translate

DOS/OEM Character Set Support

Windows programs typically use a different character set than do DOS programs, or programs that run in a

Win32 console environment. The DOS character set is known as the DOS/OEM character set, and includes

various line drawing characters and miscellaneous characters not in the Windows/ANSI set. The

Windows/ANSI character set includes many accented characters not in the DOS/OEM character set. Epsilon

for Windows uses the Windows/ANSI character set (with most fonts). Epsilon for Win32 Console uses a

DOS/OEM character set by default, but see the console-ansi-font variable.

The oem-to-ansi command converts the current buffer from the DOS/OEM character set to the

Windows/ANSI character set. The ansi-to-oem command does the reverse. If any character in the buffer

doesn’t have a unique translation, these commands warn before translating, and move to the first character

without a unique translation.

The find-oem-file command reads a file using the DOS/OEM character set, translating it into the

Windows/ANSI character set, and arranges things so when you save the file, the reverse translation

automatically occurs.

The commands in this section provide a subset of the functionality available with the Unicode-based

commands described on page 127. The oem-to-ansi command is similar to the

unicode-convert-from-encoding command. Specify an encoding such as “cp850” or “cp437”, using the code

page number shown by the “chcp” command at a Windows command prompt. Similarly, the ansi-to-oem

command is like the unicode-convert-to-encoding command. The find-oem-file command is like invoking

find-file with a numeric prefix argument, so it asks for line translation and encoding options, and specifying

the DOS/OEM encoding as above. See page 127 for details on setting a default code page and similar

options.

Summary: oem-to-ansi

ansi-to-oem

find-oem-file

File Name Prompts

You can customize many aspects of Epsilon’s behavior when prompting for file names.

118 Chapter 4. Commands by Topic

By default, many commands in the Windows version of Epsilon use the standard Windows common file

dialog, but only when you invoke them from a menu or the tool bar. When you invoke these commands

using their keyboard bindings, they use the same kind of dialog as other Epsilon prompts.

Set want-common-file-dialog to 2 if you want Epsilon to use the common file dialog whenever it

can. Set want-common-file-dialog to 0 to prevent Epsilon from ever using this dialog. The default value

of 1 produces the behavior described above. You can use the force-common-file-dialog command to toggle

whether Epsilon uses a dialog for the next command only.

The Windows common file dialog includes a list of common file extensions. You can customize this list

by editing the file filter.txt, putting your own version in your customization directory (see page 13). See the

comments in that file for more information. You can also customize which directory this dialog uses, and

how Epsilon remembers that choice; see the common-open-use-directory variable.

All the remaining variables described in this section have no effect when Epsilon uses the standard

Windows dialog; they only modify Epsilon’s own file dialogs.

The prompt-with-buffer-directory variable controls how Epsilon uses the current directory at file

prompts. When this variable is 2, the default, Epsilon inserts the current buffer’s directory at many file

prompts. This makes it easy to select another file in the same directory. You can edit the directory name, or

you can begin typing a new absolute pathname right after the inserted pathname. Epsilon will delete the

inserted pathname when it notices your absolute pathname. This behavior is similar to Gnu Emacs’s. (See

the yank-options variable to modify how Epsilon deletes the inserted pathname.)

A setting of 3 makes Epsilon insert the current buffer’s directory in the same way, but prevents Epsilon

from automatically deleting the inserted pathname if you type an absolute one.

When prompt-with-buffer-directory is 1, Epsilon temporarily changes to the current buffer’s

directory while prompting for a file name, and interprets file names relative to the current directory. This

behavior is similar to the “pathname.e” extension available for previous versions of Epsilon.

When prompt-with-buffer-directory is 0, Epsilon doesn’t do anything special at file prompts.

This was Epsilon’s default behavior in previous versions.

The grep and file-query-replace commands use a separate variable

grep-prompt-with-buffer-directory for their file patterns, with the same meaning as above. By

default it’s 1.

During file name completion, Epsilon can ignore files with certain extensions. The

ignore-file-extensions variable contains a list of extensions to ignore. By default, this variable has the

value ‘|.obj|.exe|.o|.b|’, which makes file completion ignore files that end with .obj, .exe, .o, and .b.

Each extension must appear between ‘|’ characters. You can augment this list using the set-variable

command, described on page 151.

Similarly, the only-file-extensions variable makes completion look only for files with certain

extensions. It uses the same format as ignore-file-extensions, a list of extensions surrounded by |

characters. If the variable holds a null pointer, Epsilon uses ignore-file-extensions as above.

Completion also restricts its matches using the ignore-file-basename and ignore-file-pattern

variables, which use patterns to match the names of files to be excluded. If the pattern the user types doesn’t

match any files, due to any of the various exclusion variables, Epsilon temporarily removes all exclusions

and lists matching files again.

When Epsilon prompts for a file name, the 〈Space〉 key performs file name completion on what you’ve

typed. To create a new file with spaces in its name, you must quote the space characters by typing Ctrl-Q

before each one, while entering the name, or type " characters around the file name (or any part containing

spaces).

At any Epsilon prompt (not just file prompts), you can type Alt-E to retrieve your previous response to

that prompt. Alt-〈Up〉 or Ctrl-Alt-P show a list of previous responses. See page 28 for complete details.

4.8. Buffers and Files 119

Alt-〈Down〉 or Ctrl-Alt-N let you easily copy text from the buffer into the prompt (useful when the buffer

contains a file name or URL). See page 26 for more information. At most file name prompts, Alt-G will

retrieve the name of the current buffer’s file.

When Epsilon shows a dialog containing a list of previous responses, or files matching a pattern, the list

may be too wide for the dialog. You can generally resize the dialog by simply dragging its border. This

works for most Epsilon dialogs. Epsilon will automatically remember the size of each dialog from session to

session.

File Name Case

When retrieving file names from some file systems, Epsilon automatically translates the file names to lower

case. Epsilon uses various different rules for determining when to convert retrieved file names to lower case,

and when two file names that differ only by case refer to the same file.

Epsilon distinguishes between three types of file systems:

On a case-sensitive file system, MyFile, MYFILE, and myfile refer to three different files. Unix file

systems are normally case-sensitive.

On a case-preserving (but not case-sensitive) file system, MyFile, MYFILE, and myfile all refer to the

same file. But if you create a file as MyFile, the file system will display that file as MyFile without altering

its case. VFAT, NTFS, and HFS file systems used in Windows and Mac OS are case-preserving.

On a non-case-preserving file system, MyFile, MYFILE, and myfile all refer to the same file. Moreover,

the operating system converts all file names to upper case. So no matter how you create the file, the

operating system always shows it as MYFILE. DOS’s FAT file system is non-case-preserving. When

Epsilon displays a file name from such a file system, it changes the file name to all lower case.

Epsilon for Windows asks the operating system for information on each drive, the first time the drive is

accessed. Epsilon for Unix assumes all file systems are case-sensitive (for Mac OS, case-preserving), and

the rest of this section does not apply.

You can tell Epsilon to use particular rules for each drive on your system by defining an environment

variable. The MIXEDCASEDRIVES environment variable should contain a list of drive letters or ranges. If

the variable exists and a lower case letter like k appears in it, Epsilon assumes drive K: has a Unix-style

case-sensitive file system. If the variable exists and an upper case letter like J appears in it, Epsilon assumes

drive J: is not case-preserving or case-sensitive, like traditional FAT drives. If the variable exists but a drive

letter does not appear in it, Epsilon assumes the drive has a case-preserving but not case-sensitive file system

like NTFS, HPFS, or VFAT drives.

If, for example, drives h:, i:, j:, and p: access Unix filesystems over a network, drive q: accesses a server

that uses a FAT filesystem, and other drives use a VFAT filesystem (local drives under Windows, for

example), you could set MIXEDCASEDRIVES to h-jpQ. When Epsilon finds a MIXEDCASEDRIVES

variable, it assumes the variable contains a complete list of such drives, and doesn’t examine filesystems as

described. If an EPSMIXEDCASEDRIVES configuration variable exists, that overrides any

MIXEDCASEDRIVES environment variable that may be found. (Note that MIXEDCASEDRIVES appears

in the environment under all operating systems, while EPSMIXEDCASEDRIVES is a configuration

variable must be put in the registry under Windows. See page 10 for details.)

You can set the variable preserve-filename-case nonzero to tell Epsilon to use the case of

filenames exactly as retrieved from the operating system. By default, Epsilon for Windows changes

all-uppercase file names to lower case, except on case-sensitive file systems. The variable also controls case

conversion rules when Epsilon picks a buffer name for a file, and related settings.

120 Chapter 4. Commands by Topic

4.8.3 File Variables

The find-file command examines a file’s name and contents to determine an appropriate language mode for it.

For instance, files with a .c extension are put in C mode. You can override this decision with a “file variable”.

These are specially-formatted lines at the top or bottom of a file that indicate the file should use a

particular language mode or tab size. For example, you can put -*- mode: VBasic -*- anywhere on the

first line of a file to force Epsilon to Visual Basic mode, or write -*- tab-size: 3 -*- to make Epsilon

use that tab size setting.

Epsilon recognizes a syntax for file variables that’s designed to be generally compatible with Emacs.

The recognized formats are as follows. First, the first line of the file (or the second, if the first starts with #!,

to accommodate the Unix “shebang” line) may contain text in one of these formats:

-*- mode: modename -*-

-*- modename -*-

-*- tab-width: number -*-

-*- mode: modename; tab-width: number -*-

Other characters may appear before or after each possibility above; typically there would be

commenting characters, so a full line might read /* -*- mode: shell -*- */. The first two examples

set that buffer to the specified mode name, such as Perl or VBasic or C, by running a command named

modename-mode if one exists. (A mode name of “C++” makes Epsilon uses the C++ submode of C mode.)

The third example sets the width of a tab character for that buffer.

In more detail, between the -*- sequences may be one or more definitions, separated by ; characters.

Spacing and capitalization are ignored throughout. Each definition may either be a mode name alone, or a

setting name followed by a colon : and a value.

The setting names recognized are “mode”, as another way to specify the mode; “tab-size” or

“tab-width” to set the buffer’s tab size, or “margin-right” or “fill-column” to set the buffer’s right margin.

(The names tab-size and margin-right reflect the names of the Epsilon variables they set; the names

“tab-width” and “fill-column” are more compatible with other programs, and recommended if non-Epsilon

users may edit the files.)

Similarly, you can use either “auto-fill-mode” or “fill-mode” to set whether Epsilon should break lines

as you type, and either “indent-with-tabs” or “indent-tabs-mode” to set whether indenting should use tab

characters in addition to spaces. The latter name, in each case, is the more compatible one. Also, you can

write “nil” instead of 0 to turn off a setting, again for compatibility.

Epsilon also recognizes “compile-command” for use with the compile-buffer command; see page 144

for details. And it recognizes “coding” to indicate the file’s Unicode encoding, if the detect-encodings

variable permits this.

It recognizes “write-line-translate” as a way to set the style of line translation for the file after it has

been read in; this is useful as a directory-wide setting, to permit files to be auto-detected when read, but

forced into a consistent format when written. The recognized value names for this setting are: “dos” (or

equivalently “windows”), “binary”, “unix”, “mac”, and “auto”. See page 115 for details.

Epsilon also recognizes all the other variable names listed in figure 4.9.

Another syntax for normal file variables only appears at the end of a file, starting within the last 3000

characters. It looks like this:

4.8. Buffers and Files 121

auto-fill-indents

auto-fill-mode

auto-indent

auto-read-changed-file

c-indent

case-fold

comment-column

compile-command

concurrent-compile

delete-hacking-tabs

fill-column

fill-mode

goal-column

html-paragraph-is-container

indent-tabs-mode

indent-with-tabs

indents-separate-paragraphs

margin-right

mode

over-mode

perl-indent

soft-tab-size

sort-case-fold

tab-size

tab-width

tex-force-latex

tex-paragraphs

undo-size

vbasic-indent

virtual-space

want-backups

want-warn

Figure 4.9: Supported file variables.

Local Variables:

mode: modename

tab-size: number

End:

The first and last lines are required; inside are the settings, one per line. Each line may have additional

text at the start and end of each line (so it will look like a comment in the file’s programming language). The

“coding” file variable doesn’t use this alternative syntax; any specified encoding must be on the first line

only.

Bits in the variable use-file-variables enable scanning for file variables of different sorts.

Directory-wide File Variables

You can put file variables in a special file named .epsilon_vars. Such settings apply to all files in its

directory. In an .epsilon_vars file, lines starting with # are comments. It contains one or more sections.

Within each section, settings in it appear one per line, with a setting name, a colon, and a value. Each

section begins with a line that says which files or modes it affects:

Special settings for this directory.

Extensions: .r*

mode: Perl

Modes: Perl|Python

tab-size: 3

Modes: C

tab-size: 5

indent-tabs-mode: nil

122 Chapter 4. Commands by Topic

Filenames: buildfile*|build[1-2]*|*build.dat

mode: makefile

The Modes, Extensions, and Filenames lines use a file wildcard pattern. It can use | for alternation, ? to

match a single character or * to match any number, or character ranges like [a-z]. Epsilon will apply the

settings in the section that follows only if the original file’s extension, mode, or basename matches the

pattern. This example says that all files with an extension like .r or .rxx or .ram in that directory should use

Perl mode, and sets the tab size to 3 for Perl or Python files, and 5 for C files, also turning off using Tab

characters to indent. Then it says that files whose names start with buildfile, build1, or build2, or end in

build.dat, should use Makefile mode.

Epsilon decides which sections to use before applying the settings, so an .rxx file forced to Perl mode

by the above example file won’t get a tab size of 3 unless you add a tab-size: 3 line to its Extensions

section. Also note that “mode:” sets a file’s mode; “Modes:” begins a section for a specific mode. File

variables in an individual file take precedence over those in an .epsilon_vars file.

Vi/Vim File Variables

Epsilon also supports a few file variables using an alternative syntax used by the Vi/Vim family of editors.

Each such setting line (which Vi/Vim documentation refers to as a “modeline”) must appear within five

lines of the start or end of the file. They begin with a space, then the word “vi” (or alternatively, “vim” or

“ex”), followed by a colon. One format follows this with the word “set” or “se”, then a series of settings

separated by spaces and terminated by a colon; other text on the line can surround this. The other format

omits “set” and uses a series of settings separated by spaces or colons and terminated by the end of the line.

Here are examples of each type:

/* vim: set textwidth=65 tabstop=8 sts=3 noexpandtab: */

; vi: tw=70 ts=4:softtabstop=2 et

The Vi/Vim settings Epsilon recognizes are:

Vi Setting Name Vi Synonym Epsilon Equivalent

textwidth=val tw=val margin-right=val

tabstop=val ts=val tab-size=val

shiftwidth=val sw=val tab-size=val

softtabstop=val sts=val soft-tab-size=val

expandtab et indent-with-tabs=0

noexpandtab noet indent-with-tabs=1

4.8.4 Internet Support

Epsilon for Windows or Unix has several commands and facilities that make it easy for you to edit files on

other computers using the Internet.

The find-file and dired commands, as well as a few others, understand Internet URLs. If you provide the

URL ftp://user@example.com/myfile.c to a file-reading command like find-file, Epsilon will engage in an

4.8. Buffers and Files 123

FTP interaction to download the file and display it in a buffer. All of the Internet activity happens in the

background, so you don’t have to wait for the file to download before continuing with your work. In fact, the

file appears in the buffer as it downloads (syntax highlighted if appropriate), so you can be editing the

beginning of a large file while the rest of it downloads.

Saving a file in such a buffer, or writing a buffer to a file name that starts with ftp://, will cause Epsilon

to send the file to the remote computer. Upload and download status is indicated in the mode line, and

there’s also a show-connections command (on Ctrl-Alt-C) that shows the status of all Internet activities and

buffers. As in bufed, you can select a buffer and press 〈Enter〉 to switch to it, or press 〈Escape〉 to remain in

the current buffer. Use the kill-process command to cancel an FTP transfer or Telnet session (see below) in

progress in the current buffer.

FTP and SCP URLs (the latter described in the next section) work with dired also, so if you do a dired

(or a find-file) on ftp://user@example.com, you’ll get a directory listing of the files on the remote machine

example.com, in a familiar dired context. Dired knows how to delete and rename remote files, and sort by

size, date, file name or extension. To make Epsilon work with certain host computers (systems running

VMS, for example), you may need to set the variables ftp-ascii-transfers or ftp-compatible-dirs;

see the descriptions of those variables in the online help. Other systems may require you to set the variable

ftp-passive-transfers.

The telnet command lets you connect to a command shell on a remote computer. The ssh command

described in the next section provides the secure equivalent. Each creates a buffer that works much like the

Epsilon process buffer, except the commands you type are executed on the remote machine. Provide a

numeric prefix argument and telnet will connect on the specified port instead of the default port. Or use the

syntax hostname:port for the host name to specify a different port. You can either use the telnet command

directly, or specify a telnet: URL to find-file. (Epsilon ignores any username or password included in the

URL.) Typing Ctrl-C Ctrl-C in telnet or ssh buffers sends an interrupt signal to the remote system, aborting

the current program.

In a telnet buffer, the telnet-interpret-output variable controls whether Epsilon interprets certain

ANSI color-setting escape sequences and similar things. (The ssh-interpret-output variable is the

equivalent for ssh.) Epsilon also looks for password requests from the remote system, using the

recognize-password-pattern variable, so it can hide the password as you type it. Also see the

recognize-password-prompt variable, and the send-invisible command.

Normally Epsilon doesn’t send a line in a telnet or ssh buffer until you press 〈Enter〉. Type Ctrl-U

〈Enter〉 to send a partial line immediately.

As in a concurrent process buffer, you can press Alt-P or Alt-N to access a telnet or ssh buffer’s

command history. With a numeric prefix argument, these keys show a menu of all previous commands. You

can select one to repeat.

If you specify an http: URL to find-file (for example, http://www.lugaru.com), Epsilon will use the

HTTP protocol to retrieve the HTML code from the given location. The HTML code will appear in an

appropriately named buffer, syntax highlighted. Header information for the URL will be appended to a

buffer named “HTTP Headers”.

You can tell Epsilon to send its requests by way of a proxy by setting the variables

http-proxy-server, http-proxy-port, and http-proxy-exceptions. You can tell Epsilon to

identify itself to the server as a different program by setting http-user-agent, or set

http-force-headers to entirely replace Epsilon’s HTTP request with another, or to add other headers.

The http-log-request variable makes Epsilon copy the entire request it sends to the HTTP Headers

buffer.

The Alt-E and Alt-〈Down〉 keys in find-file come in handy when you want to follow links in an HTML

buffer; see page 28 for information on Alt-E and page 26 for information on Alt-〈Down〉. Also see the

find-linked-file command on Ctrl-X Ctrl-L.

124 Chapter 4. Commands by Topic

The command view-web-site on Shift-F8 searches for the next URL in the buffer. It prompts with that

URL, and after you modify it if necessary, it then launches an external browser on the URL. The

view-lugaru-web-site command launches a browser and points it to Lugaru’s web site. Epsilon for Unix uses

a shell script named goto_url to run a browser. See page 39. Epsilon for Windows uses the system’s

default browser.

The finger command prompts for a string like “user@example.com”, then uses the finger protocol to

query the given machine for information about the given user. The output appears in an appropriately named

buffer.

If you run a compiler via telnet or a similar process in an Epsilon buffer, you can set up the next-error

command on Ctrl-X Ctrl-N so that when it parses a file name in an error message, it translates it into a

URL-style file name that Epsilon can use to access the file. To do this, you’ll need to write your own

telnet_error_converter() subroutine in EEL. See the sample one in the Epsilon source file epsnet.e for

details.

Summary: Ctrl-Alt-C show-connections

Telnet mode only: Alt-n process-next-cmd

Telnet mode only: Alt-p process-previous-cmd

telnet

telnet-mode

finger

view-web-site

view-lugaru-web-site

Secure Shell and SCP Support

Besides recognizing ftp:// URLs as described in the previous section, Epsilon also recognizes scp:// URLs,

which may be used for secure file transfers. With scp support, you can read or write files using an scp://

URL, navigate the remote system’s directory tree using dired, mark files for copying between the local and

remote systems, use grep or file-query-replace to search and replace on multiple remote files, and use file

name completion.

Epsilon also recognizes ssh:// URLs to connect securely to a command shell on a remote computer,

providing a secure alternative to the telnet command. Epsilon’s ssh command works similarly to the ssh://

URL. Use the syntax username@hostname to connect as a user other than the default one. The

ssh-interpret-output variable controls how Epsilon interprets ANSI escape sequences and similar in an

ssh buffer.

The scp and ssh features work by running certain external programs which must be installed. Epsilon’s

ssh command depends on an external ssh program, while its scp features run a program named sftp. On

Mac OS these are normally preinstalled. For Linux or FreeBSD, you may need to install the appropriate ssh

package for your distribution. For Windows, the Cygwin system contains appropriate clients. Run the

Cygwin installer from the Cygwin website http://www.cygwin.com and install Cygwin’s openssh package

from the net section. Also ensure Cygwin’s bin directory is on your PATH. (On Windows, it’s also possible

to use alternative clients like PuTTY instead of Cygwin programs. See “Windows-specific Configuration”

below for more on PuTTY.)

With scp/ssh support, Epsilon doesn’t remember your password or passphrase. Epsilon will ask for it

each time it must start a new sftp helper program (for instance, when you begin a second file operation

before the first has completed). If you prefer to type your secure passphrase once and have multiple

connections use it, you can set up an ssh-agent program, along with public key authentication. The agent

4.8. Buffers and Files 125

will remember your credentials and provide them as required to any sftp or ssh instance. You can even set

your credentials to expire after a certain period of time if you wish. Refer to the manual page for the

ssh-agent program to set this up. Windows users should also see the section below on Windows-specific

configuration.

CUSTOMIZATION OPTIONS FOR ALTERNATIVE CLIENTS

If you’re not using the usual external ssh and sftp programs, you’ll need to set various variables to tell

Epsilon how to run your alternative programs.

The variable ssh-template tells Epsilon how to build a command line for invoking the external ssh

program when a specific user name appears before the host name. If no user name was specified, it uses

ssh-no-user-template. See the descriptions of these variables for their format. There are also numerous

variables whose names start with sftp- that may be used to configure Epsilon to work with alternatives to

the sftp program.

Some very old sftp programs use a different command syntax for listing files; if you have trouble, try

setting the scp-client-style variable to 2 to make Epsilon use old-style sftp commands. You may have

to modify scp-list-flags too.

WINDOWS-SPECIFIC CONFIGURATION OPTIONS

As explained above, using an ssh-agent program along with public key authentication lets you type

your secure passphrase once and have multiple connections use it. The agent must provide some settings

that are passed on to the sftp or ssh clients it runs via environment variables. For Windows users running

Cygwin, one option is to start Cygwin’s bash shell, run the command eval ‘ssh-agent‘, run the

ssh-add command, and then run Epsilon from that same shell. Or you can use the run-ssh-agent.bat

file included in Epsilon’s bin subdirectory to run an ssh agent. The comments in that file explain how to run

ssh-agent through it, so it creates a load-ssh-agent batch file that loads agent settings into the environment,

and how to set Epsilon variables so Epsilon invokes load-ssh-agent when starting ssh or scp sessions.

To make Epsilon work with the Windows ssh client PuTTY instead of the recommended Cygwin

clients, use these settings:

scp-windows-sftp-command psftp

ssh-template plink -l %u %h

ssh-no-user-template plink %h

scp-client-style 2

Be sure to install PuTTY’s psftp and plink programs along with the base PuTTY installation. With

PuTTY, certain features like file name completion won’t be available.

PER-SYSTEM SETTINGS

It’s possible to set up Epsilon to use one set of variables for one remote system and a different one for

others. To enable this, before checking for a variable such as scp-run-helper-template, Epsilon

constructs a new variable name by adding the host name of the remote system to its end. For instance, if you

try to access www.example.com, Epsilon first looks for a variable named

scp-run-helper-template-www-example-com; if there’s a variable by that name, Epsilon uses it

instead of the usual one. (Epsilon constructs the variable name from a host name by replacing each

non-alphanumeric character with a -.) It does this for each of its scp and ssh variables.

USING ANCIENT HOSTS

If you must use a very old version of ssh that lacks an sftp program, or connect to a system that doesn’t

support sftp, or you want to use an ssh replacement that lacks sftp, it’s possible to set up Epsilon to run its

own helper program on the remote system.

126 Chapter 4. Commands by Topic

To do this, copy the C language source code file epsilon-xfer-helper.c included in Epsilon’s

source directory to the remote system, compile it with “make epsilon-xfer-helper” or similar, and install in

an accessible location. It may be compiled on most Unix systems, or, for Windows, using the Cygwin

environment. Next, check that you can run the helper program remotely, with a command line like

ssh -l username hostname epsilon-xfer-helper

It should print a greeting line and await a command. Type ˆC or press 〈Enter〉 to make it exit. You may

need to edit the Epsilon variable scp-run-helper-template to include the path to the helper program, or

if you use a different ssh program. For instance, if you use an ssh client “oldssh” that lacks an sftp program,

set it to “oldssh %u@%h /path/to/epsilon-xfer-helper” or similar. (Epsilon uses the above variable

when the scp:// url includes a user name, and the scp-run-helper-no-user-template variable when it

does not.)

To tell Epsilon to use epsilon-xfer-helper commands, not sftp commands, set the scp-client-style

variable to 1. Using the helper program enables a few minor features that the sftp program doesn’t currently

support, like using ~ to indicate home directories, or copying a remote file to a different location on the

remote system (sftp can rename remote files but not copy them).

When you don’t use sftp, Epsilon must run a separate program for each file transfer. By default it uses

the scp program. The variable scp-read-file-template tells Epsilon how to transfer a file from the

remote system to a local file, and scp-write-file-template does the opposite. There are separate

versions of these variables for when no user name is included, named

scp-read-file-no-user-template and scp-write-file-no-user-template. Change these

variables to use a different program for copying files when you don’t use sftp.

Summary: ssh

ssh-mode

Ssh mode only: Alt-n process-next-cmd

Ssh mode only: Alt-p process-previous-cmd

URL Syntax

In Epsilon, URLs must start with ftp://, http://, scp://, ssh://, or telnet://. (If you omit the service name, the

ftp: part, Epsilon for Windows will pass the file name to Windows as a UNC-style network file name.)

For some services, you can specify a user name, password, or port number using the URL syntax of

service://username:password@hostname:portnumber/filepath. (Ftp and http recognize all three, telnet

recognizes only a port number, and scp recognizes only a user name.)

If you include a user name in an ftp or http URL but omit the :password part, Epsilon will prompt for

one (and will make sure the password does not appear in your state file, session file, or similar places). But

if you include a password in your URL, note that it may be saved in Epsilon’s session file or similar places.

If you omit the username:password@ or username@ part entirely in an ftp URL, Epsilon uses the user

name “anonymous” and the password specified by the anon-ftp-password variable (default:

EpsilonUser@unknown.host). You can set this to your email address if you prefer.

You can also use Emacs-style syntax for specifying remote file names: /username@hostname:filepath.

Epsilon will behave as if you had typed the corresponding URL.

In ftp:// URLs, Epsilon treats a file name following the / as a relative pathname. That is,

ftp://user@example.com/myfile refers to a file named myfile in the user’s home directory. Put two slashes,

as in ftp://user@example.com//myfile, to refer to /myfile in the root directory. You can type \ instead of / in

any URL and Epsilon will substitute /.

4.8. Buffers and Files 127

If you type the name of a local directory to the find-file command, find-file will run the dired command

on it. With ftp:// URLs, find-file won’t always know that what you typed is a remote directory name (as

opposed to a file name) and might try to retrieve the URL as a file, leading to an error message like “Not a

plain file”. End your URL with a / to indicate a directory name.

4.8.5 Unicode Features

This section explains how to use Epsilon to edit text containing non-English characters such as ê or å.

Epsilon supports Unicode, as well as many 8-bit national character sets such as ISO 8859-1 (Latin 1).

In Unix, full Unicode support is only available when Epsilon runs under X11, and when a font using the

iso10646 character set is in use. See http://www.lugaru.com/links.html#unicode for Unicode font sources.

To select a Unicode font, first select iso10646-1 in the list of character sets on the Filter pane of the font

selection dialog.

Under Windows, full Unicode support is only available under Windows NT and later versions. For

Unicode support in the Win32 Console version, see the console-ansi-font variable. Also see page 117

for more information on the DOS/OEM encoding used by default in the Win32 console version.

In this release, Epsilon doesn’t display Unicode characters outside the basic multilingual plane (BMP),

or include any of the special processing needed to handle complex scripts, such as scripts written

right-to-left.

Epsilon knows how to translate between its native Unicode format and dozens of encodings and

character sets (such as UTF-8, ISO-8859-4, or KOI-8).

Epsilon autodetects the encoding for files that start with a Unicode signature (“byte order mark”), and

for many files that use the UTF-8 encoding. To force translation from a particular encoding, provide a

numeric argument to a file reading command like find-file. Epsilon will then prompt for the name of the

encoding to use. Press “?” when prompted for an encoding to see a list of available encodings. The special

encoding “raw” reads and writes 8-bit data without any character set translation.

Epsilon uses the buffer’s current encoding when writing or rereading a file. Use the set-encoding

command to set the buffer’s encoding.

The unicode-convert-from-encoding command makes Epsilon translate an 8-bit buffer in a certain

encoding to its 16-bit Unicode version. The unicode-convert-to-encoding command does the reverse.

You can add a large set of additional converters to Epsilon by downloading a file. Mostly these

converters add support for various Far East languages and for EBCDIC conversions. See

http://www.lugaru.com/encodings.html for details.

Internally, buffers with no character codes outside the range 0–255 are stored with 8 bits per character;

other buffers are stored with 16 bits per character. Epsilon automatically converts formats as needed.

The detect-encodings variable controls whether Epsilon tries to autodetect certain UTF-8 and

UTF-16 files. The default-read-encoding variable says which encoding to use when autodetecting

doesn’t select an encoding. The default-write-encoding variable sets which encoding Epsilon uses to

save a file with 16-bit characters and no specified encoding, in a context where prompting wouldn’t be

appropriate such as when auto-saving.

See the insert-ascii command on page 54 to type arbitrary Unicode characters, and the show-point

command to see what specific characters are present (if the current font doesn’t make that clear enough).

128 Chapter 4. Commands by Topic

4.8.6 Printing

The print-buffer command on Alt-F9 prints the current buffer. If a region is highlighted on the screen, the

command prints just that region. The print-region command on Shift-F9 always prints just the current region,

whether or not it’s highlighted.

Under Windows, the printing commands display the familiar Windows print dialog. From this dialog,

you can select a different printer, select particular pages to print, and so forth. The print-setup command lets

you select a different printer without printing anything, or set the margins. Invoke the printing commands

with a numeric prefix argument to skip the print dialog and just print with default settings. The

print-buffer-no-prompt command also skips the print dialog and uses default settings.

You can change the font Epsilon for Windows uses for printing with the set-printer-font command. See

page 106 for more information.

By default, Epsilon for Windows will print in color on color printers, and in black & white on non-color

printers. You can set the print-in-color variable to 0, if you don’t want Epsilon to ever print in color, or

to 2 if you want Epsilon to attempt to use colors even if the printer doesn’t appear to be a color printer.

(Some printers will substitute shades of grey.) The default value, 1, produces color printing only on color

printers.

If you have a color printer, and want to use a different color scheme when printing than you do for

screen display, set the variable print-color-scheme to the name of the color scheme Epsilon should use

for printing.

Epsilon for Windows prints a heading at the top of each page. You can set the print-heading variable

(which see) to control what it includes. By default it prints the file name, page number, and current date.

You can set the variable print-line-numbers nonzero if you want Epsilon to include line numbers,

or set print-doublespaced if you want Epsilon for Windows to skip alternate lines. (To display line

numbers on the screen, not when printing, see the draw-line-numbers variable.)

In non-Windows environments, the printing commands prompt for the device name of a printer. They

then write the text to that device name. If you want Epsilon to run a program that will print the file, you can

do that too. See the description of the print-destination variable in the online help. (For Unix, see

print-destination-unix, which by default runs the lpr program to print a file.) If you want Epsilon for

Windows to run a program in order to print a file, bypassing the Windows print dialog, you can set

want-gui-printing to zero.

By default, Epsilon converts tabs to spaces in a copy of the buffer before printing it. Set the variable

print-tabs to one if you want Epsilon to print the file just as it is, including the tab characters.

Summary: Alt-F9 print-buffer

Shift-F9 print-region

print-setup

4.8.7 Extended file patterns

This section describes Epsilon’s extensions to the rules for wildcard characters in file names. You can

specify more complicated file name patterns in Epsilon than Windows or Unix normally allow, using the

wildcard characters of square brackets [], commas, semicolons, and curly braces {}. Epsilon also lets you

use the * and ? characters in more places. These patterns work in the grep command, the dired command,

and in all other places where file name wildcards make sense. (They don’t work with Internet URLs,

though.)

4.8. Buffers and Files 129

First, you can put text after the standard wildcard character * and Epsilon will match it. In standard

DOS-style patterns, the system ignores any text in a pattern between a * and the end of the pattern (or the

dot before an extension). But in Epsilon, ab*ut matches all files that start with ab and end with ut. The *

matches the dot character in file names, so the above pattern matches file names like about as well as

absolute.out. (Use ab*ut. to match only files like the former, or ab*.*ut to match ones like the latter.)

Instead of ? to match any single character (except dot, slash, or backslash), you can provide a list of

characters in square brackets (similar to the regular expression patterns of searching). For example,

file[0123456789stuvw] matches file4, file7, and files, but not filer. Inside the square brackets,

two characters separated by a dash represent a range, so you could write the above pattern as

file[0-9s-w]. A caret character ^ just after the [permits any character but the listed ones, so

fil[^tm]er matches all the files that fil?er matches, except filter and filmer. (To include a dash or]

in the pattern, put it right after the [or ^. The pattern [^-]] matches all characters but - and].)

You can use ? and * (and the new square bracket syntax) in directory names. For example, \v**.bat
might match all .bat files in \virtmem and in \vision. Because a star character never matches backslash

characters, it would not match \vision\subdir\test.bat.

The special directory name ** matches any number of directory names. You can use it to search entire

directory trees. For example, ***.txt matches all .txt files on the current drive. The pattern

**\include*.h matches all .h files inside an include directory, looking in the current directory, its

subdirectories, and all directories within those. A pattern ending in ** matches all files in that hierarchy.

You can set the file-pattern-ignore-directories variable to have Epsilon skip over certain

directories when expanding **.

The simplest new file pattern character is the comma. You can run grep on the file pattern foo,bar,baz

and Epsilon will search in each of the three files. You can use a semicolon in place of a comma, if you want.

A segment of a file pattern enclosed in curly braces may contain a sequence of comma-separated parts.

Epsilon will substitute each of the parts for the whole curly-brace sequence. For example,

\cc\include\c*t.{bat,txt} matches the same files as

\cc\include\c*t.bat,\cc\include\c*t.txt. A curly-brace sequence may not contain another

curly-brace sequence, but may contain other wildcard characters. For example, the pattern

{,c*\}*.{txt,bat} matches .txt and .bat files in the current directory, or in any subdirectory starting

with “c”. The brace syntax is simply a shorthand for the comma-separated list described above, so that an

equivalent way to write the previous example is *.txt,c**.txt,*.bat,c**.bat. Epsilon breaks a

complete pattern into comma-separated sections, then replaces each section containing curly braces with all

the possible patterns constructed from it. You can use semicolons between the parts in braces instead of

commas if you prefer.

To match file names containing one of the new wildcard characters, enclose the character in square

brackets. For example, the pattern abc[}] matches the file name abc}. (Note that legal DOS file names

may not contain any of the characters [],;, but they may contain curly braces {}. Other file systems,

including Windows VFAT, Windows NT’s NTFS, most Unix file systems, and OS/2’s HPFS, allow file

names that contain any of these characters.)

Use curly braces to search on multiple drives. {c,d,e}:***.txt matches all .txt files on drives

C:, D:, or E:. Epsilon does not recognize the *, ?, or [] characters in the drive name.

When a file name contains a literal brace character, a comma, or one of the other characters used for

extended wildcard patterns, you can surround it in quotes (") to tell Epsilon to treat it literally, not as a

wildcard pattern. Or you can set the file-pattern-wildcards variable to disable the wildcarding

function of specific characters. If your file names often contain commas, for instance, you may want to

disable comma’s wildcard function.

It’s possible to make Epsilon ignore certain types of symbolic links (and similar Windows NTFS file

system entities) when interpreting file patterns. For instance, you can keep a ** pattern from matching

130 Chapter 4. Commands by Topic

symbolic links to directories, only matching actual directories. See the file-pattern-rules variable.

Under Windows, file pattern matching also matches on the names of NTFS streams, and on the server

and share names of UNC files. You can restrict server name matching to particular domains to speed it up on

large networks; see the file-pattern-unc-domains variable.

4.8.8 Directory Editing

Epsilon has a special mode used for examining and changing the contents of a directory conveniently. The

dired command, bound to Ctrl-X D, asks for the name of a directory and puts a listing of the directory,

similar to what the DOS “dir” command produces (or, for Unix, “ls -lF”), in a special dired buffer. By

default, dired uses the current directory. You can supply a file pattern, such as “*.c”, and only matching files

will appear. The dired command puts the information in a buffer whose name matches the directory and file

pattern, then displays the buffer in the current window. You can have multiple dired buffers, each displaying

the result of a different file pattern.

You can also invoke dired from the find-file command. If you press 〈Enter〉 without typing any file name

when find-file asks for a file, it does a dired on the current directory. If you give find-file a file name with wild

card characters, it runs the dired command giving it that pattern. If you give find-file a directory name, it does

a dired of that directory. (When using ftp:// URLs that refer to a directory, end them with /. See page 127 for

details.)

You can use extended file patterns to list files from multiple directories. (See page 128.) If you use a file

pattern that matches files in more than one directory, Epsilon will divide the resulting dired buffer into

sections. Each section will list the files from a single directory. Epsilon sorts each section separately.

While in a dired buffer, alphabetic keys run special dired commands. See the next section on page 131

for a complete list.

The quick-dired-command command on Alt-o is like running a dired on the current file, then executing a

single dired command and discarding the dired buffer. It provides a convenient way of performing various

simple file operations without running dired. It prompts for another key, one of C, D, M, G, !, T, or V. Then

it (respectively) copies, deletes, or renames the current file, changes Epsilon’s current directory to the one

containing that file, runs a command on the file, shows the file’s properties, or views it using associations.

Alt-o + creates a new directory, prompting for its name. Alt-o . displays a dired of the current file. Alt-o A

lets you set the file’s attributes or permission bits. Alt-o F views its folder in MS-Windows Explorer. The

other keys are similar to their corresponding dired subcommands; see the next section for more details. (The

T and F options are only available in Epsilon for Windows.)

By default, Epsilon records dired buffers in its session file and recreates them the next time you start

Epsilon, except for remote direds that use a URL. See the variables

session-restore-directory-buffers and session-restore-max-directories.

The locate-file command prompts for a file name and then searches for that file, using dired to display

the matches. In Windows, it searches for the file on all local hard drives, skipping over removable drives,

CD-ROM drives, and network drives. On Unix, it searches through particular parts of the directory

hierarchy specified by the locate-path-unix variable.

The list-files command also takes a file pattern and displays a list of files. Unlike dired, its file list uses

absolute pathnames, and it omits the file’s size, date, and other information. It provides just the file names,

one to a line. The command also doesn’t list directory names, as dired does. The command is often useful

when preparing response files for other programs.

Summary: Ctrl-X D dired

Alt-o quick-dired-command

4.8. Buffers and Files 131

list-files

Dired Subcommands

This section lists the subcommands you can use when editing a dired buffer (see page 130). You run most

dired commands by pressing plain letters. All other keys still invoke the usual Epsilon commands.

The N and P commands go to the next and previous files, respectively.

The E, 〈Space〉, and 〈Enter〉 keys let you examine the contents of a file. They invoke the find-file

command on the file, making the current window display this file instead of the dired buffer. To

conveniently return to the dired buffer, use the select-buffer command (Ctrl-X B). Press 〈Enter〉 when

prompted for the buffer name and the previous buffer shown in the current window (in this case, the dired

buffer) will reappear.

When applied to a subdirectory, these keys invoke another dired on that directory, using the name of the

directory for that dired buffer. If you have marked files for deletion or copying, and you run a dired on the

same directory, the markings go away.

The ‘.’ or “^” keys invoke a dired on the parent directory of the directory associated with the current

dired buffer.

To set Epsilon’s current directory to the directory being displayed, press G (for Go). If the current line

names a directory, Epsilon will make that be the current directory. If the current line names a file, Epsilon

will set the current directory to the one containing that file.

Press D to flag a file that you wish to delete. Epsilon will mark the file for deletion by placing a ‘D’

before its name. (You may delete empty directories in the same way.) Press C or M to select files for copying

or moving (renaming), respectively. Epsilon will mark the files by placing C or M before their names. The U

command unmarks the file on the current line, removing any marks before its name.

The X command actually deletes, copies, or moves the marked files. Epsilon will list all the files marked

for deletion and ask you to confirm that you want them deleted. If any files are marked for copying or

moving, Epsilon will ask for the destination directory into which the files are to be copied or moved. If there

is only one file to copy or move, you can also specify a file name destination, so you can use the command

for renaming files. (In this case, Alt-g will copy the original file name so you can edit it.) Epsilon prompts

for a single destination for all files to be copied, and another for all files to be moved.

If you try to delete a read-only file, Epsilon will prompt first; see the dired-confirmation variable to

change this. If you try to delete a non-empty directory, Epsilon will similarly ask for confirmation before

deleting the entire directory hierarchy. Similar prompts occur if you try to overwrite an existing local file

when copying or moving a file.

There are a few specialized commands for renaming files. Press Shift-L to mark a file for lowercasing

its name, or Shift-U for uppercasing. When you execute with X, each marked file will be renamed by

changing each uppercase character in its name to lowercase (or vice versa). (Note that Epsilon for Windows

displays all-uppercase file names in lowercase by default, so Shift-U’s effect may not be visible within

Epsilon. See preserve-filename-case.)

Shift-R marks a file for a regular-expression replacement on its name. When you press X to execute

operations on marked files, Epsilon will ask for a pattern and replacement text. Then, for each file marked

with Shift-R, Epsilon will take the file name and perform the indicated regular expression replacement on it,

generating a new name. Then Epsilon will rename the file to the new name. For instance, to rename a group

of files like dir\file1.cxx, dir\file2.cxx, etc. to dir2\file1.cpp, dir2\file2.cpp, use Shift-R and specify

dir\(.*).cxx as the search text and dir2\#1.cpp as the replacement text. To rename some .htm files to

.html, specify .* as the search text and #0l as the replacement text.

132 Chapter 4. Commands by Topic

By default, most files or directories that start with a period character . will be hidden. Pressing -

toggles whether such files are hidden. The dired-show-dotfiles variable sets which files or directories

are always shown regardless of this toggle. By default, dired entries for the current directory (.) and its

parent (..) are always shown.

The ! dired subcommand prompts for a command line, then runs the specified program, adding the

name of the current line’s file after it. If the command line you type contains an *, Epsilon substitutes the

current file name at that position instead of at the end. If the command line ends in a & character, Epsilon

runs the program asynchronously; otherwise it waits for the program to finish.

The + command creates a new subdirectory. It asks for the name of the subdirectory to create.

The R command refreshes the current listing. Epsilon will use the original file pattern to rebuild the file

listing. If you’ve marked files for copying, moving, or deleting, the markings will be discarded if you

refresh, so Epsilon will prompt first to confirm that you want to do this.

The S key controls sorting. It prompts you to enter another letter to change the sorting method. Press N,

E, S, or D to select sorting by file name, file extension, size, or time and date of modification, respectively.

Press U to turn off sorting the next time Epsilon makes a dired listing, and display the file names in the same

order they come from the operating system. (You can have Epsilon rebuild the current listing using the R

subcommand.)

Press + or - at the sorting prompt to sort in ascending or descending order, respectively, or R to reverse

the current sorting order.

Press G at the sorting prompt to toggle directory grouping. With directory grouping, Epsilon puts all

subdirectories first in the list, then all files, and sorts each part individually. Without directory grouping, it

mixes the two together (although it still puts . and .. first).

Under Windows, press A to display the file’s current attributes (Hidden, System, Read-only and

Archive) and specify a new attribute list. You can set the dired-layout variable under Windows to include

these attributes in the dired listing itself, or customize dired’s format in other ways. Under Unix, A runs the

chmod command, passing it the mode specification you type, such as g+w to let group members write to the

file. For remote files accessed via Scp, Epsilon sends the mode specification you provide directly to the Sftp

server. It must be in the form of Unix-style octal permission bits, like 0644.

Press V to run the “viewer” for that file; the program assigned to it according to Windows file

associations. For Windows executable files, this will run the program. For document files, it typically runs

the Windows program assigned to that file extension. See page 136 for information on associating Epsilon

with particular file extensions.

Under Unix, V uses KDE, Gnome, or Mac OS X file associations to run the viewer for the file. See the

epsilon-viewer script to change which of these types of viewers Epsilon uses. For Gnome, run the

gnomecc program to select a different viewer for a specific file type.

Press Shift-P to print the current file. Under Windows, press T to display the properties of a file or

directory. (This is a convenient way to see the total size of all files in a directory.) Press F to search for text

in a file name, skipping over matches in the columns for file size or date, by running incremental-search

with a column restriction.

Several keys provide shortcuts for common operations. The 1 key examines the selected file in a

window that occupies the whole screen (like typing Ctrl-X 1 E). The 2 key splits the current window

horizontally and examines the selected file in the second window, leaving the dired buffer in the first (like

typing Ctrl-X 2 E). The 5 key functions like the 2 key, but splits the window vertically (like typing Ctrl-X 5

E). The O key examines the selected file in the next window on the screen, without splitting windows any

further. The Z key zooms the window to full-screen, then examines the selected file (like typing Ctrl-X Z E).

Press Shift-E to examine the current file or directory, like 〈Enter〉, but deleting the current dired buffer if

you’ve moved to a new one. This runs the dired-examine-deleting function, while plain E runs

4.8. Buffers and Files 133

dired-examine. You can swap these commands so plain E deletes old dired buffers while Shift-E doesn’t, by

adding these lines to your einit.ecm customization file (see page 154):

~dired-tab "e": dired-examine-deleting

~dired-tab "E": dired-examine

(Similar lines can attach dired-examine-deleting to keys like 〈Space〉 or 〈Enter〉. See page 147.)

Press lowercase L to create a live link. First Epsilon creates a second window, if there’s only one

window to start with. (Provide a numeric argument to get vertical, not horizontal, window splitting.) Then

Epsilon displays the file named on the current dired line in that window, in a special live link buffer. As you

move around in the dired buffer, the live link buffer will automatically update to display the current file.

Files over dired-live-link-limit bytes in size won’t be shown, to avoid delays. See the

wrap-dired-live-link variable to control how long lines display. Delete the live link buffer or window,

or show a different buffer there, to stop the live linking.

Press Shift-G to mark files by content. This subcommand prompts for some search text. You can use the

keys Ctrl-T, Ctrl-W and Ctrl-C when typing the search string to toggle regex mode, word mode, and case

folding.

Then the subcommand prompts for a key to indicate what kind of marking to apply. Press d, m, or c to

mark files for deletion, moving or copying, u to remove markings, U, L, or R to perform the corresponding

renaming function described above, or g to apply a generic marking that simply indicates which files

contained a match for the search string. A numeric prefix argument to this subcommand reverses the sense

of its test, marking only files that don’t contain the specified text.

Alt-[and Alt-] move back and forward, respectively, by marks. They look at the mark on the current

line (such as a D for deletion), then go to the next (or previous) line that has different markings. The

copy-file-name command on Ctrl-C Alt-n copies the full pathname of the current line’s file to the clipboard

(just as it copies the current file’s full pathname, in non-dired buffers).

Finally, typing H or ? while in dired displays help on these dired subcommands.

4.8.9 Buffer List Editing

The bufed command on Ctrl-X Ctrl-B functions like dired, but it works with buffers instead of files. It creates

a list of buffer names. Each buffer name appears on a line along with the size of the buffer, the associated

file name (if any) and a star if the buffer contains unsaved changes, and/or an R if the buffer is currently

marked read-only. The bufed command pops up the list, and highlights the line describing the current buffer.

In bufed’s popup window, alphabetic keys run special bufed commands. The N and P keys go to the

next and previous buffers in the list, respectively, by going down or up one line. The D command deletes the

buffer on the current line, but warns you if the buffer contains unsaved changes. The S key saves the buffer

on the current line, and Shift-P prints the buffer like the print-buffer command. The E or 〈Space〉 command

selects the buffer on the current line and displays it in the current window, removing the bufed listing.

As in dired, several keys provide shortcuts for common operations. The 1 key expands the current

window to take up the whole screen, then selects the highlighted buffer. The 2 key splits the current window

horizontally and selects the highlighted buffer in the second window. The 5 key works like the 2 key, except

it splits the window vertically. The Z key zooms the current window to full-screen, then selects the

highlighted buffer.

By default, the most recently accessed buffers appear at the top of the list, and those you haven’t used

recently appear at the end. The current buffer always appears at the top of the list. You can press ‘b’, ‘f’, or

‘i’ to make Epsilon sort the list by buffer name, file name, or size, respectively. Pressing ’a’ makes Epsilon

sort by access time again. Pressing the upper case letters ‘B’, ‘F’, ‘I’, or ‘A’ reverses the sense of the sort.

134 Chapter 4. Commands by Topic

Pressing ‘u’ produces a buffer list ordered by time of creation, with the oldest buffers at the bottom. Pressing

‘m’ toggles whether modified buffers appear first in the list. Alphabetic keys not mentioned above do

nothing. Most other keys like 〈Down〉 or Ctrl-S run their usual commands.

The bufed command does not normally list special buffers such as the kill buffers, whose names start

with a dash character (“-”). To include even these buffers, give the bufed command a numeric argument.

By default, bufed pops up a 50-column window in the non-Windows versions. You can change this

width by setting the bufed-width variable. (In Epsilon for Windows, change the dialog’s width by

dragging its border, as usual.) The bufed-column-width variable controls how much space is used for

buffer names in the display.

The bufed-show-absolute-path variable says whether bufed should display file names using their

absolute path names, not those relative to the current directory. The bufed-grouping variable says whether

to group buffers with no files, or system buffers, together in the list, instead of sorting them with other

buffers.

Summary: Ctrl-X Ctrl-B bufed

4.9 Starting and Stopping Epsilon

You generally exit the editor with Ctrl-X Ctrl-Z, which runs the command exit-level. If in a recursive editing

level, exit-level will not exit, but bring you back to the level that invoked the recursive edit. If you haven’t

saved all your files, Epsilon will display a list using bufed and ask if you really want to exit.

You may also use exit, Ctrl-X Ctrl-C, to exit the editor. It ignores any recursive editing levels. When

given a numeric argument, Epsilon won’t warn you about unsaved files, write a session file (see the next

section), record your current font settings, or similar things. It will simply exit immediately, returning the

numeric argument as its exit code (instead of zero, returned for a normal exit).

You can customize Epsilon’s actions at startup by defining a hook function using EEL. See page 531.

In Epsilon for Unix, an alternative to exiting Epsilon is to suspend it using the Alt-x suspend-epsilon

command. This returns control to the shell that launched Epsilon. Use the shell’s fg command to resume

Epsilon. When Epsilon runs as an X11 program, this command instead minimizes Epsilon’s window.

Summary: Ctrl-X Ctrl-Z exit-level

Ctrl-X Ctrl-C exit

suspend-epsilon

4.9.1 Session Files

When you start up Epsilon, it will try to restore the window and buffer configuration you had the last time

you ran Epsilon. It will also restore items such as previous search strings, your positions within buffers, and

the window configuration. The -p flag described on page 16 or the preserve-session variable may be

used to disable restoring sessions.

You can set the session-restore-max-files variable to limit the number of files Epsilon will

reread, which is by default 25. The files are prioritized based on the time of their last viewing in Epsilon, so

by default Epsilon restores the 15 files you’ve most recently edited. Also, Epsilon won’t automatically

restore any files bigger than the size in bytes specified by the session-restore-biggest-file variable.

For files accessed via URLs, Epsilon uses the variable session-restore-biggest-remote-file instead.

4.9. Starting and Stopping Epsilon 135

By default, Epsilon records dired buffers (see page 130) in its session file and recreates them the next

time you start Epsilon, except for remote direds that use a URL. Set the variables

session-restore-directory-buffers or session-restore-max-directories to customize this.

You can set the session-restore-directory variable to control whether Epsilon restores any

current directory setting in the session file. Set it to 0 and Epsilon will never do this. Set it to 1 and Epsilon

will always restore the current directory when it reads a session file. The default value 2 makes Epsilon

restore the current directory setting only when the -w1 flag has been specified. (Under Windows, Epsilon’s

installer includes this flag when it makes Start Menu shortcuts.)

You can set the session-restore-files variable to control whether Epsilon restores files named in a

session file, or just search strings, command history, and similar settings. If session-restore-files is 0,

when Epsilon restores a session, it won’t load any files named in the session, only things like previous

search strings. If 1, the default, Epsilon will restore previous files as well as other settings. If 2, Epsilon will

restore previous files only if there were no files specified on Epsilon’s command line. The

session-always-restore variable is more drastic, turning off session files entirely when there’s a file

specified on Epsilon’s command line.

The write-session command writes a session file, detailing the files you’re currently editing, the window

configuration, default search strings, and so forth. By default, Epsilon writes a session file automatically

whenever you exit, but you can use this command if you prefer to save and restore sessions manually.

The read-session command loads a session file, first asking if you want to save any unsaved files.

Reading in a session file rereads any files mentioned in the session file, as well as replacing search strings,

all bookmarks, and the window configuration. However, any files not mentioned in the session file will

remain, as will keyboard macros, key bindings, and most variable settings. If you use either command and

specify a different session file than the default, Epsilon will use the file name you provided when it

automatically writes a session file as you exit.

Locating The Session File

By default, Epsilon restores your previous session by consulting a single session file named epsilon.ses,

which is normally stored in your customization directory. (See page 13.) Epsilon will write such a file when

you exit.

You can set Epsilon to use multiple session files by having it search for an existing session file, starting

from the current directory. If a session file doesn’t exist in the current directory, then Epsilon looks in its

parent directory, then in that directory’s parent, and so forth, until it reaches the root directory or finds a

session file. Or you can have it always read and create its session file in the current directory.

To make Epsilon look for its session file only in the current directory, and create a new session file there

on exiting, set the session-default-directory variable to “.”.

To make Epsilon search through a directory hierarchy for an existing session file, set the

session-tree-root variable to empty. If this variable is set to a directory name in absolute form, Epsilon

will only search for an existing session file in the named directory or one of its children. For example, if

session-tree-root holds c:\joe\proj, and the current directory is c:\joe\proj\src, Epsilon will search in

c:\joe\proj\src, then c:\joe\proj, for a session file. If the current directory is c:\joe\misc, on the other

hand, Epsilon won’t search at all (since \joe\misc isn’t a child of \joe\proj), but will use the rules below. By

default this variable is set to the word NONE, an impossible absolute directory name, so searching is disabled.

If Epsilon finds no such file by searching as described above (or if such searching is disabled, as it

usually is), then Epsilon looks for a session file in each of these places, in this order:

• If the session-default-directory variable is non-empty, in the directory it names. (This variable

is empty by default.)

136 Chapter 4. Commands by Topic

• If the configuration variable EPSPATH can be found, in the first directory it names. (See page 10 for

more on configuration variables.)

• In your customization directory.

There are three ways to tell Epsilon to search for a file with a different name, instead of the default of

epsilon.ses. With any of these methods, specifying an absolute path keeps Epsilon from searching and forces

it to use a particular file. Epsilon checks for alternate names in this order:

• The -p flag can specify a different session file name.

• An ESESSION configuration variable can specify a different session file name.

• The session-file-name variable can specify a name.

Summary: read-session

write-session

4.9.2 File Associations

You can set up file associations in Epsilon for Windows using the configure-epsilon command. It lets you

modify a list of common extensions, then sets up Windows so if you double-click on a file with that

extension, it invokes Epsilon to edit the file. The files will be sent to an existing copy of Epsilon, if one is

running, or you can choose to always start a new instance.

Summary: configure-epsilon

4.9.3 Sending Files to a Prior Instance

Epsilon’s command line flag -add tells Epsilon to locate an existing instance of itself (a “server”), send it a

message containing the rest of the command line, and immediately exit. (Epsilon ignores the flag if there’s

no prior instance.)

The command line flag -noserver tells Epsilon that it should not respond to such messages from future

instances.

The command line flag -server may be used to alter the server name for an instance of Epsilon, which is

“Epsilon” by default. An instance of Epsilon started with -server:somename -add will only pass its

command line to a previous instance started with the same -server:somename flag.

An -add message to Epsilon uses a subset of the syntax of Epsilon’s command line. It can contain file

names to edit, the +linenum flag, the -dir dirname flag to set a directory for interpreting any relative file

names that follow, the flag -dvarname=value to set an Epsilon variable, -lfilename to load an EEL bytecode

file, or -rfuncname to run an EEL function, command, or macro. Use -rfuncname=arg to run an EEL

function and pass it a single string parameter arg. Epsilon unminimizes and tries to move to the foreground

whenever it gets a message, unless the message uses the -r flag and doesn’t include a file name.

Spaces separate file names and flags in the message; surround a file name or flag with " characters if it

contains spaces. In EEL, such messages arrive via a special kind of WIN_DRAG_DROP event.

4.9. Starting and Stopping Epsilon 137

You can also use the -wait flag instead of -add. This causes the client Epsilon to send the following

command line to an existing instance and then wait for a response from the server, indicating the user has

finished editing the specified file. Use the resume-client command on Ctrl-C # to indicate this.

Epsilon for Windows normally acts as a server for its own internal-format messages, as described

above, and also acts as a DDE server for messages from Windows Explorer. The -noserver flag described

above also disables DDE, and the -server flag also sets the DDE server name. The DDE server in Epsilon

uses a topic name of “Open” and a server name determined as described above (normally “Epsilon”).

When Epsilon gets an -add message, it moves itself to the top of the window order (unless the message

used the -r flag and specified no file; then the function run via -r is responsible for changing the window

order, if desired). Under Epsilon for X11, the server-raises-window variable controls this behavior.

Summary: Ctrl-C # resume-client

4.9.4 MS-Windows Integration Features

Epsilon can integrate with Microsoft’s Visual Studio (Developer Studio) in several ways. The on-demand

style of integration lets you press a key (or click a button) while editing a file in Visual Studio, and start

Epsilon on the same file. The other automates this process, so any attempt to open a source file in Visual

Studio is routed to Epsilon.

For on-demand integration, you can add Epsilon to the Tools menu in Microsoft Visual Studio. You’ll

then be able to select Epsilon from the menu and have it begin editing the same file you’re viewing in Visual

Studio, at the same line.

To do this in Visual Studio 5.0 or 6.0, use the Tools/Customize menu command in Visual Studio. Select

the Tools tab in the Customize dialog that appears. Create a new entry for the Tools menu, and set the

Command field to the name of Epsilon’s executable, epsilon.exe. Include its full path, typically c:\Program

Files\Eps13\Bin\epsilon.exe. Set the Arguments field to -add +$(CurLine):$(CurCol) $(FilePath).

Set the Initial Directory field to $(FileDir). After creating this new command, you can then use the

Tools/Customize/Keyboard command to set up a shortcut key for it. You may also want to configure Visual

Studio to detect when a file is changed outside its environment, and automatically load it. See

Tools/Options/Editor for this setting.

If you use Visual Studio .NET, the steps are slightly different. Use Tools/External Tools/Add to create a

new entry in the Tools menu. Set the Command field to the full path to Epsilon’s executable, epsilon.exe, as

above. Set the Arguments field to -add +$(CurLine):$(CurCol) $(ItemPath). Optionally, set the

Initial Directory field to $(ItemDir). You can use Tools/Options/Environment/Keyboard to set up a

shortcut key for the appropriate Tools.ExternalCommand entry. To set Visual Studio .NET to autoload

modified files, use Tools/Options/Environment/Documents.

You can also set up Visual Studio 5.0 or 6.0 so that every time Visual Studio tries to open a source file,

Epsilon appears and opens the file instead. To set up Visual Studio so its attempts to open a source file are

passed to Epsilon, use the Customize command on the Tools menu and select the Add-ins and Macro Files

page in the dialog. Click Browse, select Add-ins (.dll) as the File Type, and navigate to the VisEpsil.dll file

located in the directory containing Epsilon’s executable (typically c:\Program Files\Eps13\bin). Select

that file.

Close the Customize dialog and a window containing an Epsilon icon (a blue letter E) should appear.

You can move the icon to any toolbar by dragging it. Click the icon and a dialog will appear with two

options. Unchecking the first will disable this add-in entirely. If you uncheck the second, then any time you

try to open a text file in Dev Studio it will open in both Epsilon and Dev Studio. When checked, it will only

open in Epsilon.

138 Chapter 4. Commands by Topic

Running Epsilon via a Shortcut

Epsilon comes with a program, sendeps.exe, that’s installed in the directory containing Epsilon’s main

executable. It provides some flexibility when you create a desktop icon for Epsilon, or use the Send To

feature (both of which involve creating a Windows shortcut).

If you create a desktop shortcut for Epsilon, or use the Send To feature in Windows, have it refer to this

sendeps.exe program instead of Epsilon’s main executable. Sendeps will start Epsilon if necessary, or locate

an existing copy of Epsilon, and load the files named on its command line.

This is useful because Windows ignores a shortcut’s flags (command line settings) when you drop a

document on a shortcut, or when you use the Send To feature. (If it used the flags, you could simply create a

shortcut to Epsilon’s main executable and pass its -add flag. Since it doesn’t, sending a file requires a

separate program.) Also, Windows sends long file names without quoting them in these cases, which would

cause problems if sent directly to Epsilon.

Sendeps may be configured through entries in a lugeps.ini file located in your Windows directory. It

will use a lugeps.ini in the directory containing sendeps.exe in preference to one in the Windows directory.

The section name it uses is the same as the base name of its executable (so making copies of the executable

under different names lets you have multiple Send To entries that behave differently, for instance).

These are its default settings:

[SendEps]

server=Epsilon

topic=Open

ddeflags=

executable=epsilon.exe

runflags=-add -w1

nofilestartnew=1

nofileflags=-w1

usedde=0

senddir=1

Here’s how Sendeps uses the above settings. It first looks for an Epsilon server named server using

Epsilon’s -add protocol. If found, it sends the server a command line consisting of the ddeflags setting,

followed by the file name passed on its command line (inside double quotes). If there’s no such server

running, Sendeps executes a command line built by concatenating the executable name, the runflags,

and the quoted file name. If the executable name is a relative pathname, Epsilon searches for it first in the

directory containing sendeps.exe, then along your PATH environment variable.

Normally relative file names on the sendeps command line are sent to Epsilon as-is, along with a -dir

flag indicating Sendeps’s current directory. Set senddir to zero and Sendeps will convert each file name to

absolute form itself and omit -dir.

You can tell Sendeps to use DDE instead of its usual -add protocol by setting usedde to 1. In that case it

will use the specified topic name.

When you invoke Sendeps without specifying a file name on its command line, its behavior is

controlled by the nofilestartnew setting. If nonzero it starts a new instance of Epsilon. If zero, it brings

an existing instance to the top, if there is one, and starts a new instance otherwise. In either case, if it needs

to start a new instance it uses nofileflags on the command line.

4.10. Running Other Programs 139

The Open With Epsilon Shell Extension

If you tell Epsilon’s installer to add an entry for Epsilon to every file’s context menu in Explorer, Epsilon

installs a shell extension DLL. You can configure it by creating entries in the lugeps.ini file located in your

Windows directory.

These are its default settings, which you can copy to lugeps.ini as a basis for your changes:

[OpenWith]

server=Epsilon

serverflags=

executable=epsilon.exe

runflags=-add -w1

menutext=Open With Epsilon

When you select Open With Epsilon from the menu in Explorer, the shell extension first looks for an

Epsilon server named server using Epsilon’s -add protocol. If found, it sends the server a command line

consisting of the serverflags setting, followed by the file name you selected (inside double quotes).

If there’s no such server running, the DLL executes a command line built by concatenating the

executable name, the runflags, and the quoted file name. If the executable name is a relative

pathname, it first tries to run any executable by that name located in the DLL’s current directory. If that fails,

it uses the executable name as-is, and lets Windows search for it along the PATH.

If you’ve selected multiple files, it repeats the above process for each file.

You can alter the menu text Explorer displays by setting the menutext item. This setting doesn’t take

effect until you restart Explorer, or unload and reload the owitheps.dll file that provides this menu by

running regsvr32 /u owitheps.dll, then regsvr32 owitheps.dll. Other changes to the DLL’s

settings take effect immediately.

4.10 Running Other Programs

Epsilon provides several methods for running other programs from within Epsilon. The push command on

Ctrl-X Ctrl-E starts a command processor (shell) running. You can then issue shell commands. When you

type the “exit” command, you will return to Epsilon and can resume your work right where you left off.

With a numeric argument, the command asks for a command line to pass to the shell, runs this

command, then returns.

While Epsilon runs a command processor or other program with the push command, it looks like you

ran the program from outside of Epsilon. But Epsilon can make a copy of the input and output that occurs

during the program’s execution, and show it to you when the program returns to Epsilon. If you set the

variable capture-output to a nonzero value (normally it has the value zero), Epsilon will make such a

transcript. When you return to Epsilon, this transcript will appear in a buffer named “process”.

You can use the filter-region command on Alt-| to process the current region through an external

command. Epsilon will run the command, sending a copy of the region to it as its standard input. By default,

the external command’s output goes to a new buffer. Run filter-region with a numeric argument if you want

the output to replace the current region.

The command shell-command is similar, but it doesn’t send the current region as the command’s input.

It prompts for the name of an external program to run and displays the result in a buffer; with a numeric

argument it inserts the command’s output into the current buffer.

140 Chapter 4. Commands by Topic

Configuration variables (see page 10) let you customize what command Epsilon runs when it wants to

start a process. Epsilon runs the command file named by the EPSCOMSPEC configuration variable. If no

such variable exists, Epsilon uses the standard COMSPEC environment variable instead. Epsilon reports an

error if neither exists.

If a configuration variable named INTERSHELLFLAGS has been defined, Epsilon passes the contents

of this variable to the program as its command line. When Epsilon needs to pass a command line to the

program, it doesn’t use INTERSHELLFLAGS. Instead, it inserts the contents of the CMDSHELLFLAGS

variable before the command line you type.

The sequence %% in CMDSHELLFLAGS makes Epsilon interpolate the command line at that point,

instead of adding it after the flags. Put a “d” after the %% to have Epsilon double backslashes in the

command line until the first space; put “b” to have Epsilon change backslashes to slashes until the first

space, or “a” to have Epsilon interpolate the command line as-is. A plain %% makes Epsilon guess: it uses

“b” if the shell name ends in “sh”, otherwise “a”.

If Epsilon can’t find a definition for INTERSHELLFLAGS or CMDSHELLFLAGS, it substitutes flags

appropriate for the operating system. See the next section for more on these settings.

Summary: Ctrl-X Ctrl-E push

filter-region

shell-command

4.10.1 The Concurrent Process

Epsilon can also run a program in a special way that allows you to interact with the program in a buffer and

continue editing while the program runs. It can help in preparing command lines, by letting you edit things

you previously typed, and it automatically saves what each program types, so you can examine it later. If a

program takes a long time to produce a result, you can continue to edit files while it works. We call a

program run in this way a concurrent process.

The start-process command, bound to Ctrl-X Ctrl-M, begins a concurrent process. Without a numeric

argument, it starts a shell command processor which will run until you exit it (by going to the end of the

buffer and typing “exit”). With a numeric argument, it creates an additional process buffer, in Epsilon

environments that support more than one.

Epsilon maintains a command history for the concurrent process buffer. You can use Alt-P and Alt-N to

retrieve the text of previous commands. With a numeric prefix argument, these keys show a menu of all

previous commands. You can select one to repeat.

In a concurrent process buffer, you can use the 〈Tab〉 key to perform completion on file names and

command names as you’re typing them. If no more completion is possible, it displays all the matches in the

echo area, if they fit. If not, press 〈Tab〉 again to see them listed in the buffer. See the process-complete

command for more details, or the process-completion-style and process-completion-dircmds

variables to customize how process buffer completion works.

The process-coloring-rules variable controls how Epsilon interprets ANSI escape sequences and

similar in a process buffer, and process-echo changes certain echoing functions. The

process-enter-whole-line variable customizes how the process buffer behaves when you press 〈Enter〉,
or select a previous command from command history.

Under Windows, certain process buffer functions like completion, or interpreting compiler error

messages, require Epsilon to determine the current directory of the command processor running there.

Epsilon does this by examining each prompt from cmd.exe, such as C:\WINNT>. If you’ve set a different

4.10. Running Other Programs 141

format for the prompt, you may have to set the process-prompt-pattern variable to tell Epsilon how to

retrieve the directory name from it. Also see the use-process-current-directory variable to change

how Epsilon’s current directory and the process’s are linked together.

As described in the previous section, you can change the name of the shell command processor Epsilon

calls, and specify what command line switches Epsilon should pass to it, by setting configuration variables.

Some different configuration variable names override those variables, but only when Epsilon starts a

subprocess concurrently. For example, you might run a command processor that you have to start with a

special flag when Epsilon runs it concurrently. The INTERCONCURSHELLFLAGS and

CMDCONCURSHELLFLAGS variables override INTERSHELLFLAGS and CMDSHELLFLAGS,

respectively. The EPSCONCURCOMSPEC variable overrides EPSCOMSPEC.

For example, one version of the Bash shell for Windows systems requires these settings:

EpsComspec=c:\cygwin\bin\bash.exe

InterShellFlags=--login --noediting -i

CmdShellFlags=-c "%%"

These are configuration variables, so they go in the environment for Epsilon for Unix, or in the system

registry for Windows versions. See page 10. With some replacement shells, you may also have to set the

process-echo variable. (Cygwin users: also see the cygwin-filenames variable.)

When a concurrent process starts, Epsilon creates a buffer named “process”. In this buffer, you can see

what the process types and respond to the process’s requests for input. If a buffer named “process” already

exists, perhaps from running a process previously, Epsilon goes to its end. Provide a numeric argument to

the start-process command and it will create an additional process buffer (in those environments where

Epsilon supports multiple process buffers).

If you set the variable clear-process-buffer to 1, the commands start-process, push, and make

(described below) will each begin by emptying the process buffer. The variable normally has a value of 0.

(See that variable for more options.) Set the variable start-process-in-buffer-directory to control

which directory the new process starts in.

A program running concurrently behaves as it does when run directly from outside Epsilon except when

it prints things on the screen or reads characters from the keyboard. When the program prints characters,

Epsilon inserts these in the process buffer. When the program waits for a line of input, Epsilon will suspend

the process until it can read a line of input from the process buffer, at which time Epsilon will restart the

process and give it the line of input. You can type lines of input before the program requests them, and

Epsilon will feed the input to the process as it requests each line. In some environments, Epsilon will also

satisfy requests from the concurrent process for single-character input.

In detail, Epsilon remembers a particular spot in the process buffer where all input and output takes

place. This spot, called the type point, determines what characters from the buffer a program will read when

it does input, and where the characters a program types will appear. Epsilon inserts in the buffer, just before

the type point, each character a program types. When a process requests a line of input, Epsilon waits until a

newline appears in the buffer after the type point, then gives the line to the program, then moves the type

point past these characters. (In environments where Epsilon can distinguishes a request by a program to read

a single character, it will pause the concurrent process until you have inserted a character after the type

point, give that character to the concurrent process, then advance the type point past that character.)

You may insert characters into the process buffer in any way you please, typing them directly or using

the yank command to retrieve program input from somewhere else. (Also see the process-yank-confirm

variable.) You can move about in the process buffer, edit other files, or do anything else at any time,

regardless of whether the program has asked the system for keyboard input.

142 Chapter 4. Commands by Topic

To generate an end-of-file condition for DOS or Windows programs reading from the standard input,

insert a ^Z character by typing Ctrl-Q Ctrl-Z on a line by itself, at the end of the buffer. For a Unix program,

type Ctrl-Q Ctrl-D 〈Enter〉.

Some programs will not work when running concurrently. Programs that do cursor positioning or

graphics will not work well, since such things do not correspond to a stream of characters coming from the

program to insert into a buffer. They may even interfere with what Epsilon displays. We provide the

concurrent process facility primarily to let you run programs like compilers, linkers, assemblers, filters, etc.

There are some limitations on the types of programs you can run under Epsilon for Windows 95/98/ME.

Specifically, 32-bit Win32 console mode programs running concurrently under Epsilon for Windows

95/98/ME cannot receive console input. These restrictions don’t apply under Windows NT/2000/XP and

later versions.

If you run Epsilon under Windows 95/98/ME, you may find it necessary to increase the environment

space available to a subprocess. To do this, locate the file conagent.pif in the directory containing Epsilon’s

executable (typically c:\Program Files\Eps13\bin). (Explorer may be set to hide the file’s .pif

extension.) Display its properties, and on the Memory tab enter a value in bytes for the Initial Environment

setting.

Under Windows 95/98/ME, Epsilon will let you run only one other program at a time. Under Unix, or

other versions of Windows, you may rename the buffer named “process” using the rename-buffer command,

and start a different, independent concurrent process in the buffer “process”. Or run the start-process

command with a numeric argument to have Epsilon pick a unique buffer name for the new process buffer if

“process” already has an active process. If you exit Epsilon while running a concurrent process, Epsilon

kills that process.

The exit-process command types “exit” to a running concurrent process. If the concurrent process is

running a standard command processor, it should then exit. Also see the process-warn-on-exit and

process-warn-on-killing variables.

The kill-process command disconnects Epsilon from a concurrent process, and forces it to exit. It

operates on the current buffer’s process, if any, or on the buffer named “process” if the current buffer has no

process. If the current buffer isn’t a process buffer but has a running Internet job (such as an ftp:// buffer),

this command tries to cancel it.

The stop-process command, normally on Ctrl-C Ctrl-C, makes a program running concurrently believe

you typed Control-Break (or, for Unix, sends an interrupt signal). It operates on the current buffer’s process,

if any, or on the buffer named “process” if the current buffer has no process.

Summary: Ctrl-X Ctrl-M start-process

Ctrl-C Ctrl-C stop-process

Process mode only: Alt-〈Backspace〉 process-backward-kill-word

Process mode only: 〈Tab〉 process-complete

Process mode only: C-Y process-yank

Process mode only: Alt-n process-next-cmd

Process mode only: Alt-p process-previous-cmd

kill-process

exit-process

4.10.2 Compiling From Epsilon

Many compilers produce error messages in a format that Epsilon can interpret with its next-error command

on Ctrl-X Ctrl-N. The command searches in the process buffer (beginning at the place it reached last time,

4.10. Running Other Programs 143

or at the beginning of the last command) for a line that contains a file name, a line number, and an error

message. If it finds one, it uses the find-file command to retrieve the file (if not already in a window), then

goes to the appropriate line in the file. With a numeric argument, it finds the nth next error message, or the

nth previous one if negative. In particular, a numeric argument of 0 repeats the last message. The

previous-error command on Ctrl-X Ctrl-P works similarly, except that it searches backward instead of

forward.

The Ctrl-X Ctrl-N and Ctrl-X Ctrl-P keys move back and forth over the list of errors. If you move point

around in a process buffer, it doesn’t change the current error message. You can use the find-linked-file

command on Ctrl-X Ctrl-L to reset the current error message to the one shown on the current line. (The

command also goes to the indicated source file and line, like Ctrl-X Ctrl-N would.)

Actually, Ctrl-X Ctrl-N runs the next-position command, not next-error. The next-position command

usually calls next-error. After you use the grep command (see page 46), however, next-position calls

next-match instead, to move to the next match of the pattern you searched for. If you use any command that

runs a process, or run next-error explicitly, then next-position will again call next-error to move to the next

error message.

Similarly, Ctrl-X Ctrl-P actually runs previous-position, which decides whether to call previous-error or

previous-match based on whether you last ran a compiler or searched across files.

To locate error messages, the next-error command performs a regular-expression search using a pattern

that matches most compiler error messages. See page 63 for an explanation of regular expressions. The

command uses the ERROR_PATTERN macro and others, defined in the file nexterr.e. You can change these

patterns if they don’t match your compiler’s error message format. The next-error command also uses

another regular-expression pattern to filter out any error messages Epsilon should skip over, even if they

match ERROR_PATTERN. The variable ignore-error stores this regular expression. For example, if

ignore-error contains the pattern “.*warning”, Epsilon will skip over any error messages that contain

the word “warning”.

The next-error command knows how to use the Java CLASSPATH to locate Java source files, and has

special logic for running Cygwin-based programs under Windows. (See the cygwin-filenames variable

for more information on the latter.) You can set the process-next-error-options variable to control

how this command looks for a file.

If you run a compiler via telnet or a similar process in an Epsilon buffer, you can set up next-error to

translate file names in the telnet buffer into URL-style file names that Epsilon can use to access the file. See

page 124.

The command view-process on Shift-F3 can be convenient when there are many long error messages in

a compilation. It pops up a window showing the process buffer and its error messages, and lets you move to

a particular line with an error message and press 〈Enter〉. It then goes to the source file and line in error. You

can also use it to see the complete error message from the compiler, when next-error’s one-line display is

inadequate.

An alternative to using view-process is setting the process-view-error-lines variable nonzero. It

tells the next-error and previous-error commands to ensure the error in the process buffer is visible in a

window each time it moves to a source line.

The make command on Ctrl-X M runs a program and scans its output for error messages using

next-error. In some environments, it runs the program in the background, displaying a “Compiling” message

while it runs. If you don’t start other editing before it finishes, it automatically goes to the first error

message. If you do, it skips this step; you can press Ctrl-X Ctrl-N as usual to go to the first error. In other

environments, Epsilon may run the program in a concurrent process buffer, or non-concurrently. See the

variables compile-in-separate-buffer and concurrent-make for more details.

By default, it runs a program called “make”, but with a numeric argument it will prompt for the

command line to execute. It will use that command line from then on, if you invoke make without a numeric

144 Chapter 4. Commands by Topic

argument. See the variable start-make-in-buffer-directory to control which directory the new

process starts in.

Epsilon uses a template for the command line (stored in the push-cmd variable), so you can define a

command line that depends on the current file name. See page 115 for information on templates. For

example, cl %f runs the cl command, passing it the current file name.

If a concurrent process already exists, Epsilon will attempt to run the program concurrently by typing

its name at the end of the process buffer (in those environments where Epsilon isn’t capable of creating more

than one process buffer). When Epsilon uses an existing process buffer in this way, it will run next-error only

if you’ve typed no keys during the execution of the concurrent program. You can set the variable

concurrent-make to 0 to force Epsilon to exit any concurrent process, before running the “make”

command. Set it to 2 to force Epsilon to run the command concurrently, starting a new concurrent process if

it needs to. When the variable is 1 (the default), the make command runs the compiler concurrently if a

concurrent process is already running, non-concurrently otherwise.

Whenever push or make exit from a concurrent process to run a command non-concurrently, they will

restart the concurrent process once the command finishes. Set the restart-concurrent variable to zero if

you don’t want Epsilon to restart the concurrent process in this case.

Before make runs the program, it checks to see if you have any unsaved buffers. If you do, it asks if it

should save them first, displaying the buffers using the bufed command. If you say yes, then the make

command saves all of your unsaved buffers using the save-all-buffers command (which you can also invoke

yourself with Ctrl-X S). You can modify the save-when-making variable to change this behavior. If it has

a value of 0, Epsilon won’t warn you that you have unsaved buffers. If it has a value of 1, Epsilon will

automatically save all the buffers without asking. If it has a value of 2 (as it has normally), Epsilon asks.

The compile-buffer command on Alt-F3 is somewhat similar to make, but tries to compile only the

current file, based on its extension. There are several variables like compile-cpp-cmd you can set to tell

Epsilon the appropriate compilation command for each extension. If Epsilon doesn’t know how to compile a

certain type of file, it will prompt for a command line. While Epsilon’s make command is good for

compiling entire projects, compile-buffer is handy for compiling simple, one-file programs.

The command is especially convenient for EEL programmers because compile-buffer automatically

loads the EEL program into Epsilon after compiling it. The EEL compiler is integrated into Epsilon, so

Epsilon doesn’t need to run another program to compile. When Epsilon compiles EEL code using its

internal EEL compiler, it looks in the compile-eel-dll-flags variable for EEL command line flags.

The buffer-specific concurrent-compile variable tells compile-buffer whether to run the compiler

concurrently. The value 2 means always run the compiler concurrently, 0 means never run concurrently, and

1 means run concurrently if and only if a concurrent process is already running. The value 3 (the default)

means use the value of the variable concurrent-make instead. (The concurrent-make variable tells the

make command whether to run its program concurrently, and takes on values of 0, 1, or 2 with the same

meaning as for concurrent-compile.)

A file can use a file variable named “compile-command” (see page 120) to tell compile-buffer to use a

specific command to compile that file, not the usual one implied by its file name extension. The command

line must be surrounded with " characters if it contains a semicolon. For instance,

-*- compile-command: "gcc -I/usr/local/include %r" -*-

on the first line of a file tells Epsilon to use that command to compile that file. Unlike other file variables,

Epsilon doesn’t scan for a compile command when you first load the file; it does this each time you use the

compile-buffer command. Also see the variable use-compile-command-file-variable.

Summary: Ctrl-X Ctrl-N next-position

Ctrl-X Ctrl-P previous-position

4.11. Repeating Commands 145

next-error

previous-error

Shift-F3 view-process

Ctrl-X M make

Alt-F3 compile-buffer

4.11 Repeating Commands

4.11.1 Repeating a Single Command

You may give any Epsilon command a numeric prefix argument. Numeric arguments can go up to several

hundred million, and can have either a positive or negative sign. Epsilon commands, unless stated otherwise

in their description, use a numeric argument as a repetition count if this makes sense. For instance,

forward-word goes forward 10 words if given a numeric argument of 10, or goes backward 3 words if given a

numeric argument of −3.

The argument command, normally bound to Ctrl-U, specifies a numeric argument. After typing Ctrl-U,

type a sequence of digits and then the command to which to apply the numeric argument. Typing a minus

sign changes the sign of the numeric argument.

You may also use the Alt versions of the digit keys (Alt-1, etc.) with this command. (Note that by

default the numeric keypad keys plus Alt do not give Alt digits. They produce keys like Alt-〈PgUp〉 or let

you enter special characters by their numeric code. See the alt-numpad-keys variable.) You can enter a

numeric argument by holding down the Alt key and typing the number on the main keyboard. Alt-〈Minus〉
will change the sign of a numeric argument, or start one at −4.

If you omit the digits, and just say Ctrl-U Ctrl-F, for instance, Epsilon will provide a default numeric

argument of 4 and move forward four characters. Typing another Ctrl-U after invoking argument multiplies

the current numeric argument by four, so typing Ctrl-U Ctrl-U Ctrl-N will move down sixteen lines. In

general typing a sequence of n Ctrl-U’s will produce a numeric argument of 4n.

The run-with-argument command provides an alternative way to run a command with a numeric

argument. It prompts for the argument with a normal Epsilon numeric prompt, so that you can yank the

number to use from the clipboard, or specify it with a different base like 0x1000 (for hexadecimal), or

specify the number as a character code like 'q' or '\n' or <Yen Sign>.

Summary: Ctrl-U argument

run-with-argument

4.11.2 Keyboard Macros

Epsilon can remember a set of keystrokes, and store them away in a keyboard macro. Executing a keyboard

macro has the same effect as typing the characters themselves. Use keyboard macros to make repetitive

changes to a buffer that involve the same keystrokes. You can even write new commands with keyboard

macros.

To define a keyboard macro, use the Ctrl-X (command. The echo area will display the message

“Remembering”, and the word “Def” will appear in the mode line. Whatever you type at the keyboard gets

executed as it does normally, but Epsilon also stores the keystrokes away in the definition of the keyboard

macro.

146 Chapter 4. Commands by Topic

When you have finished defining the keyboard macro, press the Ctrl-X) key. The echo area will display

the message “Keyboard macro defined”, and a keyboard macro named last-kbd-macro will then exist with

the keys you typed since you issued the Ctrl-X (command. To execute the macro, use the Ctrl-F4 command

(or use Ctrl-X E if you prefer). This executes the last macro defined from the keyboard. If you want to

repeatedly execute the macro, give the Ctrl-F4 command a numeric argument telling how many times you

want to execute the macro.

You can bind this macro to a different key, naming it as well, using the bind-last-macro function on

Ctrl-X Alt-N. Once the macro has its own name, defining a new macro won’t overwrite it. This command

prompts for a new name, then asks for a key binding for the macro. (You can press Ctrl-G at that point if you

want to give the macro a name but not its own key binding.) The name-kbd-macro command prompts for a

name but doesn’t offer to bind the macro to a key. (Use delete-name to delete a keyboard macro.)

You can make a keyboard macro that suspends itself while running to wait for some user input, then

continues. Press Shift-F4 while writing the macro and Epsilon will stop recording. Press Shift-F4 again to

continue recording. When you play back the macro, Epsilon will stop at the same point in the macro to let

you type in a file name, do some editing, or whatever’s appropriate. Press Shift-F4 to continue running the

macro. When a macro has been suspended, “Susp” appears in the mode line.

Keyboard macros do not record most types of mouse operations. Commands in a keyboard macro must

be keyboard keys. However, you can invoke commands on a menu or tool bar while defining a keyboard

macro, and they will be recorded correctly. While running a macro, Epsilon’s commands for killing and

yanking text don’t use the clipboard; see page 58.

Instead of interactive definition with Ctrl-X (, you can also define keyboard macros in a command file.

The details appear in the section on command files, which starts on page 154. Command files also provide a

way to edit an existing macro, by inserting it into a scratch buffer in an editable format with the insert-macro

command, modifying the macro text, then using the load-buffer command to load the modified macro.

Epsilon doesn’t execute a keyboard macro as it reads the definition from a command file, like it does

when you define a macro from the keyboard. This causes a rather subtle difference between the two methods

of definition. Keyboard macros may contain other keyboard macros, simply by invoking a second macro

inside a macro definition. When you create a macro from the keyboard, the keys you used to invoke the

second macro do not appear in the macro. Instead, the text of the second macro appears. This allows you to

define a temporary macro, accessible with Ctrl-F4, and then define another macro using the old macro.

With macros defined from files, this substitution does not take place. Epsilon makes such a macro

contain exactly the keys you specified in the file. When you execute this macro, the inner macro will execute

at the right time, then the outer macro will continue, just as you would expect.

The difference between these two ways of defining macros that contain other macros shows up when

you consider what happens if you redefine the inner macro. An outer macro defined from the keyboard

remains the same, since it doesn’t contain any reference to the inner macro, just the text of the inner macro

at the time you defined the outer one. However, an outer macro defined from a file contains a reference to

the inner macro, by name or by a key bound to that macro. For this reason the altered version of the inner

macro will execute in the course of executing the outer macro.

Normally Epsilon refrains from writing to the screen during the execution of a keyboard macro, or

during typeahead. The command redisplay forces a complete rewrite of the screen. You may find this useful

for writing macros that should update the screen in the middle of execution.

Summary: Ctrl-X (start-kbd-macro

Ctrl-X) end-kbd-macro

Ctrl-F4, Ctrl-X E last-kbd-macro

Shift-F4 pause-macro

Ctrl-X Alt-N bind-last-macro

4.12. Simple Customizing 147

name-kbd-macro

insert-macro

load-buffer

redisplay

4.12 Simple Customizing

4.12.1 Bindings

Epsilon allows you to create your own commands and attach them, or any pre-existing Epsilon commands,

to any key. If you bind a command to a key, you can then invoke that command by pressing the key. For

example, at startup, Epsilon has forward-character bound to the Ctrl-F key. By typing Ctrl-F, the

forward-character command executes, so point moves forward one character. If you prefer to have the

command which moves point to the end of the current line, end-of-line, bound to Ctrl-F, you may bind that

there.

You bind commands to keys with the bind-to-key command, which you can invoke with the F4 key. The

bind-to-key command asks you for the name of a command (with completion), and the key to which to bind

that command. You may precede the key by any number of prefix keys. When you type a prefix key, Epsilon

asks you for another key. For example, if you type Ctrl-X, Epsilon asks you for another key. Suppose you

type Ctrl-O. Epsilon would then bind the command to the Ctrl-X Ctrl-O key sequence. Prefix keys give

Epsilon a virtually unlimited number of keys.

Epsilon at startup provides Ctrl-X and Ctrl-C as the only prefix keys. You can invoke many commands,

such as save-file (Ctrl-X Ctrl-S) and find-file (Ctrl-X Ctrl-F), through the Ctrl-X prefix key. You may define

your own prefix keys with the command called create-prefix-command. Epsilon asks you for a key to make

into a prefix key. You may then bind commands to keys prefixed with this key using the bind-to-key

command. To remove prefix keys, see page 156.

When you press a prefix key, Epsilon displays the key in the echo area to indicate that you must type

another key. Epsilon normally displays the key immediately, but you can make it pause for a moment before

displaying the key. If you press another key during the pause, Epsilon doesn’t bother displaying the first key.

You control the amount of time Epsilon pauses using the mention-delay variable, expressed in tenths

of a second. By default, this variable has a value of zero, which indicates no delay. You may find it useful to

set mention-delay to a small value (perhaps 3). This delay applies in most situations where Epsilon

prompts for a single key, such as when entering a numeric argument.

The unbind-key command asks for a key and then offers to rebind the key to the normal-character

command, or to remove any binding it may have. A key bound to normal-character will self-insert; that’s

how keys like ‘j’ are bound. A key with no binding at all simply displays an error message.

You may bind a given command to any number of keys. You may invoke a command, whether or not

bound to a key, using named-command, by pressing the Alt-X key. Alt-X asks for the name of a command,

then runs the command you specified. This command passes any numeric argument you give it to the

command it invokes. (Alt-X, like binding, also works with keyboard macros. And it works with any EEL

subroutine that takes no parameters, even if it was not defined using the “command” keyword.)

Some keys behave differently in different contexts. For instance, the n key in dired mode moves down

one line instead of inserting an “n” as it does in Fundamental mode. Every mode has a key table that defines

which keys have “custom” bindings for that mode. Epsilon uses other key tables when you’re typing a

response at a prompt, or scrolling through a list of choices. You can customize those bindings too.

148 Chapter 4. Commands by Topic

The bind-to-key command modifies the current mode’s key binding if the selected key has a

mode-specific binding in the current mode. If not, it modifies the global key table, so the binding applies to

all modes.

To interactively create a new mode-specific binding, or change the bindings of keys in special modes

like the ones used for prompts, the easiest method is to use the list-all and load-buffer commands. The former

lists all the current bindings, so you can see the names of the internal commands run by each key and

combine the lines to specific the bindings you want.

For example, at many prompts “?” lists possible responses. Say you want the F8 key to do this too. In

most contexts, F8 runs the set-variable command. Examine the output of list-all and you’ll find lines like

these:

~reg-tab "F-8": set-variable

...

~comp-tab "?": inp-show-matches

The first defines the usual binding for F8, showing how to specify that key in command line syntax, as

F-8. The second specifies the binding for “?” at prompts, showing that it runs the internal function

inp-show-matches. So combine them into

~comp-tab "F-8": inp-show-matches

Put the above line in a buffer and run Alt-x load-buffer on it, and now F8 at prompts will display

matches. Put that line in your einit.ecm file (see page 152) and Epsilon will load the binding every time it

starts up.

The command alt-prefix, bound to 〈Esc〉, gets another key and executes the command bound to the Alt

version of that key. You will find this command useful if you must use Epsilon from a keyboard lacking a

working Alt key, or if you prefer to avoid using Alt keys. Also, you may find some combinations of control

and alt awkward to type on some keyboards. For example, some people prefer to invoke the replace-string

command by typing 〈Esc〉 & rather than by typing Alt-&.

The command ctrl-prefix, bound to Ctrl-^, functions similarly. It gets another key and converts it into the

Control version of that key. For example, it changes ‘s’ into the Ctrl-S key.

Some key combinations are variations of other key combinations. For instance, 〈Backspace〉 and Ctrl-H

are related in this way. Epsilon uses a notion of generic versus specific keys; for instance, the specific key

〈Backspace〉 is also generically a Ctrl-H key. If you bind this key to a new command, Epsilon will ask if you

want to bind only the 〈Backspace〉 key, or all key combinations that generate a Ctrl-H.

Summary: Alt-X, F2 named-command

F4 bind-to-key

create-prefix-command

unbind-key

〈Esc〉 alt-prefix

Ctrl-^ ctrl-prefix

4.12.2 Brief Emulation

Epsilon can emulate the Brief text editor. The brief-keyboard command loads a Brief-style keyboard map.

To undo this change, you can use the epsilon-keyboard command, which restores the standard keyboard

4.12. Simple Customizing 149

Alt-a mark-normal-region

Alt-b bufed

Ctrl-B line-to-bottom

Ctrl-C center-window

Alt-c mark-rectangle

Alt-d kill-current-line

Ctrl-D scroll-down

Alt-e find-file

Ctrl-E scroll-up

Alt-f display-buffer-info

Alt-g goto-line

Alt-h help

Alt-i overwrite-mode

Alt-j brief-jump-to-bookmark

Ctrl-K kill-line

Alt-k kill-to-end-of-line

Alt-l mark-line-region

Alt-m mark-inclusive-region

Ctrl-N next-error

Alt-n next-buffer

Alt-o set-file-name

Alt-p print-region

Ctrl-P view-process

Alt-q quoted-insert

Alt-r insert-file

Ctrl-R argument

Alt-s string-search

Ctrl-T line-to-top

Alt-t replace-string

Ctrl-U redo-by-commands

Alt-u undo-by-commands

Alt-v show-version

Alt-w save-file

Ctrl-W set-want-backup-file

Alt-x exit

Ctrl-X write-files-and-exit

Alt-z push

Ctrl-Z zoom-window

Alt-1 brief-drop-bookmark 1

Alt-2 brief-drop-bookmark 2

... ...

Alt-0 brief-drop-bookmark 10

F1 move-to-window

Alt-F1 toggle-borders

F2 brief-resize-window

Alt-F2 zoom-window

F3 brief-split-window

F4 brief-delete-window

F5 string-search

Shift-F5 search-again

Ctrl-F5 toggle-case-fold

Alt-F5 reverse-string-search

F6 query-replace

Shift-F6 replace-again

Alt-F6 reverse-replace

F7 record-kbd-macro

Shift-F7 pause-macro

F8 last-kbd-macro

F10 named-command

Alt-F10 compile-buffer

Ctrl-〈Enter〉 brief-open-line

〈Esc〉 abort

〈Del〉 brief-delete-region

〈End〉 brief-end-key

〈Home〉 brief-home-key

〈Ins〉 yank

Ctrl-〈End〉 end-of-window

Ctrl-〈Home〉 beginning-of-window

Ctrl-〈PgDn〉 goto-end

Ctrl-〈PgUp〉 goto-beginning

Alt-〈Minus〉 previous-buffer

Ctrl-〈Minus〉 kill-buffer

Ctrl-〈Bksp〉 backward-kill-word

Shift-〈Home〉 to-left-edge

Shift-〈End〉 to-right-edge

Num + brief-copy-region

Num – brief-cut-region

Num * undo-by-commands

Figure 4.10: Epsilon’s key map for Brief emulation.

150 Chapter 4. Commands by Topic

configuration. This command only modifies those key combinations that Brief uses. Other keys retain their

Epsilon definition. The Brief key map appears in figure 4.10.

In this release, Epsilon doesn’t emulate a few parts of Brief. The separate command for toggling regular

expression mode is not present, but you can type Ctrl-T within any searching command to toggle it. Regular

expressions follow Epsilon’s syntax, not Brief’s. Brief’s commands for loading and saving keyboard macro

files aren’t implemented, since Epsilon lets you have an unlimited number of macros loaded at once, not just

one. Epsilon will beep if you press the key of an unimplemented Brief emulation command.

In Brief, the shifted arrow keys normally switch windows. But Epsilon adopts the Windows convention

that shifted arrow keys select text. In Brief mode, the Alt-arrow keys on the separate cursor pad may be used

to switch windows.

You can make Epsilon’s display resemble Brief’s display using the set-display-look command. See page

108.

4.12.3 CUA Keyboard

CUA Binding Epsilon Binding Command Name

Ctrl-A Ctrl-X H mark-whole-buffer

Ctrl-C Alt-W copy-region

Ctrl-F Ctrl-S incremental-search

Ctrl-H Alt-R query-replace

Ctrl-K ... Ctrl-C ... (prefix key: see below)

Ctrl-N new-file

Ctrl-O Ctrl-X Ctrl-F find-file

Ctrl-P Alt-F9 print-buffer

Ctrl-V Ctrl-Y yank (“paste”)

Ctrl-W ... Ctrl-X ... (prefix key: see below)

Ctrl-X Ctrl-W kill-region (“cut”)

Ctrl-Z F9 undo

Alt-A Ctrl-Z scroll-up

Alt-Z Alt-Z scroll-down

Alt-O Ctrl-X H mark-paragraph

〈Escape〉 Ctrl-G abort

F3 Ctrl-S Ctrl-S search-again

〈Home〉 Ctrl-A beginning-of-line

〈End〉 Ctrl-E end-of-line

Figure 4.11: CUA Key Assignments

In CUA emulation mode, Epsilon recognizes most of the key combinations commonly used in Windows

programs. Other keys generally retain their usual Epsilon function.

To enable this emulation, press Alt-x, then type cua-keyboard and press 〈Enter〉. Use Alt-x

epsilon-keyboard 〈Enter〉 to return to Epsilon’s default key assignments.

The table shows the CUA key combinations that differ from Epsilon’s native (Emacs-style) key

configuration. In addition, various Alt-letter key combinations not mentioned here invoke menu items (for

example, Alt-F displays the File menu in CUA mode, though it doesn’t in Epsilon’s native configuration).

4.12. Simple Customizing 151

Many commands in Epsilon are two-key combinations starting with Ctrl-X or Ctrl-C. In CUA mode,

use Ctrl-W instead of Ctrl-X, and Ctrl-K instead of Ctrl-C. For example, the command delete-blank-lines,

normally on Ctrl-X Ctrl-O, is on Ctrl-W Ctrl-O in CUA emulation.

4.12.4 Variables

You can set any user variable with the set-variable command. The variable must have the type byte, char,

short, int, array of chars, or pointer to char. The command first asks you for the name of the variable to set.

You can use completion. After you select the variable, the command asks you for the new value. Then the

command shows you the new value.

Whenever Epsilon asks you for a number, as in the set-variable command, it normally interprets the

number you give in base 10. But you can enter a number in hexadecimal (base 16) by beginning the number

with “0x”, just like EEL integer constants. The prefix “0o” means octal, and “0b” means binary. For

example, the numbers “30”, “0x1E”, “0o36”, and “0b11110” all refer to the same number, thirty. You can

also specify an ASCII value by enclosing the character in single quotes. For example, you could type ’a’ to

specify the ASCII value of the character “a” (in this example, 97). Or specify a Unicode character name

inside < and > characters. You can also enter an arithmetic expression (anything the eval command can

evaluate as a number).

The set-any-variable command is similar to set-variable, but also includes system variables. Epsilon

uses system variables to implement its commands; unless you’re writing EEL extensions, there’s generally

no reason to set them. When an EEL program defines a new variable, Epsilon considers it a system variable

unless the definition includes the user keyword.

The show-variable command prompts for the name of the variable you want to see, then displays its

value in the echo area. The same restrictions on variable types apply here as to set-variable. The command

includes both user and system variables when it completes on variable names.

The edit-variables command in the non-GUI versions of Epsilon lets you browse a list of all variables,

showing the current setting of each variable and the help text describing it, as you move through the list. You

can use the arrow keys or the normal movement keys to move around the list, or begin typing a variable

name to have Epsilon jump to that portion of the list. Press 〈Enter〉 to set the value of the currently

highlighted variable, then edit the value shown using normal Epsilon commands. To exit from edit-variables,

press 〈Esc〉 or Ctrl-G. With a numeric argument, the command includes system variables in its list.

In Epsilon for Windows, the edit-variables command behaves differently. It uses the help system to

display a list of variables. After selecting a variable, press the Set button to alter its value.

Some Epsilon variables have a different value in each buffer. These buffer-specific variables take on a

potentially different value each time the current buffer changes. Each buffer-specific variable also has a

default value. Whenever you create a new buffer, you also automatically create a new copy of the

buffer-specific variable as well. The value of this buffer-specific variable is initially this default value. In

Epsilon’s EEL extension language, you can define a buffer-specific variable by using the buffer storage

class specifier, and give it a default value by initializing it like a regular variable.

Just as Epsilon provides buffer-specific variables, it also provides window-specific variables. These have

a different value for each window. Whenever you create a new window, you automatically create a new copy

of the window-specific variable as well. When you split a window in two, both windows initially have the

same values for all their window-specific variables. Each window-specific variable also has a default value.

Epsilon uses the default value of a window-specific variable when it creates its first tiled window while

starting up, and when it creates pop-up windows. You define a window-specific variable in EEL with the

window storage class specifier, and you may give it a default value by initializing it like a regular variable.

152 Chapter 4. Commands by Topic

If you ask the set-variable command to set a buffer-specific or window-specific variable, it will ask you

if you want to set the value for only the current buffer (or window), or the default value, or both. You also

can have it set the value in all buffers (or windows).

Variables retain their values until you exit Epsilon, unless you make the change permanent with the

write-state command, described on page 152. This command saves only the default value for buffer-specific

and window-specific variables. It does not save the instantiated values of the variable for each buffer or

window, since the buffers and windows themselves aren’t listed in a state file. Session files, which do list

individual buffers and windows, also record selected buffer-specific and window-specific variables.

The show-variable command will generally show you both the default and current values of a

buffer-specific or window-specific variable. For string variables, though, the command will ask which you

want to see.

The create-variable command lets you define a new variable without using the extension language. It

asks for the name, the type, and the initial value.

You can delete a variable, command, macro, subroutine, or color scheme with the delete-name

command, or rename one with the change-name command. Neither of these commands will affect any

command or subroutine in use at the time you try to alter it.

Summary: F8 set-variable

Ctrl-F8 show-variable

set-any-variable

edit-variables

create-variable

delete-name

change-name

4.12.5 Saving Changes to Bindings and Variables

Epsilon can save any new bindings you have made and any macros you have defined for future editing

sessions. Epsilon uses two kinds of files for this purpose, state files and command files (such as the

einit.ecm file Epsilon normally uses to save your customizations).

The next section describes command files such as the einit.ecm file. For most users, the einit.ecm

file is the best way to save customizations, but users with a large number of customizations may want to take

advantage of the improved startup speed possible by using a state file instead.

Both methods can save bindings, macros, and other sorts of customizations, but they differ in many

respects:

• A state file contains commands, macros, variables, and bindings. A command file can contain macros,

many types of variables, and bindings, but it can’t contain commands written in Epsilon’s extension

language. (It can contain requests to load other files containing such commands, though.)

• When Epsilon writes a state file, all currently defined commands, macros and variables go into it. A

command file contains just what you put there.

• Epsilon can only read a state file during startup. It makes the new invocation of Epsilon have the same

commands as the Epsilon that performed the write-state command that created that state file. By

contrast, Epsilon can load a command file at any time.

4.12. Simple Customizing 153

• A command file appears in a human-readable format, so you can edit it as a normal file. By contrast,

Epsilon stores a state file in a binary format. To modify a state file, you read it into a fresh Epsilon,

use appropriate Epsilon commands (like bind-to-key to change bindings), then save the state with the

write-state command.

• Epsilon can read a state file much faster than a command file.

• Binary state files from one release of Epsilon usually aren’t compatible with state files from a different

major release. Command files are.

• To remove a particular customization from a command file, just delete or comment out its line.

Removing a customization from a state file is more complicated, because Epsilon doesn’t normally

maintain the original setting of a variable, or the original definition of an EEL command you’ve

redefined. You can use delete-name to delete a macro, or explicitly set a variable back to its original

setting by looking that up in the documentation, but undoing some customizations requires returning

to the original state file and reapplying just the customizations you want, via list-customizations.

The write-state command on Ctrl-F3 asks for the name of a file, and writes the current state to that file.

The file name has its extension changed to “.sta” first, to indicate a state file. If you don’t provide a name,

Epsilon uses the name “epsilon-v13.sta”, the same name that it looks for at startup. (The state file name

includes Epsilon’s major version number.) You can specify another state file for Epsilon to use at startup

with the -s flag.

By default, when you write a new state file, Epsilon makes a copy of the old one in a file named

ebackup.sta. You can turn backups off by setting the variable want-state-file-backups to 0, or change

the backup file name by modifying the state-file-backup-name template. See page 115 for information

on templates.

Epsilon’s default state file sits in its main directory. (In Windows, this is normally under \Program

Files.) If you write a customized state file, it will go in your customizations directory (see page 13), and

Epsilon will read it instead of the default state file. You can use Epsilon’s -s flag to start Epsilon with its

default state file, ignoring your customized one, by running it as “epsilon -s original”.

It’s a good idea to keep all your customizations in one place, either a state file or an einit.ecm file. If

you have all your customizations in a state file and want to instead store them all in an einit.ecm file, run

list-customizations, and then delete or rename the customized state file in your customizations directory.

If you have all your customizations in an einit.ecm command file and want to instead store them all in a

state file, just run Epsilon, letting it load your einit.ecm, run write-state, and delete or rename your

customized einit.ecm file.

If you customize Epsilon using an einit.ecm file, Epsilon will start up by reading its default state file,

which contains its standard settings. Then it will load your customizations from your einit.ecm file.

If you customize Epsilon using a state file, Epsilon will read your customized state file instead of the

default one.

(If you customize Epsilon using both methods, Epsilon will read your customized state file, then load

customizations in your einit.ecm file on top. This is confusing, which is why we don’t recommend this

arrangement.)

The recommended method for saving customizations is to save them all in your einit.ecm file, and

never write a customized state file.

When you make a change you want to keep, using commands like set-variable or bind-to-key, run Alt-x

list-customizations to put it in your einit.ecm file. Or set the record-customizations variable to keep

all changes by default. Or edit your einit.ecm directly.

154 Chapter 4. Commands by Topic

Remember to save your einit.ecm file after changing it. Changes will take effect the next time

Epsilon starts, or you can use Alt-x load-buffer to load them from an einit.ecm file at once.

Summary: Ctrl-F3 write-state

4.12.6 Command Files

A command file specifies macro definitions, key bindings, and other settings in a human-readable format, as

described in the next section.

One important example of a command file is the einit.ecm file. Epsilon automatically loads this file

each time you run it, immediately after loading its basic definitions from a state file.

The -noinit flag tells Epsilon not to load an einit.ecm file. You can also set the load-customizations

variable (and save the setting in your state file) to turn off reading an einit.ecm file.

You can use the list-customizations command to add a list of all the customizations in the current

session of Epsilon to the end of this file, commenting out any existing settings there.

Or you can set Epsilon to automatically record many types of customizations in this file. Set the

record-customizations variable to 1 to tell Epsilon to record all such customizations, but not to

automatically save them. Set it to 2 to record and save them without prompting.

With either method, you can always edit the customizations file to remove any settings you don’t want,

or use commands like insert-macro to add specific customizations to it.

Epsilon creates its einit.ecm file in your customization directory. Under Unix, this is ~/.epsilon.

Under Windows, its location depends on the version of Windows, but is often \Documents and

Settings\username\Application Data\Lugaru\Epsilon or

\Users\username\AppData\Roaming\Lugaru\Epsilon. See page 13 for details. Epsilon searches for an

einit.ecm file using your EPSPATH. The edit-customizations command is a convenient way to locate and

start editing this file.

If you prefer to write customizations in EEL format, you can create an EEL source file named einit.e in

the same directory as your einit.ecm file, and tell Epsilon to load it at startup by adding this line to your

einit.ecm file:

(load-eel-from-path "einit.e" 2)

You can use the load-file command to make Epsilon load the settings in any command file. It asks you

for the name of a file, then executes the commands contained in it. The load-buffer command asks you for

the name of a buffer, then executes the commands contained in that buffer.

Set the variable einit-file-name to make Epsilon look for a file with a name other than einit.ecm.

For instance, by using the command line flag -d to set this variable, you can make a particular invocation of

Epsilon load a specialized set of commands and settings to carry out a noninteractive batch editing task.

Summary: edit-customizations

load-file

load-buffer

4.12. Simple Customizing 155

Command File Syntax

Epsilon’s command files appear in a human-readable format, so you can easily modify them. Parentheses

surround each command. Inside the parentheses appear a command name, and optionally one or more

arguments. The command can be one of several special commands described in the next section, or most

any EEL subroutine. See the next section for details.

Each argument can be either a number, a string, or a key list (a special type of string). Spaces separate

one argument from the next. Thus, each command looks something like this:

(command-name "first-string" "second-string")

You can include comments in a command file by putting a semicolon or hash sign (‘#’) anywhere an

opening parenthesis may appear. Such a comment extends to the end of the line. You cannot put a comment

inside a string.

For numbers, you can include bases using a prefix of “0x” for hexadecimal, “0o” for octal, or “0b” for

binary, or use an EEL-style character constant like 'X' or '\n'. For strings, quote each " or \ character

with a \, as in EEL or C.

A few commands such as define-macro take a list of one or more keys; these use the syntax of

strings, but with some additional rules. Most characters represent themselves, control characters have a “C-”

before them, alt characters have an “A-”, and function keys have an “F-” followed by the number of the

function key. Cursor keys appear in a notation like <Home>. See page 162 for details.

Put a \ before any of these sequences to quote them. For instance, if a macro should contain a Ctrl-F

key, write "C-F". If a macro should contain the three characters C hyphen F, write "\C-F". The characters

you have to quote are <, ", and \, plus some letter- sequences. Thus, the DOS file name \job\letter.txt in a

string looks like \\job\\letter.txt. Do not put extra spaces in command file strings that represent keys. For

example, the string "C-X F" represents “C-X <Space> F”, not “C-X F” with no 〈Space〉.

You can also use the special key syntax <!cmdname> in a keyboard macro to run a command cmdname

without knowing which key it’s bound to. For example, <!find-file> runs the find-file command. When

you define a keyboard macro interactively and invoke commands from the menu bar or tool bar, Epsilon will

use this syntax to define them, since there may be no key sequence that invokes the specified command.

In addition to the above command syntax with commands inside parentheses, command files may

contain lines that define variables, macros, key tables or bindings. Epsilon understands all the different types

of lines generated by the list-all, list-customizations, import-customizations, and similar commands. When

Epsilon records customizations in your einit.ecm file, it uses this line-by-line syntax for many types of

customizations.

Besides listing variables, macros, key tables, and bindings, the above commands also create lines that

report that a particular command or subroutine written in Epsilon’s EEL extension language exists. These

lines give the name, but not the definition, because command files can’t define EEL functions. When

Epsilon sees a line like that, it makes sure that a command or subroutine with the given name exists. If not, it

reports an error. Epsilon does the same thing with variables that have complicated types (pointers or

structures, for example).

Command File Examples

One common command in command files is bind-to-key. For bind-to-key, the first string specifies the name

of some Epsilon command, and the second string represents the key whose binding you wish to modify, in a

format we’ll describe in detail in a moment. For instance, the following command binds the command

show-matching-delimiter to }:

156 Chapter 4. Commands by Topic

; This example binds show-matching-delimiter to the

; } character so that typing a } shows the matching

; { character.

(bind-to-key "show-matching-delimiter" "}")

Unlike the regular command version, bind-to-key in a command file can unbind a prefix key. Say you

want to make Ctrl-X no longer function as a prefix key, but instead have it invoke down-line. If, from the

keyboard, you typed F4 to invoke bind-to-key, supplied the command name down-line, and then typed Ctrl-X

as the key to rebind, Epsilon would assume you meant to rebind some subcommand of Ctrl-X, and wait for

you to type a Ctrl-K, for instance, to bind down-line to Ctrl-X Ctrl-K. Epsilon doesn’t know you have

finished typing the key sequence. But in a command file, quotes surround each of the arguments to

bind-to-key. Because of this, Epsilon can tell exactly where a key sequence ends, and you could rebind

Ctrl-X as above (discarding the bindings available through Ctrl-X in the process) by saying:

(bind-to-key "down-line" "C-X")

In a command file, define-macro allows you to define a keyboard macro. Its first string specifies the

name of the new Epsilon command to define, and its second string specifies the sequence of keys you want

the command to type. The define-macro command does not correspond to any single regular Epsilon

command, but functions like a combination of start-kbd-macro, end-kbd-macro, and name-kbd-macro.

In a command file, set-variable lets you set a variable with any simple type (numeric or string), just like

the usual set-variable command. It takes a string with the variable name, a value (either a number or a quoted

string), and optionally a numeric code that says how to treat buffer-specific or window-specific variables.

With no numeric code, set-variable sets the default value of the variable and its value in all non-system

buffers (or windows). A numeric code of 0 sets the value only in the current buffer (or window). The value 1

sets only the default, and 2 sets both. The value 3 sets its value in all non-system buffers or windows, as well

as the default value (like omitting the code), while 4 includes system ones too. For example:

(set-variable "compile-java-cmd" "oldjavac \"%r\"")

(set-variable "delete-hacking-tabs" 2 1)

The set-variable command can’t enlarge character array variables to accommodate a very long

definition. Use the variable-setting syntax produced by commands like list-all or list-customizations for that;

it includes a variable length to set a larger size.

The command file command create-prefix-command takes a single string, which specifies a key, and

makes that key a prefix character. It works just as the regular command of the same name does.

Using the same syntax, you can also call EEL commands and subroutines. For subroutines, any that

take only numeric and string arguments should work. Here are some useful ones:

(load-eel-from-path "file.e" 2)

(load-from-path "file.b")

The first line makes Epsilon search the EPSPATH for an EEL extension language source file named

file.e, then compile and load it. (You can use an absolute path instead, remembering to double any

backslashes.) Its second argument 2 makes the load_eel_from_path() subroutine stop if there’s an error;

the value 1 won’t complain if the file wasn’t found but complains on other errors, and the value 0 suppresses

all errors. (Add the value 4 to make load-eel-from-path look for the file in the current directory before

checking the EPSPATH.) Put the EEL file in the same directory as einit.ecm (your customization directory)

and you can use a relative pathname. (In command names in command files, - and _ are the same.)

4.12. Simple Customizing 157

The second line makes Epsilon search the EPSPATH for the compiled version of that same file and load

it; this is faster, but it requires you to manually recompile that file when updating.

You can even run EEL code directly from a command file, using the do_execute_eel() subroutine:

(do-execute-eel "

int i=0;

while (i++ < 10) {

has_arg = 1;

start_process();

}")

Epsilon will compile the code and then execute it. This example starts ten concurrent process buffers.

(inline-eel "

command show_color()

{

char *col = name_color_class(get_character_color(point));

if (col)

say(\"Color class at point is %s.\", col);

else

say(\"No color class at point.\");

}

")

To define commands or variables using EEL code from a command file, you can use the inline_eel()

subroutine. But it’s easier and faster to put longer definitions into a separate .e file and load it from the

command file with load-eel-from-path.

Many commands that prompt for some information like a file name aren’t directly suitable for including

in a command file; they don’t know how to accept an argument supplied by a command file and will always

prompt. In many cases an EEL subroutine is available that performs a similar task but is suitable for use in a

command file. But a command that takes a numeric prefix argument may be used in a command file: put the

prefix argument just before the command name, as in (100 goto-line), which goes to line 100.

Use the change-name command to rename an existing command, EEL subroutine, variable, keyboard

macro, or color scheme. It takes the old name, then the new one.

Here’s an example command file:

; This macro makes the window below the

; current one advance to the next page.

(define-macro "scroll-next-window" "C-XnC-VC-Xp")

(bind-to-key "scroll-next-window" "C-A-v")

;This macro asks for a file and puts

;it in another window.

(define-macro "split-and-find" "A-Xsplit-window

A-Xredisplay

A-Xfind-file

")

158 Chapter 4. Commands by Topic

The first two lines contain comments. The third line begins the definition of a macro called

scroll-next-window. It contains three commands. First Ctrl-X n invokes next-window, to move to the next

window on the screen. The Ctrl-V key runs next-page, scrolling that window forward, and Ctrl-X p then

invokes previous-window, to return to the original window. The fourth line of this example binds this new

macro to the Ctrl-Alt-v key, so that from then on, typing a ‘v’ with Control and Alt depressed will scroll the

next window forward.

The file defines a second macro named split-and-find. It invokes three commands by name. Notice that

the macro could have invoked two of the commands by key. Invoking by name makes the macro easier to

read and modify later. The redisplay command shows the action of split-window before the find-file command

prompts the user for a file name.

Building Command Files

Rather than preparing command files according to the rules presented here, you may wish to have Epsilon

write parts of them automatically. You can set the record-customizations variable so Epsilon does this

automatically whenever you define a macro or bind a key, writing the definition to your einit.ecm file.

Or you can have Epsilon list all your current customization settings in a file. The list-customizations

command inserts a list of all your customizations into the customization buffer, which contains your

einit.ecm file. This includes bindings, macros, color settings, and other changes. The list-all command is

similar, but lists every setting, even if it’s not a customization (such as variable settings you’ve never

customized).

Epsilon also has commands to create individual bind-to-key and define-macro lines needed to define a

specific current binding or macro.

The insert-binding command asks you for a key, and inserts a bind-to-key command into the current

buffer. When you load the command buffer, Epsilon will restore the binding of that key.

The insert-macro command creates an appropriate define-macro command for a macro whose name you

specify, and inserts the command it builds into the current buffer. This comes in handy for editing an

existing keyboard macro. You can use the edit-customizations command first to switch to the customization

buffer, creating it if necessary.

Summary: insert-binding

insert-macro

list-customizations

4.13 Advanced Topics

4.13.1 Changing Commands with EEL

Epsilon has many built-in commands, but you may want to add new commands, or modify the way some

commands work. We used a language called EEL to write all of Epsilon’s commands. You can find the EEL

definitions to all of Epsilon’s commands in files ending in “.e”. EEL stands for Epsilon Extension Language.

Before you can load a group of commands from a “.e” file into Epsilon, you must compile them with

the EEL compiler. You do this (outside of Epsilon, or in Epsilon’s concurrent process buffer) by giving the

command “eel filename” where filename specifies the name of the “.e” file you wish to compile (with or

without the “.e”). The EEL compiler will read the source file and, if it finds no errors, will produce a

“bytecode” file with the same first name but with a “.b” extension. A bytecode file contains command,

4.13. Advanced Topics 159

subroutine, and variable definitions from the source file translated to a binary form that Epsilon can

understand. It’s similar to a regular compiler’s object file.

Once you’ve compiled the file, the Epsilon load-bytes command gets it into Epsilon. This command

prompts for a file name, then loads it into Epsilon. You may omit the extension. But an easier method is to

load the EEL source file, then compile and load it in one step using the compile-buffer command on Alt-F3.

See page 144.

Often a new EEL command won’t work the first time. Epsilon incorporates a simple debugger to help

you trace through the execution of a command. It provides single-stepping by source line, and you can enter

a recursive edit level to locate point, display the values of global variables, or run test functions. The

debugger takes the following commands:

〈Space〉 Step to the next line. This command will trace a function call only if you have enabled

debugging for that function.

S If the current line calls a function, step to its first line. Otherwise, step to the current

function’s next line.

G Cancel debugging for the rest of this function call and let the function run. Resume

debugging if someone calls the current function again.

R Begin a recursive edit of the current buffer. You may execute any command, including

show-variable or set-variable. Ctrl-X Ctrl-Z resumes debugging the stopped function.

(When debugging a function doing input, you may need to type Ctrl-U Ctrl-X Ctrl-Z to

resume debugging.)

T Toggle whether or not the current function should start the debugger when called the next

time. Parentheses appear around the word “Debug” in the debug status line to indicate that

you have not enabled debugging for the current function.

+ Enlarge the debug window.

– Shrink the debug window.

? List all debugger commands.

To start the debugger, use the set-debug command. It asks for the name of a command or subroutine,

providing completion, and toggles debugging for that function. (A zero numeric argument turns off

debugging for that function. A nonzero numeric argument turns it on. Otherwise, it toggles.) The list-debug

shows which functions have had debugging set.

Compiling a file with the -s EEL compiler flag disables debugging for routines defined in that file. See

page 379 for information about the EEL command line options, including the -s flag.

The profile command shows where a command spends its time. When you invoke the profile command,

it starts a recursive edit level, and collects timing information. Many times each second, Epsilon notes the

source file and source line of the EEL code then executing. When you exit from the recursive edit with

Ctrl-X Ctrl-Z, Epsilon displays the information to you in a buffer.

Epsilon doesn’t collect any profiling information on commands or subroutines that you compile with

the -s EEL flag.

The list-undefined command makes a list of EEL functions that are called from some other EEL

function, but have no definition. These are typically the result of misspelled function names.

Summary: load-bytes

set-debug

profile

list-undefined

160 Chapter 4. Commands by Topic

4.13.2 Updating from an Old Version

When you update to a new release of Epsilon, you’ll probably want to incorporate any customizations

you’ve made into the new version. You can save customizations in two ways: in a customization file called

einit.ecm (see page 154) (a simple text file which this version and future versions of Epsilon can read), or

in a state file (a binary file that’s specific to a particular major release). Prior to version 12, Epsilon only

supported the latter method.

If you’re updating from Epsilon 12 or later, and you saved your customizations in an einit.ecm file,

not a state file, the new version of Epsilon should automatically use your customizations. You might have to

modify some if they’re affected by changes in the new version of Epsilon; read the release notes to see.

Otherwise, if you’re updating from the Windows or Unix version of Epsilon version 8 or later, run the

import-customizations command in your new version. This will transfer your customizations from your

previous version and into your einit.ecm file for use in your new version. It works by running your previous

version of Epsilon in a special way.

Once you’ve done that, future versions will automatically use your customizations. If you make more

customizations, and choose to save them in a state file, not an einit.ecm file, you can use the

list-customizations command to copy your current customizations to an einit.ecm file.

The next section explains how to update from an older version where import-customizations isn’t

supported.

One exception to the above is if you’ve customized Epsilon by writing Epsilon extensions in Epsilon’s

extension language, EEL. The list-customizations and import-customizations commands will help you insert

references to your EEL source code files into your einit.ecm file, but it’s possible that some of the built-in

functions or subroutines called by your EEL source code files have changed. In that case, you will have to

modify your commands to take this into account. See the section on changes from previous versions in the

online manual for information on EEL changes.

Updating from Epsilon 7.0 or Older Versions

This section explains how to transfer customizations from a version of Epsilon so old that the

import-customizations command isn’t supported. The import-customizations command is available when

updating from version 8 or later, under Windows or Unix.

This section also applies if you’re updating from a DOS or OS/2 implementation of Epsilon, regardless

of its version, since import-customizations is only supported for the Windows and Unix implementations.

Moving your customizations (such as variable settings, changed bindings, or keyboard macros) from

your old version of Epsilon into the new version requires several steps.

• Start the old version of Epsilon as you do normally.

• Run the list-all command.

This will make a list of all the variables, bindings, macros, and functions defined in your old version

of Epsilon.

• Save the result in a file. We will assume you wrote it to a file named “after”.

• You should no longer need the old version of Epsilon, so you can now install the new version in place

of the old one if you wish. Or you can install the new version in a separate directory.

• Locate the “changes” subdirectory within Epsilon’s main directory.

4.13. Advanced Topics 161

For each old version of Epsilon, you’ll need several files in the steps below. In the description that

follows, we will assume that you want to move from Epsilon 7.0 to this version, and will use files with

names like list70.std. Substitute the correct file name if you have a different version (for example, list40.std

to upgrade from Epsilon 4).

• Locate the file in the changes subdirectory from the new version of Epsilon with a name like

list70.std. It resembles the “after” file, but comes from an unmodified copy of that version of Epsilon.

We will call this the “before” file. If you have a very old version for which there is no .std file, see

page 162 to make one.

• Start the new version of Epsilon. Run the list-changes command. It will ask for the names of the

“before” and “after” files, and will then make a list of differences between the files, a “changed” file.

When it finishes, you will have a list of the changes you made to the old version of Epsilon, in the

format used by the list-all command. Edit this to remove changes you don’t want in the new version,

and save it.

• Run the load-changes command, and give it the name of the “changed” file from the previous step. It

will load the changes into Epsilon. You can define commands, subroutines, and some variables only

from a compiled EEL file, not via load-changes. If any of these appear in your changed file, Epsilon

will add a comment after that line, stating why it couldn’t make the change.

• Use the list-customizations command to add your customizations to Epsilon’s einit.ecm file.

Note that this procedure will not spot changes made in .e files, only those made to variables, bindings or

macros. It will notice if you have defined a new command, but not if you have modified an existing

command.

The above procedure uses several commands. The list-all command lists the current state of Epsilon in

text form, mentioning all commands and subroutines, and describing all key bindings, macros, and

variables. The list-changes command accepts the names of the “before” and “after” files produced by list-all,

and runs the compare-sorted-windows command on them to make a list of the lines in “after” that don’t

match a line in “before”.

Finally, the load-changes command reads this list of differences and makes each modification listed. It

knows how to create variables, define macros, and make bindings, but it can’t transfer extension-language

commands. You’ll have to use the new EEL compiler to incorporate any EEL extensions you wrote.

Updating from Epsilon 4.0 or Older Versions

If you’re updating from a version of Epsilon before 4.0, you’ll have to make several files before updating.

You will need your old version of Epsilon (including the executable program files for Epsilon and EEL), the

state file you’ve been using with it (typically named epsilon.sta), and the original state file that came with

that version of Epsilon (which you can find on your old Epsilon distribution disk). You’ll also need the file

list-all.e, included with the new version of Epsilon. First, read the comments in the file list-all.e and edit it as

necessary to match your version. Then compile it with the old EEL compiler. This will create the bytecode

file listversion.b. Start your old version of Epsilon with its original state file, using a command like epsilon

-s\oldver\epsilon, and load the bytecode file you just created, using the load-bytes command on the F3

key. Now save the resulting list in a file named “before”. Then start your old version of Epsilon again, this

time with your modified state file, and load the bytecode file listversion.b again. Now save the resulting list

in a file named “after”. Next, start the new version of Epsilon, read in the “before” file, and sort using the

sort-buffer command, and write it back to the “before” file. You can now continue with the procedure above,

running the list-changes command and providing the two files you just created.

162 Chapter 4. Commands by Topic

<Ins> <Insert>

<End>

<Down>

<PgDn> <PageDn> <PgDown> <PageDown>

<Left>

<Right>

<Home>

<Up>

<PgUp> <PageUp>

 <Delete>

Figure 4.12: Names Epsilon uses for the cursor keypad keys.

If we didn’t provide a .std file for your version of Epsilon, and you’re running Epsilon 4.0 or later,

here’s how to make one. You will need your old version of Epsilon, the state file you’ve been using with it

(typically named epsilon.sta), and the original state file that came with that version of Epsilon (which you

can find on your old Epsilon distribution disk). Start your old version of Epsilon with its original state file,

using a command like epsilon -s\oldver\epsilon, and run the list-all command. Now save the

resulting list in a file named “before”. Then start your old version of Epsilon again (just as you normally do)

using the state file that contains the changes you’ve made, and run the list-all command again. Now save the

resulting list in a file named “after”. Next, start the new version of Epsilon, read in the “before” file, and sort

using the sort-buffer command, and write it back to the “before” file. You can now continue with the

procedure above, running the list-changes command and providing the two files you just created.

Summary: list-all

list-changes

load-changes

4.13.3 Keys and their Representation

This section describes the legal Epsilon keys, and the representation that Epsilon uses when referring to keys

and reading command files. The key representation used when writing extension language programs appears

on page 536.

Epsilon recognizes hundreds of distinct key combinations you can type on the keyboard (including

control and alt keys). You can bind a command to each of these keys. Each key can also function as a prefix

key, allowing even more key combinations. By default, Ctrl-X and Ctrl-C serve as prefix keys.

First, the keyboard provides the standard 128 ASCII characters. All the white keys in the central part of

the PC keyboard, possibly in combination with the Shift and Control keys, generate ASCII characters. So do

the 〈Esc〉, 〈Backspace〉, 〈Tab〉, and 〈Enter〉 keys. They generate Control [, Control H, Control I, and Control

M, respectively. Depending upon the national-language keyboard driver in use, there may be up to 128

additional keys available by pressing various combinations of Control and AltGr keys, for a total of 256

keys.

You can get an additional 256 keys by holding down the Alt key while typing the above keys. In

Epsilon, you can also enter an Alt key by typing an 〈Esc〉 before the key. Similarly, the Control-^ key says

to interpret the following key as if you had held down the Control key while typing that key.

4.13. Advanced Topics 163

N-<Ins> N-<Insert> N-0

N-<End> N-1

N-<Down> N-2

N-<PgDn> N-<PageDn> N-<PgDown> N-<PageDown> N-3

N-<Left> N-4

N-5

N-<Right> N-6

N-<Home> N-7

N-<Up> N-8

N-<PgUp> N-<PageUp> N-9

N- N-<Delete> N-.

Figure 4.13: Numeric keypad key names recognized and displayed by Epsilon.

If you want to enter an actual 〈Esc〉 or Control-^ instead, type a Control-Q before it. The Ctrl-Q key

“quotes” the following key against special interpretations. See page 148.

In command files and some other contexts, Epsilon represents Control keys by C-〈char〉, with 〈char〉
replaced by the original key. Thus Control-t appears as C-T. The case of the 〈char〉 doesn’t matter for

control characters when Epsilon reads a command file, but the C- must appear in upper case. The Delete

character (ASCII code 127) appears as C-?. Note that this has nothing to do with the key marked “Del” on

the PC keyboard. The Alt keys appear with A- appended to the beginning of their usual symbol, as in A-f for

Alt-f and A-C-h for Alt-Control-H.

Epsilon represents function keys by F-1, F-2, . . . F-63. The F must appear in upper case. You can also

specify the Shift, Control, and Alt versions of function keys, in any combination. In a command file, you

specify the Shift, Control, and Alt versions with a prefix of S-, C-, or A-, respectively. For example, Epsilon

refers to the key you get by holding down the Shift and Alt keys and pressing the F8 key as A-S-F-8.

Keys on the cursor keypad work in a similar way. Epsilon recognizes several synonyms for these keys,

as listed in figure 4.12. Epsilon generally uses the first name listed, but will accept any of the names from a

command file.

Epsilon normally treats the shifted versions of these keys (and others) as synonyms for the unshifted

versions. When you press Shift-〈Left〉, Epsilon runs the command bound to 〈Left〉. The commands bound to

most of these keys then examine the Shift key and decide whether to begin or stop selecting text. (Holding

down the shift key while using the cursor keys is one way to select text in Epsilon.)

Epsilon refers to the numeric keypad keys with the names given in figure 4.13.

In a command file, you can also represent keys by their conventional names, by writing <Newline> or

<Escape>, or by number, writing <#0> for the null character ^@, for example. Epsilon understands the

same key names here as in regular expression patterns (see figure 4.3 on page 65).

Macros defined in command files may also use the syntax <!cmdname> to run a command cmdname

without knowing which key it’s bound to. For example, <!find-file> runs the find-file command. When

you define a keyboard macro interactively and invoke commands from the menu bar or tool bar, Epsilon will

use this syntax to define them, since there may be no key sequence that invokes the specified command.

Several keys on the PC keyboard act as synonyms for other keys: the grey keys *, −, and + by the

numeric keypad, and the 〈Backspace〉, 〈Enter〉, 〈Tab〉, and 〈Esc〉 keys, for example. The first three act as

synonyms for the regular white ASCII keys, and the other four act as synonyms for the Control versions of

‘H’, ‘M’, ‘I’ and ‘[’, respectively. Epsilon normally translates these keys to their synonyms automatically,

164 Chapter 4. Commands by Topic

Specific Key Becomes Generic Key

〈NumPlus〉 +

〈NumMinus〉 −

〈NumStar〉 *

〈NumSlash〉 /

〈NumEqual〉 =

〈EnterKey〉 〈Enter〉 (on main keyboard)

〈NumEnter〉 〈Enter〉 (on numeric keypad)

〈BackspaceKey〉 〈Backspace〉

〈TabKey〉 〈Tab〉

〈EscapeKey〉 〈Esc〉

〈Spacebar〉 〈Space〉

Figure 4.14: Some keys that are synonyms for others.

and uses the binding of the synonym, but you can also bind them separately if you prefer, using the specific

key names shown in figure 4.14.

Mouse Keys

When you use the mouse, Epsilon generates a special key code for each mouse event and handles it the same

way as any other key. (For mouse events, Epsilon also sets certain variables that indicate the position of the

mouse on the screen, among other things. See page 539.)

M-<Left> M-<LeftUp> M-<DLeft> M-<Move>

M-<Center> M-<CenterUp> M-<DCenter>

M-<Right> M-<RightUp> M-<DRight>

Epsilon uses the above names for mouse keys when it displays key names in help messages and similar

contexts. M-<Left> indicates a click of the left button, M-<LeftUp> indicates a release, and M-<DLeft> a

double-click. See page 165 before binding new commands to these keys.

Epsilon doesn’t record mouse keys in keyboard macros. Use the equivalent keyboard commands when

defining a macro.

There are several “input events” that Epsilon records as special key codes. Their names are listed below.

See page 544 for information on the meaning of each key code.

M-<MenuSel> M-<HScroll> M-<WinHelpReq> M-<LoseFocus>

M-<Resize> M-<DragDrop> M-<Button>

M-<VScroll> M-<WinExit> M-<GetFocus>

Under Windows, Epsilon displays a tool bar. The toggle-toolbar command hides or displays the tool bar.

To modify the contents of the tool bar, see the definition of the standard-toolbar command in the file menu.e,

and the description of the tool bar primitive functions starting on page 505.

The invoke-windows-menu command brings up the Windows system menu. Alt-〈Space〉 is bound to this

command. If you bind this command to an alphabetic key like Alt-P, it will bring up the corresponding menu

(the Process menu, in this example).

4.14. Miscellaneous 165

In a typical Windows program, pressing and releasing the Alt key without pressing any other key moves

to the menu bar, highlighting its first entry. Set the variable alt-invokes-menu to one if you want Epsilon

to do this. The variable has no effect on what happens when you press Alt and then press another key before

releasing Alt: this will run whatever command is bound to that key. If you want Alt-E, for example, to

display the Edit menu, you can bind the command invoke-windows-menu to it.

Summary: toggle-toolbar

invoke-windows-menu

4.13.4 Customizing the Mouse

You can rebind the mouse buttons in the same way as other keys using the bind-to-key command, but if, for

example, you rebind the left mouse button to copy-region, then that button will copy the region from point to

mark, regardless of the location of the mouse. Instead, you might want to use the left button to select a

region, and then copy that region. To do this, leave the binding of the left mouse button alone, and instead

define a new version of the mouse-left-hook function. By default, this is a subroutine that does nothing. You

can redefine it as a keyboard macro using the name-kbd-macro command. Epsilon runs this hook function

after you release the left mouse button, if you’ve used the mouse to select text or position point (but not if,

for example, you’ve clicked on the scroll bar).

Normally Epsilon runs the mouse-select command when you click or double-click the left mouse

button, and the mouse-to-tag command when you click or double-click the right mouse button. Epsilon runs

the mouse-move command when you move the mouse; this is how it changes the mouse cursor shape or

pops up a scroll bar or menu bar when the mouse moves to an appropriate part of the screen, in some

environments.

Both mouse-select and mouse-to-tag run the appropriate hook function for the mouse button that

invoked them, whenever you use the mouse to select text or position point. The hook functions for the other

two mouse buttons are named mouse-right-hook and mouse-center-hook. You can redefine these hooks to

make the mouse buttons do additional things after you select text, without having to write new commands

using the extension language. (Note that in Epsilon for Windows mouse-to-tag displays a context menu

instead of selecting text, by calling the context-menu command, and doesn’t call any hook function.)

By default, the center mouse button runs the command mouse-center, which in turn calls the

mouse-pan command to make the mouse scroll or pan. Setting the mouse-center-yanks variable makes it

perform a different action. Some settings make it call the mouse-yank command, to have the middle mouse

button yank text from the clipboard (a traditional function under Unix).

Summary: M-〈Left〉 mouse-select

M-〈Right〉 mouse-to-tag

M-〈Center〉 mouse-center

M-〈Move〉 mouse-move

mouse-pan

mouse-yank

context-menu

4.14 Miscellaneous

You can use the eval command to quickly evaluate an arbitrary EEL expression, or do simple integer-only

math. By default, the command displays the result; use a numeric prefix argument and it will insert the result

166 Chapter 4. Commands by Topic

in the current buffer. You can append a ; character followed by a printf-style format specification, and

Epsilon will use that format for the result. For example, 403*2;x displays the value 806 converted to

hexadecimal, 0x03B5;k displays the name of Unicode character U+03B5, and "simple";.3s displays

"sim".

Similarly, the execute-eel command executes a line of EEL code that you type in.

The command narrow-to-region temporarily restricts your access to the current buffer to the region

between the current values of point and mark. Epsilon hides the portion of the buffer outside this region.

Searches will only operate in the narrowed region. While running with the buffer narrowed, Epsilon

considers the buffer to start at the beginning of the region, and end at the end of the region. However, if you

use a file-saving command with the buffer narrowed in this manner, Epsilon will write the entire file to disk.

To restore normal access to the buffer, use the widen-buffer command.

Under Windows, you can set Epsilon’s key repeat rate with the key-repeat-rate variable. It contains

the number of repeats to perform in each second. Setting this variable to 0 lets the operating system or

keyboard determine the repeat rate, as it does outside of Epsilon. Epsilon never lets repeated keys pile up; it

ignores automatically repeated keys when necessary.

Summary: narrow-to-region

widen-buffer

eval

execute-eel

4.14. Miscellaneous 167

Chapter 5

Alphabetical
Command List

169

abort Ctrl-G Abort the currently executing command.

This special command causes a currently executing command to stop, if possible. It cancels any

executing macros, and discards any characters you may have typed that Epsilon hasn’t read.

Use the set-abort-key command to change the abort key.

about-epsilon Show Epsilon’s version number and operating system.

align-by-tab Interpret Tab characters to make columns line up.

This command takes text containing tab characters (such as text copied from a spreadsheet) and

reformats it using spaces and tabs so the text appears visually in columns, making each column

just wide enough for its contents.

align-region Ctrl-C Ctrl-A Change spacing to line up similar things.

This command looks for strings that occur on more than one line in the region, then changes the

spacing before them to make them line up. By default, it does this for “=” characters and

comments. Modes can define additional strings to align. C mode also aligns the names of

variables in simple variable definitions and the definitions of #define lines. The

align-region-rules variable controls what will be aligned.

With a numeric argument, this command does manual alignment. It prompts for a regular

expression pattern. The pattern must consist of two subpatterns, each enclosed in parentheses,

such that #1 and #2 would match the subpatterns in a regular expression replacement operation.

For each line containing a match for the pattern, the spacing at the boundary between the two

subpatterns will be modified. The new spacing will be based on the widest match for #1.

To align the semicolons on each line, for example, you could use the pattern ()(;). Epsilon

uses the first match of the pattern on each line, skipping lines that don’t contain a match.

alt-prefix ESC Interpret the next key as an Alt key.

This command reads a character from the keyboard, then runs the command bound to the Alt

version of that key.

ansi-to-oem Convert buffer’s Windows character set to DOS.

Windows programs typically use a different character set than do DOS programs. The DOS

character set is known as the DOS/OEM character set, and includes various line drawing

characters and miscellaneous characters not in the Windows/ANSI set. The Windows/ANSI

character set includes many accented characters not in the DOS/OEM character set. Epsilon for

Windows uses the Windows/ANSI character set (with most fonts).

The ansi-to-oem command converts the current buffer from the Windows/ANSI character set to

the DOS/OEM character set. If any character in the buffer doesn’t have a unique translation, the

command warns first, and moves to the first character without a unique translation.

This command ignores any narrowing established by the narrow-to-region command. It’s only

available in Epsilon for Windows.

170 Chapter 5. Alphabetical Command List

append-next-kill Ctrl-Alt-W Don’t discard a kill buffer.

Normally, kill commands select a new kill buffer before inserting their own text there, unless

immediately preceded by another kill command. This command causes an immediately

following kill command to append to the current kill buffer. However, if the current region is

rectangular, this command instead deletes it by invoking delete-rectangle.

apropos List commands pertaining to a topic.

This command asks for a string, then displays a list of commands and variables and their

one-line descriptions that contain the string. You can get more information on any of these by

following the links: double-click or use 〈Tab〉 and 〈Enter〉.

argument Ctrl-U Set the numeric argument or multiply it by four.

Followed by digits (or the Alt versions of digits), this command uses them to specify the

numeric argument for the next command. If not followed by digits, this command sets the

numeric argument to four, or multiplies an existing numeric argument by four. If bound to a

digit or Alt digit, argument acts as if you typed that digit after invoking it.

Most commands use a numeric argument as a repeat count. For example, Ctrl-U 7 Alt-F moves

forward seven words, and Ctrl-U Ctrl-U Ctrl-F moves forward sixteen (four times four)

characters.

Some other commands interpret the numeric argument in their own way. See also

auto-fill-mode, query-replace, and kill-line.

Also see the run-with-argument command.

asm-mode Set up for editing Assembly Language files.

This command puts the current buffer in Asm mode, suitable for assembly files.

auto-fill-mode Toggle automatic line breaking.

Epsilon can automatically break lines when you type text. With auto filling enabled, Epsilon

will break the line when necessary by turning some previous space into a newline, breaking the

line at that point. You can set the maximum line length for breaking purposes with the

set-fill-column command.

Use this command to enable or disable auto filling for the current buffer. A nonzero numeric

argument turns auto filling on. A numeric argument of zero turns it off. With no numeric

argument, the command toggles the state of auto filling. In any case, the command reports the

new status of auto filling in the echo area.

To set auto-fill on by default in new buffers you create, use the set-variable command on F8 to

set the default value of the fill-mode variable to 1.

In C mode buffers, this command simply sets the variable c-auto-fill-mode. Some other

modes have mode-specific variables with similar names, including html-auto-fill-mode,

misc-language-fill-mode, and tex-auto-fill-mode.

171

back-to-tab-stop Shift-〈Tab〉 Move back to the previous tab stop.

This command moves point to the left until it reaches a tab stop, a column that is a multiple of

the tab size.

If a region is highlighted, Epsilon unindents the region by one tab stop. With a numeric prefix

argument, Epsilon unindents by that amount.

This command uses the variable soft-tab-size if it’s nonzero. Otherwise it uses tab-size.

backward-character Ctrl-B Move point back.

Point moves back one character. Nothing happens if you run this command with point at the

beginning of the buffer. If you set virtual-space to two, the command never moves to a

different line but only left on the current line.

backward-delete-character Ctrl-H Delete the character before point.

This command deletes the character before point. When given a numeric argument, the

command deletes that many characters, and saves them in a kill buffer.

This command can be set to convert tab characters into spaces before deleting, or to delete

multiple spaces at once. See the delete-hacking-tabs variable.

backward-delete-word Brief: Ctrl-〈Backspace〉 Delete the word before point.

The command moves point as in backward-word, deleting the characters it passes over. See

backward-kill-word for a similar command that cuts the text to a kill buffer.

backward-ifdef C mode: Alt-[, Alt-〈Up〉 Find matching preprocessor line.

This command moves to the previous #if/#else/#endif (or similar) preprocessor line. When

starting from such a line, Epsilon finds the previous matching one, skipping over inner nested

preprocessor lines.

backward-kill-level Alt-〈Del〉 Kill a bracketed expression backwards.

The command moves point as in backward-level, killing the characters it passes over.

backward-kill-word Ctrl-Alt-H Kill the word before point.

The command moves point as in backward-word, killing the characters it passes over.

backward-level Ctrl-Alt-B Move point before a bracketed expression.

Point moves backward searching for one of), }, or]. Then point moves back past the nested

expression and positions point before the corresponding left delimiter. (Actually, each mode

defines its own list of delimiters. One mode might only recognize < and > as delimiters, for

instance.)

backward-paragraph Alt-[Go back one paragraph.

Point travels backward through the buffer until positioned at the beginning of a paragraph.

Lines that start with whitespace (including blank lines) always separate paragraphs. For

information on changing Epsilon’s notion of a paragraph, see the forward-paragraph command.

172 Chapter 5. Alphabetical Command List

backward-sentence Alt-A Go back one sentence.

Point travels backwards through the buffer until positioned at the beginning of a sentence. A

sentence ends with a period, exclamation point, or question mark, followed by two spaces or a

newline, with any number of closing characters ", ’,),], between. A sentence also ends at the

end of a paragraph. See forward-paragraph.

backward-word Alt-B Go back one word.

Point travels backward until positioned before the first character in some word.

batch-mode Set up for editing Windows Batch files.

This command puts the current buffer in Batch mode, suitable for .bat, .cmd, and .btm files from

Windows, DOS, or OS/2.

beginning-of-line Ctrl-A Go to the start of the line.

This command positions point at the beginning of the current line, before the first character.

beginning-of-window Alt-, Go to the upper left corner.

Position point before the first character in the window.

bind-last-macro Ctrl-X Alt-N Put a new macro on a key.

After you define a keyboard macro, you can use this command to assign a name to it and bind it

to a key. The command makes up a name for the macro, which you can change, then asks for

the key sequence that should invoke it. It combines the functions of the name-kbd-macro and

bind-to-key commands.

bind-to-key F4 Put a named command on a key.

This command prompts you for the name of a command, then for a key. Thereafter, pressing

that key runs that command.

Certain keys like 〈Backspace〉 have both a generic interpretation (Ctrl-H) and a specific one. If

you press one of these keys, Epsilon will ask which binding you want to make. Select the

generic one unless you want each way of typing the generic key (such as Ctrl plus H, versus the

〈Backspace〉 key) to perform a different function.

brief-copy-region Brief: Grey + Copy a highlighted region, saving it.

This command saves a copy of the highlighted region to a kill buffer so you can insert it

somewhere else. If no region is highlighted, the command copies the current line.

brief-cut-region Brief: Grey - Delete a highlighted region, saving it.

This command kills the highlighted region, saving a copy of the region to a kill buffer so you

can insert it somewhere else. If no region is highlighted, the command kills the current line.

173

brief-delete-region Brief: 〈Del〉 Delete a highlighted region without saving.

This command deletes the highlighted region without saving it in a kill buffer. If no region is

highlighted, the command deletes the next character in the buffer.

brief-delete-window Brief: F4 Remove one of a window’s borders.

This command prompts you to indicate which of the current window’s borders you wish to

delete. Press an arrow key and Epsilon will delete other windows as needed to remove that

window border.

brief-drop-bookmark Brief: Alt-0 ... Alt-9 Remember this location.

This command remembers the current buffer and position, so that you can easily return to it

later with brief-jump-to-bookmark. Normally, the command looks at the key you pressed to

invoke it, to determine which of the ten Brief bookmarks to set. For example, if you press Alt-3

to invoke it, it sets bookmark 3. If you press Alt-0 to invoke it, it sets bookmark 10. When you

invoke the command by pressing some other key, it prompts for the bookmark to set.

Brief bookmarks 1–10 are really synonyms for Epsilon bookmarks A–M. You can use Epsilon

commands like list-bookmarks to see all the bookmarks and select one.

brief-end-key Brief: 〈End〉 Go to the end of the line/window/buffer.

This command goes to the end of the current line. When you press it twice in succession, it

goes to the end of the current window. When you press it three times in succession, it goes to

the end of the current buffer.

brief-home-key Brief: 〈Home〉 Go to the start of the line/window/buffer.

This command goes to the start of the current line. When you press it twice in succession, it

goes to the start of the current window. When you press it three times in succession, it goes to

the start of the current buffer.

brief-jump-to-bookmark Brief: Alt-J Jump to a bookmark.

This command returns to a bookmark previously set with brief-drop-bookmark. It prompts for

the number of the bookmark you wish to return to.

Brief bookmarks 1–10 are really synonyms for Epsilon bookmarks A–M. You can use Epsilon

commands like list-bookmarks to see all the bookmarks and select one.

brief-keyboard Load the Brief-style keyboard layout.

This command redefines the keyboard to resemble the key arrangement used by the Brief editor.

Use the command epsilon-keyboard to return to Epsilon’s default keyboard arrangement.

brief-open-line Brief: Ctrl-〈Enter〉 Make a new line below this one.

This command adds a new line after the current one and moves to it.

174 Chapter 5. Alphabetical Command List

brief-resize-window Brief: F2 Move the window’s border.

This command prompts you to indicate which of the current window’s borders you would like

to move. Press an arrow key to select one. Then press arrow keys to move the window’s border

around. Press 〈Enter〉 when you are satisfied with the window’s size. Epsilon will resize other

windows as necessary.

brief-split-window Brief: F3 Put a new border inside this window.

This command prompts you to indicate where you would like to create a new window border.

Press an arrow key and Epsilon will split off a new window from the current one, with the

border between the two in the indicated direction.

browse-current-symbol Browse source code for this symbol without prompting.

Epsilon provides an interface to source code browsing data generated by Microsoft compilers,

using a buffer in Browse mode. Use this command to display the data available for a particular

symbol, such as a function or variable name.

This is a variation on the browse-symbol command. It doesn’t prompt for a symbol name, but

uses the name at point instead (or the name in the highlighted region, if any). See the

description of the browse-symbol command for details.

browse-mode Source code browsing interface.

Epsilon provides an interface to source code browsing data generated by Microsoft compilers,

using a buffer in Browse mode. See the browse-symbol command to create a Browse mode

buffer.

In Browse mode, pressing 〈Enter〉, 〈Space〉, or “e”, or double-clicking, displays the item

mentioned on the current line; the exact behavior depends on the line’s contents. If the line

refers to a specific source file name and line number, Epsilon goes to that file and line, in the

current window if there’s only one window, or in another window if there’s more than one.

If the current line refers to a different symbol, in the uses or used-by section of the listing,

Epsilon displays the Browse data for that symbol, replacing the current symbol. Press L to

return to the previous symbol, moving back in symbol history. Press Ctrl-U L to display the

symbol history and select a previous symbol to display.

For lines in the heading section of the Browse display, Browse mode prompts for a new setting

for the item displayed on that line.

browse-set-filter Browse mode: f Filter out some instances in source code browsing.

A Browse mode buffer created by the browse-symbol command displays uses of the symbol as a

function, variable, macro, and so forth. You can exclude some of these types of uses by setting a

filter using this command.

The command shows the current uses permitted. Press one of the indicated keys to toggle a

particular type of use. Press 〈Enter〉 when done and the current listing will be updated.

175

browse-set-usedby-filter Browse mode: b Filter out some uses in source code browsing.

A Browse mode buffer created by the browse-symbol command displays those function,

variable, macro, and so forth that use a particular symbol, and those used by the current symbol.

You can exclude some of these types of uses by setting a filter using this command.

The command shows the current uses permitted. Press one of the indicated keys to toggle a

particular type of use. Press 〈Enter〉 when done and the current listing will be updated.

browse-symbol Ctrl-〈NumSlash〉 Browse source code for this symbol.

Epsilon provides an interface to source code browsing data generated by Microsoft compilers,

using a buffer in Browse mode. Use this command to display the data available for a particular

symbol, such as a function or variable name.

First you must set up Epsilon for source code browsing by turning on browsing data in your

compiler and running the configure-epsilon command to install a .DLL file. See page 50 for

details.

If you haven’t already either run the select-browse-file command to select your .bsc browser

database file, or used the select-tag-file to select a .bsc file, this command will prompt for your

.bsc file the first time you run it.

The command then prompts for the name of a symbol and displays its data. Symbol name

completion is available. You can put a * at the end of the symbol name to display all symbols

starting with the given prefix, or write classname:: to display all that class’s members.

The #symbols# buffer it creates is in browse-mode; see that topic for details on its commands.

Also see the browse-current-symbol command.

bufed Ctrl-X Ctrl-B Manipulate a list of buffers.

This command makes a list of buffers, displays it in a window, and lets you edit it. Alphabetic

keys run special bufed commands. The N and P commands go to the next and previous buffers

in the list, respectively. The D command deletes the buffer on the current line immediately. It

warns you if the buffer has unsaved changes. The 〈Space〉 or E key selects the buffer on the

current line, and the S key writes the buffer named on the current line to its file. Typing 1 makes

the window occupy the whole screen, then selects the buffer like E. Typing 2 or 5 splits the

window horizontally or vertically, then selects the indicated buffer. Shift-P prints the buffer on

the current line.

In a bufed listing, the A, B, F, and I keys make bufed sort the buffer list by last access time,

buffer name, file name, or size, respectively. Use the shifted versions of these keys to sort in

reverse. Pressing U requests an unsorted buffer list: the newest buffers appear first in the list. M

toggles whether modified buffers appear first in the list.

This command does not normally list special buffers such as the kill buffers whose names begin

with the “-” character. To list even these buffers, give the bufed command (or a sorting

command) a numeric argument.

buffer-grep Search in buffers for a pattern.

This command searches through buffers for a pattern. It prompts for a search string and a buffer

pattern; the default is to search only the current buffer. Then it searches in all buffers matching

the buffer pattern, listing matching lines in the grep buffer. The grep buffer then appears in the

current window.

176 Chapter 5. Alphabetical Command List

By default, buffer-grep interprets the search string as a regular expression. Press Ctrl-T at the

search string prompt to toggle regular expression mode. You can also type Ctrl-W or Ctrl-C to

toggle word-mode or case-folding searches, respectively.

The buffer name pattern may contain the wildcard characters ? to match any single character, *

to match zero or more characters, a character class like [^a-zA-Z] to match any non-alphabetic

character, or | to separate alternatives.

In grep mode, alphabetic keys run special grep commands. See the description of the grep-mode

command for details. Typing H or ‘?’ in grep mode gives help on grep subcommands.

A bit in the search-in-region variable makes grepping a single buffer restrict itself to a

highlighted region. By default, Epsilon searches entire buffers.

buffer-spell-mode Toggle per-buffer highlighting of misspelled words.

This command toggles the Spell minor mode for the current buffer only. With a nonzero

numeric argument, it turns Spell mode on; with a zero argument it turns Spell mode off. In Spell

mode, Epsilon highlights misspelled words. See the spell-mode command to toggle Spell minor

mode for all buffers with the same major mode as the current buffer (for instance, all HTML

buffers).

Use the spell-correct command to ignore certain words or show suggestions for a misspelled

word.

c-close C mode: },) Self-insert, then fix this line’s

indentation for C.

c-colon C mode: : Self-insert, then fix this line’s

indentation for C.

c-hash-mark C mode: # Self-insert, then fix this line’s

indentation for C.

c-mode Do automatic indentation for C-like languages.

This command puts the current buffer in C mode, appropriate for editing programs written in

any language with a syntax similar to C (such as EEL). In C mode, 〈Enter〉 indents each new

line by scanning previous lines to determine the proper indentation. 〈Tab〉 reindents the current

line when you invoke it with point inside a line’s indentation. With point outside a line’s

indentation, or when repeated, this command adds more indentation.

By default, the find-file command automatically turns on C mode for files that end with .c, .cpp,

.hpp, .cxx, .hxx, .y, .h, .java, .inl, idl, .acf, .cs, .i, .ii, .m, .mi, .mm, .mmi, or .e.

c-open C mode: { Self-insert, then fix this line’s

indentation for C.

capitalize-word Alt-C Upper case beginning character.

Point travels forward through the buffer as with forward-word. Each time it encounters a run of

alpha characters, it converts the first character to upper case, and the remainder to lower case.

For example, if you execute this command with point positioned just before “wORd”, it

becomes “Word”. Similarly, “wORd_wORd” becomes “Word_Word”.

177

If the current buffer contains a highlighted region, Epsilon instead capitalizes all the words in

the region, leaving point unchanged.

cd F7 Change the current directory.

The cd command prompts for the name of a directory, then sets Epsilon’s current directory. If

you press Alt-E when prompted for the directory name, Epsilon will type in the name of the

directory portion of the current file name.

When Epsilon displays a file name (for example, in a buffer’s mode line), it usually describes

the file relative to this current directory.

Epsilon uses its notion of the current directory when it prompts for a file name and the current

buffer has no specific directory associated with it. (This typically happens when the buffer has

no associated file name.)

Also, if you remove any pre-typed directory name and type a relative pathname to such a

command, Epsilon will interpret what you type relative to the directory set by the cd command.

See the prompt-with-buffer-directory variable for more information.

center-line Alt-S Center line horizontally.

This command centers the current line between the first column and the right margin, by

changing the line’s indentation if necessary. You can set the right margin with the set-fill-column

command.

center-window Ctrl-L Vertically center the current window.

This command makes the line containing point appear in the center of the window. With a

numeric argument n, it makes the line appear on line n of the window. Line 0 refers to the top

line.

change-code-coloring Toggle code coloring on or off in this buffer.

This command toggles between coloring and not coloring the program text in the current buffer

by setting the want-code-coloring variable. The command has no effect in buffers Epsilon

doesn’t know how to color.

change-file-read-only Change the read-only status of a file.

This command prompts for a file name (default: the current file) and toggles its read-only

attribute. Under Unix, it either makes the file unwritable to all, or writable to all (to the extent

permitted by the current umask). Use Alt-o ! chmod for finer control.

change-font-size Set the font’s width and height.

Under Windows, this command supplements the set-font command by providing additional font

choices. Some Windows fonts include a variety of character cell widths for a given character

cell height. (For example, many of the font selections available in windowed DOS sessions use

multiple widths.) Commands like set-font utilize the standard Windows font dialog, which

doesn’t provide any way to select these alternate widths. This command lets you choose these

fonts.

178 Chapter 5. Alphabetical Command List

The change-font-size command doesn’t change the font name, or toggle bold or italic. You’ll

need to use the set-font command to do that.

Instead, change-font-size lets you interactively adjust the height and width of the current font

using the arrow keys. You can abort to restore the old font settings, or press 〈Enter〉 or 〈Space〉
to keep them. This is a handy way to shrink or expand the font size. A width or height of 0

means use a suitable default.

Given a numeric argument, the command instead changes the font size by the specified amount,

without further user interaction.

change-line-wrapping Change whether this window wraps or scrolls long lines.

This command toggles whether the current window displays long lines by wrapping them onto

succeeding screen lines, rather than truncating them at the right edge of the screen. With a

negative numeric argument, it forces wrapping. With a non-negative argument, it forces

truncation, and tries to set the display column to the value of the numeric argument.

change-modified Alt-˜ Change the modified status of the buffer.

This command causes Epsilon to change its opinion as to the modified status of the buffer.

Epsilon uses this modified status to warn you of unsaved buffers when you exit. Epsilon

indicates modified buffers by displaying a star at the end of the mode line.

change-name Rename a variable or command.

You can change the name of a command, keyboard macro, or EEL variable with this command.

change-read-only Ctrl-X Ctrl-Q Change the read-only status of the buffer.

This command changes the read-only status of the buffer. Attempting to modify a read-only

buffer results in an error message. If a window contains a read-only buffer, the modeline

contains the letters “RO”. With no numeric argument, the command toggles the read-only status

of the buffer. With a non-zero numeric argument, the buffer becomes read-only; otherwise, the

buffer becomes changeable. Also see the change-file-read-only command.

change-show-spaces Shift-F6 Toggle whether or not Epsilon

makes whitespace visible.

Epsilon can display the nonprinting characters space, tab, or newline using special graphic

characters to indicate the position of each character in the buffer. This command switches

between displaying markers for these characters and making them invisible, by setting the

current value of the buffer-specific variable show-spaces.

clean-customizations Mark or remove duplicate customizations.

This command loads the einit.ecm customization file, then scans it looking for lines that set the

same variable, define the same macro, specify the same color class and scheme, and so forth. It

comments out all such duplicate lines but the last one, by marking each line with a ### prefix.

But first, it deletes any lines that already have such a prefix. You can run this command,

examine the lines it’s marked for deletion, and then run it again to carry out the deletion.

179

clear-tags Forget all the tags in the current tag file.

See also the commands select-tag-file and tag-files.

comment-region Ctrl-C Ctrl-R Mark the region as a comment.

This command comments out each line in the region, using the current mode’s comment syntax.

With a numeric prefix argument, it uncomments lines in the region.

compare-sorted-windows Find lines missing from the current

or next windows.

This command copies all lines that appear in both the current window’s buffer, and the next

window’s buffer, into a buffer named “inboth”. It copies other lines to buffers named “only1”

and “only2”. It assumes that you already sorted the original buffers.

compare-to-prior-version Show changes from editing.

This command prompts for an edit count n, then compares the current version of the buffer with

the version prior to the most recent n editing operations, displaying the differences in a new

buffer. An “editing operation” means what one use of the undo-changes command would undo.

If the edit count you enter is zero, the command instead compares the current version of the

buffer with the version currently on disk. The comparison uses the format of the visual-diff

command by default; set the compare-to-prior-version-style variable to use a different

format.

compare-windows Ctrl-F2 Find the next difference between

the current and next windows.

This command moves forward from point in the buffers displayed in the current window and

the next window. It compares the text in the buffers, stopping when it finds a difference or

reaches the end of a buffer, then reports the result.

If repeated, it alternates between finding the next difference and finding the next match (by

resynchronizing the buffers).

compile-buffer Alt-F3 Compile the current buffer as appropriate.

This command tries to compile the current buffer. It uses the compiling command appropriate

for the current buffer. For .c files, this is contained in the compile-c-cmd variable. For .cpp or

.cxx files, this is contained in the compile-cpp-cmd variable. For .e files, this is contained in

the compile-eel-cmd variable. When you compile an EEL file successfully, Epsilon

automatically loads the resulting bytecode file.

If the current buffer has no compilation command associated with it, Epsilon will prompt for the

appropriate command and record it in the buffer-specific variable compile-buffer-cmd. For

C, C++, and EEL files, Epsilon automatically sets this to refer to the variables listed above.

Before and after running the compilation command, Epsilon does any mode-specific operations

needed, by calling the buffer-specific function pointer variables pre_compile_hook and

post_compile_hook, respectively. An EEL programmer can use these hooks to make Epsilon

perform additional actions each time you compile buffers.

The function pointed to by post_compile_hook receives a status code returned by the

do_compile() subroutine, and the number of the buffer to be compiled. See that function’s

definition in proc.e for details. The function pointed to by pre_compile_hook receives no

parameters. If either variable holds a null pointer, Epsilon doesn’t call it.

180 Chapter 5. Alphabetical Command List

conf-mode Set up for editing configuration files.

This command sets up generic syntax highlighting suitable for miscellaneous Unix

configuration files.

configure-epsilon Under Windows, set up file associations and similar.

In Epsilon for Windows, this command launches a setup utility that lets you configure file

associations, recreate Epsilon’s Start Menu entries and other shortcuts, install source code

browser support, and modify registration information.

context-help Shift-F1 Display help on the keyword at point.

This command displays help on the keyword at point. The type of help depends on the current

mode. Context-sensitive help is configurable by setting mode-based help rule variables such as

context-help-rule-perl. See page 96 for details on these variables.

context-menu Shift-F10 Display a right-mouse-button menu.

This command displays a context menu in Epsilon for Windows. The right mouse button runs

this command.

copy-file-name Ctrl-C Alt-n Put the current buffer’s filename on the clipboard.

This command puts the current buffer’s file name, in absolute pathname form, on the clipboard.

In a dired buffer, it copies the full pathname of the current line’s file.

copy-formatting-as-html Copy the region, preserving colors.

This command constructs an HTML version of the current region and puts it onto the clipboard.

It uses HTML coding to preserve syntax highlighting or any other coloring that has been

applied to the region. Under Windows, it also stores a version of the HTML in the form of an

“HTML fragment”, so that various HTML-based editors will recognize it as HTML.

copy-include-file-name Ctrl-C Alt-i Put an #include for the current file on the clipboard.

For C mode buffers, this command constructs an #include directive that will reference the

current file when inserted in some other source file. It uses the same logic as find-linked-file to

find the shortest, simplest pathname that will still locate the current file, so it doesn’t have to

include the full path of the file.

For other languages, it uses the appropriate syntax for including files in that language, by

looking for a variable of the form copy-include-file-name-mode, where mode is the

current mode name. The variable holds a file name template (see page 115) which is used to

format the current file’s name. If there’s a function by that name, not a variable, Epsilon simply

calls it.

Also see the copy-include-file-name-options variable.

181

copy-rectangle Copy the current rectangle to a kill buffer.

This command copies the rectangular block between point and mark to a kill buffer, without

changing the current buffer. (Actually, the command may insert spaces at the ends of lines, or

convert tabs to spaces, if that’s necessary to reach the starting or ending column on one of the

lines in the region. But the buffer won’t look any different as a result of these changes.)

When a rectangular region has been highlighted, the copy-region command runs this command.

copy-region Alt-W Copy the region to a kill buffer.

This command copies the region of the buffer between point and mark to a kill buffer, without

changing the current buffer. If the current region is rectangular, it simply calls copy-rectangle.

copy-to-clipboard Copy the current region to the clipboard.

When running under MS-Windows or as an X11 program in Unix, this command copies the

current region onto the clipboard so other applications can access it.

copy-to-file Ctrl-F7 Copy buffer contents to a file.

This command prompts you for a file name, then writes the buffer to that file. The file

associated with the current buffer remains the same. See also write-file.

copy-to-scratch Ctrl-X X Copy the region to a permanent buffer.

This command copies the text in the region between point and mark. It asks for a letter (or

number), then associates that character with the text. Subsequently, you can insert the text by

invoking the insert-scratch command. See also the commands kill-region and copy-region.

count-lines Ctrl-X L Show the number of lines in the buffer.

A message showing the number of lines in the buffer appears in the echo area. The message

also gives the line number of the current line, and the length of the file when written to disk. If

there is a highlighted region, its line count is displayed as well.

See the mode-format variable to display the current line number continuously.

count-words Show the number of words in the buffer.

This command displays the number of words in the current buffer. If there’s a highlighted

region, it counts only words within the region. With a numeric argument, it prompts for a

regular expression pattern and counts instances of that, instead of words.

create-file-associations Make Windows run Epsilon to launch certain file types.

You can set up Windows file associations for Epsilon using the create-file-associations

command. It lets you modify a list of common extensions, then sets up Windows to invoke

Epsilon to edit files with those extensions. The files will be sent to an existing copy of Epsilon,

if one is running. If not, a new instance of Epsilon will be started.

182 Chapter 5. Alphabetical Command List

create-prefix-command Define a new prefix key.

This command asks for a key and then turns that key into a prefix key, like Ctrl-X.

create-variable Define a new EEL variable.

This command lets you define a new variable without using the extension language. It prompts

for the name, the type, and the initial value.

css-mode Set up for editing CSS files.

This command puts the current buffer in CSS mode, suitable for editing cascading style sheet

files used for web pages.

ctrl-prefix Ctrl-^ Interpret the next key as a Control key.

This command reads a character from the keyboard, then executes the command bound to the

Control version of that key.

cua-keyboard Load the CUA-style keyboard layout.

This command redefines the keyboard to resemble the key arrangement used by typical

MS-Windows programs. Use the command epsilon-keyboard to return to Epsilon’s default

keyboard arrangement.

delete-blank-lines Ctrl-X Ctrl-O Remove blank lines around point.

This command deletes empty lines adjacent to point, or lines that contain only spaces and tabs,

turning two or more such blank lines into a single blank line. The command deletes a lone

blank line. If you prefix a numeric argument of n, exactly n blank lines appear regardless of the

number of blank lines present originally.

With a highlighted region, the command does this at every sequence of one or more blank lines

throughout the region.

delete-character Ctrl-D Delete the character after point.

If you prefix a numeric argument, the command deletes that many characters, and saves them in

a kill buffer. If invoked immediately after a kill command, delete-character will store the

deleted character(s) in the same kill buffer that the kill command used (but see the

delete-options variable).

delete-current-line Brief: Alt-d Delete the current line.

This command deletes the entire current line, including any newline at its end.

delete-horizontal-space Alt-\ Delete whitespace near point.

This command deletes spaces and tabs surrounding point.

183

delete-matching-lines Delete lines containing a regex pattern.

This command prompts for a regular expression pattern. It then deletes all lines below point in

the current buffer that contain the pattern. While you type the pattern, Ctrl-W enables or

disables word searching, restricting matches to complete words. Ctrl-T enables or disables

regular expression searching, in which the search string specifies a pattern (see regex-search for

rules). Ctrl-C enables or disables case-folding.

delete-name Delete a function, variable, etc.

This command prompts you for the name of a command, subroutine or variable, with

completion, and then tries to delete the item.

delete-rectangle Delete the characters in the current rectangle.

This command removes from the current buffer the characters in the rectangular area between

point and mark. Unlike the kill-rectangle command, this command does not copy the characters

to a kill buffer. Also see the append-next-kill command.

delete-region Delete the region without saving it.

This command removes the characters between point and mark from the buffer without putting

them in a kill buffer.

delete-to-end-of-line Delete the remaining characters on this line.

describe-command F1 C Give help on the named command.

This command prompts you for a command name, then displays a description of that command

along with its current bindings (if any).

describe-key F1 K Give help on the key.

This command prompts you for a key, then displays a description of the command bound to that

key (if any).

describe-variable F1 R Display help on a variable.

This command prompts for the name of variable. Then it displays the documentation for that

variable.

dialog-regex-replace Replace using a dialog.

This command displays the Replace dialog, which you can use to find and replace text in the

buffer. The dialog is initialized so that the Regular Expression box is checked.

dialog-replace Replace using a dialog.

This command displays the Replace dialog, which you can use to find and replace text in the

buffer.

To match special characters, turn on regular expression searching, and then enter them using the

syntax <Tab> or <#13>. In replacement text, use the similar syntax #<Newline>.

184 Chapter 5. Alphabetical Command List

dialog-reverse-search Search backwards using dialog.

This command displays a Find dialog initialized to search backwards.

dialog-search Search using the Find dialog.

This command displays a Find dialog, which you can use to search for text in the buffer.

To match special characters, turn on regular expression searching, and then enter them using the

syntax <Tab> or <#13>.

diff List differences between current and next windows.

Make a list of all differences between the buffers in the current and next windows in a buffer

named #diff#. The list shows what lines you would have to remove from or add to the first

buffer to make it identical to the second buffer. With a numeric argument, the command

prompts for the name of a buffer to hold the results.

dired Ctrl-X D Edit the contents of a directory.

The command dired (for directory edit) allows you to conveniently peruse the contents of a

directory, examining the contents of files and, if you wish, selecting some for deletion, copying,

or moving.

The command prompts for the name of a directory or a file pattern. By default, it uses the

current directory. It then displays a buffer in the current window, with contents similar to what

the operating system command “dir” would display. Each line of the dired buffer contains the

name of a file and information about it.

In dired mode, alphabetic keys run special dired commands. See the description of the

dired-mode command for details. Typing H or ‘?’ in dired mode gives help on dired

subcommands.

dired-mode Edit a directory of file names.

A dired (directory edit) buffer lists the contents of a directory. In a dired buffer, you can use

these keys:

N moves to the next entry in the list.

P moves to the previous entry.

D flags a file (or empty directory) that you wish to delete by placing a ‘D’ before its

name.

C marks a file for copying.

M marks a file for moving (renaming).

U removes any flags from the file listed on the current line.

X actually deletes, copies, or moves the files. Epsilon will ask for the destination

directory into which the files are to be copied or moved, if any files are so

marked. If there is only one file to copy or move, you can also specify a file

name destination, so you can use the command for renaming files. Epsilon

prompts for a single destination for all files to be copied, and another for all files

to be moved. If any files are marked for deletion, Epsilon will ask you to

confirm that you want to delete the files.

185

E or 〈Space〉 or 〈Enter〉 lets you examine the contents of a file. It invokes the

find-file command on the file, making the current window display this file

instead of the dired buffer. After examining a file, you can use the select-buffer

command (Ctrl-X B) to return to the dired buffer. Press 〈Enter〉 when prompted

for the buffer name and the previous buffer shown in the current window will

reappear (in this case, the dired buffer). Applied to a directory, the E command

does a dired of that directory.

Shift-E examines the contents of a file or directory like 〈Enter〉, deleting the current

dired buffer first.

lowercase L creates a live link. First Epsilon creates a second window, if there’s

only one window to start with. (Provide a numeric argument to get vertical, not

horizontal, window splitting.) Then Epsilon displays the file named on the

current dired line in that window, in a special live link buffer. As you move

around in the dired buffer, the live link buffer will automatically update to

display the current file. Delete the live link buffer or window, or show a

different buffer there, to stop the live linking.

V runs the “viewer” for that file; the program assigned to it according to Windows

file associations. For executable files, it runs the program. For document files, it

typically runs the Windows program assigned to that file extension. In Epsilon

for Unix, it tries to display the file using the KDE, Gnome, or Mac OS X view

setting for that type of file, by calling an epsilon-viewer script you can

customize.

T displays the MS-Windows properties dialog for that file or directory. For a

directory, this lets you view the size of its contents.

A under Windows displays the file’s current attributes (Hidden, System, Read-only

and Archive) and lets you specify a new attribute list. You can set the

dired-layout variable under Windows to include these attributes in the dired

listing itself. Under Unix, A runs the chmod command, passing it the mode

specification you type, such as g+w to let group members write to the file. For

remote files accessed via Scp, Epsilon passes the mode specification to the

remote system. It must be in the form of a Unix-style octal mode setting, like

0644.

R refreshes the current listing. Epsilon will use the original file pattern to rebuild

the file listing. If you’ve marked files for copying, moving, or deleting, the

markings will be discarded if you refresh the listing, so Epsilon will prompt first

to confirm that you want to do this.

- toggles whether Epsilon hides files and directories whose names that start with a .

period character. See the dired-show-dotfiles variable to set which sorts of

files this key hides.

S controls sorting. It prompts you to enter another letter to change the sorting

method. Type ‘?’ at that prompt to see the sorting options available.

G uses the directory associated with the current line to set Epsilon’s current

directory.

+ creates a subdirectory. It asks for the new subdirectory’s name.

. or ^ invokes a dired on the parent directory of the current dired.

1 makes the window occupy the whole screen, then acts like E.

2 or 5 splits the window horizontally or vertically, then acts like E in the new

window.

O switches to the next window, then acts like E.

186 Chapter 5. Alphabetical Command List

Z zooms the current window like the zoom-window command, then acts like E.

! prompts for a command line, then runs the specified program, adding the name of

the current line’s file after it. If the command line you type contains an *,

Epsilon substitutes the current file name at that position instead of at the end. If

the command line ends in a & character, Epsilon runs the program

asynchronously; otherwise it waits for the program to finish.

Shift-U or Shift-L marks a file for uppercasing or lowercasing its file name,

respectively. Press X to rename the marked files, as with other renaming keys.

(Note that Epsilon for Windows displays all-uppercase file names in lowercase

by default, so Shift-U’s effect may not be visible within Epsilon. See

preserve-filename-case.)

Shift-R marks a file for a regular-expression replacement on its name. When you

press X to execute operations on marked files, Epsilon will ask for a pattern and

replacement text. Then for each marked file, it will perform the indicated

replacement on its name to create a new file name, then rename the file to the

new name. For instance, to rename a group of files like dir\file1.cxx,

dir\file2.cxx, etc. to dir2\file1.cpp, dir2\file2.cpp, use Shift-R and specify

dir\(.*).cxx as the search text and dir2\#1.cpp as the replacement text. To

rename some .htm files to .html, specify .* as the search text and #0l as the

replacement text.

Shift-G marks files that contain some specific text. This subcommand prompts for

some search text. You can use the keys Ctrl-T, Ctrl-W or Ctrl-C when typing the

search string to toggle regex mode, word mode, or case folding. Then the

subcommand prompts for a key to indicate what kind of marking to apply. Press

d, m, or c to mark files for deletion, moving or copying, u to remove such

markings, U, L, or R to perform the corresponding renaming function described

above, or g to apply a generic marking that simply indicates which files

contained the specified search string. A numeric prefix argument to this

subcommand reverses the sense of its test, marking only files that don’t contain

the specified text.

Alt-] moves forward to the next line with a different mark. For instance, if the

current line indicates a file marked for deletion, it moves to the next line with a

file that’s not marked for deletion.

Alt-[moves back to the previous line with a different mark.

F runs the incremental-search command to search for text in a file name, restricting

matches to the file name column.

Ctrl-C Alt-n copies the name of the file on the current line, including its full path,

to the clipboard, so you can paste it elsewhere.

Shift-P prints the current file using the print-buffer command.

H or ? gives this help.

dired-sort Dired mode: S Sort a directory listing differently.

In a dired buffer, this subcommand controls sorting. It prompts you to enter another letter to

change the sorting method. Press N, E, S, or D to select sorting by file name, file extension, size,

or time and date of modification, respectively. Press U to turn off sorting the next time Epsilon

makes a dired listing, and display the file names in the same order they come from the operating

system. (You can have Epsilon rebuild the current listing using the R dired subcommand.)

Press + or - at the sorting prompt to sort in ascending or descending order, respectively, or R to

reverse the current sorting order. Press 〈Enter〉 to sort again using the currently selected sorting

order.

187

Press G at the sorting prompt to toggle directory grouping. With directory grouping, Epsilon

puts all subdirectories first in the list, then all files, and sorts each part individually. Without

directory grouping, it mixes the two together (although it still puts . and .. first).

display-buffer-info Brief: Alt-F Display the name of the current file.

This command displays the name of the file associated with the current buffer, and the mode of

the current buffer. It displays an asterisk after the file name if the file has unsaved changes. This

command can be useful if you’ve set Epsilon so it doesn’t display these things continuously.

do-c-indent C mode: 〈Tab〉 Indent this line for C.

In a line’s indentation, reindent the line correctly for C code. Inside the text of a line, or when

repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

do-vbasic-indent 〈Tab〉 in VBasic mode Indent this line for Visual Basic.

In a line’s indentation, reindent the line correctly for Tcl code. Inside the text of a line, or when

repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

down-line Ctrl-N Move point to the next line.

This command keeps point near the same horizontal position as it occupied on the previous line,

if possible.

edit-customizations Load and edit your einit.ecm file to change settings.

This command locates and reads the einit.ecm file, in the same way as the find-file command.

Epsilon reads and executes this file each time it starts.

edit-variables Alt-F8 Interactively set variables from a list.

This command displays a list of all variables and lets you set them. You can use the arrow keys

or the normal movement keys to move around the list, or begin typing a variable name to have

Epsilon jump to that portion of the list. Press 〈Enter〉 to set the highlighted variable, then edit

the value shown using normal Epsilon commands.

To exit from edit-variables, press 〈Esc〉 or Ctrl-G.

With a numeric argument, the command includes system variables in its list.

In Epsilon for Windows, this command displays a list of variables. You can choose one, see its

description and its current value, and modify it. The command will only list those variables

included in the help file.

end-kbd-macro Ctrl-X) Stop defining a keyboard macro.

This command completes the keyboard macro started by the start-kbd-macro command. You

may then execute the macro with the command last-kbd-macro, or you may give the macro a

name with the commands bind-last-macro or name-kbd-macro.

188 Chapter 5. Alphabetical Command List

end-of-line Ctrl-E Go to the end of the line.

This command positions point at the end of the current line, just before the newline character.

end-of-window Alt-. Go to last character in window.

Position point before the last character in the current window.

enlarge-window Ctrl-〈PgUp〉 Enlarge window by one line.

If possible, the mode line of the window on top of the current window moves up. Otherwise, the

current window’s mode line moves down. This command has no effect if it would make any

window smaller than two lines, counting the mode line.

enlarge-window-horizontally Alt-〈PgDn〉 Enlarge window by one column.

If possible, the left boundary of the current window moves to the left by one character.

Otherwise, the current window’s right boundary moves to the right. This command has no

effect if it would make any window smaller than one character wide.

enlarge-window-interactively Ctrl-X + Use arrow keys to resize a window.

This command lets you interactively change the size of the current window. After you invoke

the command, use the arrow keys to point to a window border. The indicated border moves in a

direction so as to make the current window larger. Keep pressing arrow keys to move window

borders. To switch from enlarging to shrinking, press the minus key. Thereafter, the arrow keys

cause the window border to move in a direction so as to shrink the window. When the window

looks right, press 〈Enter〉 to leave the command.

enter-key Ctrl-M Insert a newline character.

This command acts like normal-character but inserts a newline character regardless of the key

that invoked it. In overwrite mode, the 〈Enter〉 key simply moves to the beginning of the next

line.

epsilon-html-look-up F1 h Look up a topic in the HTML Epsilon manual.

This command prompts for a topic, then displays a section of the Epsilon manual that refers to

that topic, using a web browser.

epsilon-info-look-up F1 f Look up a topic in the Epsilon manual.

This command prompts for a topic, then displays a section of the Epsilon manual that refers to

that topic, using Info mode. It’s like using the epsilon-manual-info command followed by the

info-index command. In EEL source code, the identifier at point becomes the default topic.

epsilon-keyboard Load a default keyboard, undoing keyboard changes.

This command restores Epsilon’s original keyboard arrangement after running the

brief-keyboard or cua-keyboard commands, which see. It restores a “canned” keyboard

arrangement from the file epsilon.kbd, which must be on the path.

189

epsilon-manual-html Display the HTML-format version of the Epsilon manual.

This command displays the Epsilon manual’s table of contents using a web browser.

epsilon-manual-info Display the Info-format version of the Epsilon manual.

This command enters Info mode and jumps to the top node of Epsilon’s manual.

epsilon-manual Display Epsilon’s manual.

This command makes Epsilon display its on-line manual in a web browswer or in WinHelp, as

appropriate. Also see epsilon-manual-info.

eval Compute and display the value of an expression.

This command prompts for an expression, then computes and displays its value using the

integrated EEL compiler. The expression may have a numeric or string type. With a numeric

prefix argument, this command inserts the result into the current buffer instead of displaying it.

Also see the execute-eel command.

You can append a semicolon followed by a printf-style formatting character or sequence, and

Epsilon will use that to display the result. For instance, adding ;x displays the result in

hexadecimal.

exchange-point-and-mark Ctrl-X Ctrl-X Swap point and mark.

Some commands such as kill-region and copy-region operate on the text between the point and

the mark.

execute-eel Execute a line of EEL code.

This command prompts for an EEL statement, then executes it using the integrated EEL

compiler. Also see the eval command.

exit Ctrl-X Ctrl-C Exit the editor.

If you haven’t saved all your files, Epsilon will display a list using bufed and ask if you really

want to exit. If you prefix this command with a numeric argument, however, Epsilon will

simply exit and not ask you about any unsaved buffers. With a numeric argument, it also skips

writing a session file, preserving your current font settings, and similar things. It returns the

numeric argument as its exit code (instead of zero, returned for a normal exit).

Also see the process-warn-on-exit variable.

exit-level Ctrl-X Ctrl-Z Exit the current recursive edit.

If you have entered a recursive edit (typically from query-replace), this command exits the

recursive edit (bringing you back to the replace), otherwise it invokes exit.

exit-process Type “exit” to the concurrent process.

This command tries to make the currently executing concurrent process stop, by typing “exit” to

it. A standard command processor exits when it receives this command.

190 Chapter 5. Alphabetical Command List

export-colors Save color settings to an EEL source file.

The export-colors command constructs an EEL source file of color settings based on the current

color settings. Use it to get a human-readable version of your color selections.

file-query-replace Shift-F7 Replace text in many files or buffers.

This command prompts for the text to search for and the replacement text. Then it prompts for a

file name which may contain wildcards. The command then performs a query-replace on each

file that matches the pattern, going to each occurrence of the search text, and asking whether or

not to replace it.

If the use-grep-ignore-file-variables variable is nonzero, Epsilon skips over any file

with an extension listed in grep-ignore-file-extensions; by default some binary file

types are excluded, or those that match the grep-ignore-file-basename,

grep-ignore-file-pattern, or grep-ignore-file-types variables.

With a numeric argument, the command instead searches through all buffers. The buffer name

pattern may contain the wildcard characters ? to match any single character, * to match zero or

more characters, or a character class like [^a-zA-Z] to match any non-alphabetic character.

At each occurrence of the search text, you have these choices:

Y or 〈Space〉 replaces and goes to the next match.

N or 〈Backspace〉 doesn’t replace, but goes to the next match.

〈Esc〉 exits immediately.

. (〈Period〉) replaces and then exits.

^ (〈Caret〉) backs up to the previous match, as long as it’s within the same file.

! replaces all remaining occurrences in the current file without prompting, then asks

if you want to replace all occurrences without prompting in all remaining files.

, (〈Comma〉) replaces the current match but doesn’t go to the next match.

Ctrl-R enters a recursive edit, allowing you to modify the buffer arbitrarily. When

you exit the recursive edit with exit-level, the replacement continues.

Ctrl-G exits and returns point to its original location in the current buffer, then asks

if you want to look for possible replacements in the remaining files.

Ctrl-W toggles the state of word mode.

Ctrl-T toggles the state of regular expression mode (see the description of

regex-replace).

Ctrl-C toggles the state of case-folding.

Any other key causes the command to skip to the next file.

The command doesn’t save modified files back to disk. You can use the save-all-buffers

command on Ctrl-X S to do this.

fill-comment Various modes: Alt-q Reformat the current paragraph

in a comment.

This command fills the current paragraph in a programming language comment, so that each

line but the last becomes as long as possible without going past the fill column. It tries to

preserve any prefix before each line. It uses language-specific patterns for recognizing

comments, with special logic for C/C++/Java comments.

191

fill-indented-paragraph Fill paragraph preserving indentation.

This command fills the current paragraph, so that each line but the last becomes as long as

possible without going past the fill column. It tries to preserve any indentation before each line

of the paragraph. In detail, it finds the line in the paragraph with the least amount of indentation

(not counting the first line, whose indentation is always preserved), and preserves indentation to

the left of that column, filling the text to the right of that column.

With a numeric argument, it fills the paragraph using the current column as the right margin,

instead of the margin-right variable.

With a highlighted region, it fills each paragraph in the region.

fill-paragraph Alt-q Fill the current paragraph.

This command fills the current paragraph, so that each line but the last becomes as long as

possible without going past the fill column. This command does not right-justify the paragraph

with respect to the fill column.

With a numeric argument greater than 5, the paragraph is filled using that value as a temporary

right margin. With a smaller numeric argument, the paragraph is filled using an infinite right

margin, so all text goes on one long line.

With a highlighted region, it fills each paragraph in the region.

fill-region Fill the current region between point and mark.

This command fills each paragraph in the region between point and mark as in fill-paragraph.

For this command, only completely empty lines separate one paragraph from another.

With a numeric argument greater than 5, the paragraph is filled using that value as a temporary

right margin. With a smaller numeric argument, the paragraph is filled using an infinite right

margin, so all text goes on one long line.

filter-region Alt-| Send the current region through an external program.

This command prompts for the name of a program and runs it, passing the current region to it as

its standard input. It then displays any output from the program in a separate buffer. With a

prefix argument, it replaces the current region with the program’s output. The command runs

asynchronously in the former case; see the process-echo variable to change that.

find-delimiter Alt-) Show the matching left delimiter.

This command shows the left parenthesis, square bracket, brace, or similar delimiter in a

balanced expression. (Each mode defines its own list of delimiters used in that language.) It

invokes backward-level, displays this location, pauses, and then returns point to its original

location. Note that the cursor must appear after a right delimiter, not on it, to show the match

for that delimiter.

You may change the length of time that this command pauses at the left delimiter by setting the

variables near-pause and far-pause. The former specifies how long to pause (in hundredths

of a second) if the left delimiter appeared in the window originally. The latter specifies how

long to pause otherwise.

Regardless of the length of the pause, the pausing stops when you press a key.

192 Chapter 5. Alphabetical Command List

find-file Ctrl-X Ctrl-F Put a file in the current window.

You would normally use this command to specify a file to edit. This command prompts you for

a file name, then scans the buffers to see if any of them contain that file. If so, the command

displays that buffer in the current window.

Otherwise, the command creates a buffer with the same name as the file, possibly modified to

make it different from the names of nonempty buffers, then reads the file into this buffer, then

displays that buffer in the current window.

Epsilon auto-detects the line termination convention of the file and performs any necessary

translation. (See set-line-translate.) If the file uses a Unicode encoding, it detects that too, so

long as the file begins with a byte order mark. (See set-encoding.) With a numeric argument,

the command prompts for the desired translation and encoding methods.

If you simply type 〈Enter〉 for a file name, the command invokes dired with the current directory

for the file pattern. Similarly, if you specify a directory or a file name with wild card characters,

the command invokes dired with that pattern.

See the descriptions of the prompt-with-buffer-directory and

want-common-file-dialog variables for more information on this command.

find-linked-file Ctrl-X Ctrl-L Grab the file name on this line and edit it.

Look on the current line for a file name, and edit that file like the find-file command. Epsilon

uses special rules for certain modes. For HTML mode it looks for href= and src= attributes. For

CSS it looks for @import directives. For C/C++/Java mode it follows #include references via

the include-directories variable. In Java files it understands the package and import

keywords, and looks along the CLASSPATH for packages. For files with a .lst extension, it

assumes the current line holds a file name, instead of searching for a pattern that matches a

typical file name. You can highlight a file name first if Epsilon has trouble picking it out.

find-oem-file Read a file that uses the DOS character set.

Windows programs typically use a different character set than do DOS programs. The DOS

character set is known as the DOS/OEM character set, and includes various line drawing

characters and miscellaneous characters not in the Windows/ANSI set. The Windows/ANSI

character set includes many accented characters not in the DOS/OEM character set. Epsilon for

Windows uses the Windows/ANSI character set (with most fonts).

The find-oem-file command reads a file using the DOS/OEM character set, translating it into the

Windows/ANSI character set, and arranges things so when you save the file, the reverse

translation automatically occurs. This command is only available in Epsilon for Windows. See

the default-character-set variable.

find-read-only-file Edit a file preventing changes to it.

Prompt for a file name and edit the specified file, like the find-file command. Set the buffer

read-only, and mark it so attempts to save the file prompt for a different name.

find-unconverted-file Read a file without changing its character set.

If you’ve configured Epsilon for Windows to convert from the DOS/OEM character set to the

ANSI character set upon reading a file, and to perform the opposite conversion when writing

(by setting the default-character-set variable), use this command to bypass the

conversion for a particular file.

193

finger Show info on a user of a computer.

The finger command prompts for a string like “user@example.com”, then uses the finger

protocol to query the specified computer on the Internet for information about the given user.

You may omit the user name to get a list of users logged onto the machine. Not all computers

support this protocol. The output appears in an appropriately named buffer.

follow-mode Link this window with the next.

This command toggles follow mode, a buffer-specific minor mode. In follow mode, when the

same buffer is displayed in two adjacent windows, moving and scrolling in one causes the other

to scroll too, so that the two windows show adjoining sections of the buffer, with an overlap

specified by the follow-mode-overlap variable. Follow mode can be convenient when

editing narrow text on a wide display using side-by-side windows.

force-common-file-dialog Make the next command use a common file dialog.

Commands in Epsilon for Windows that prompt for a file name can either use Epsilon’s built-in

prompt or a Windows common file dialog like other programs. The

want-common-file-dialog variable controls this. By default, Epsilon uses its own dialog

when you run such commands via key presses and the Windows common dialog when you run

them using the mouse.

This command temporarily toggles this choice for the very next command. When bound to a

key like Alt-F6, the key serves as a prefix key. So if typing Ctrl-X Ctrl-F normally has Epsilon

use its own dialog, then Alt-F6 Ctrl-X Ctrl-F makes Epsilon use the Windows one, and vice

versa.

forward-character Ctrl-F Go forward one character.

Nothing happens if you run this command with point at the end of the buffer. If you set

virtual-space to two, the command can position the cursor past the last character on a line,

and never moves to a different line.

forward-ifdef C mode: Alt-], Alt-〈Down〉 Find matching

preprocessor line.

This command moves to the next #if/#else/#endif (or similar) preprocessor line. When starting

from such a line, Epsilon finds the next matching one, skipping over inner nested preprocessor

lines.

forward-level Ctrl-Alt-F Move point past a bracketed expression.

Point moves forward searching for one of (, {, or [. Then point moves past the nested

expression. Point appears after the corresponding right delimiter. (Actually, each mode defines

its own list of delimiters. One mode might only recognize < and > as delimiters, for instance.)

forward-paragraph Alt-] Go to the next paragraph.

Point travels forward through the buffer until it appears at the beginning of a paragraph. Blank

lines (containing only spaces and tabs) always separate paragraphs.

You can control what Epsilon considers a paragraph using two variables.

194 Chapter 5. Alphabetical Command List

If the buffer-specific variable indents-separate-paragraphs has a nonzero value, then a

paragraph also begins with a nonblank line that starts with a tab or a space.

If the buffer-specific variable tex-paragraphs has a nonzero value, then Epsilon will not

consider as part of a paragraph any sequence of lines that each start with at sign or period, if

that sequence appears next to a blank line. And lines starting with \begin or \end or % will also

delimit paragraphs.

forward-search-again Search forward for the same search string.

forward-sentence Alt-E Go to the end of the sentence.

Point travels forward through the buffer until positioned at the end of a sentence. A sentence

ends with a period, exclamation point, or question mark, followed by two spaces or a newline,

with any number of closing characters ", ’,),], between. A sentence also ends at the end of a

paragraph.

forward-word Alt-F Move past the next word.

By default, a word consists of a sequence of letters or underscores. The buffer-specific variable

word-pattern contains a regular expression that defines Epsilon’s notion of a word for the

current buffer.

fundamental-mode Turn off any special key definitions.

This command removes changes to key bindings made by modes such as C mode or Dired

mode.

Every buffer has a major mode, and whenever you type keys in that buffer, Epsilon interprets

them according to the buffer’s mode. Each of Epsilon’s various modes is suitable for editing a

particular kind of text. Some modes only change the meanings of a few keys. For instance, C

mode makes the 〈Tab〉 key indent the current line of C code. Other modes provide a group of

new commands, usually on the letter keys. For example, in Dired mode the D key deletes a file.

Each major mode is also the name of a command which puts the current buffer in that mode.

For example, Alt-X c-mode puts the current buffer in C mode.

The default mode for new buffers you create with select-buffer is Fundamental Mode. (But see

new-file.) This command returns the current buffer to Fundamental Mode, removing any

changes to key bindings installed by another mode.

gams-mode Set up for editing GAMS files.

This command sets up syntax highlighting suitable for files in the GAMS language used for

mathematical programming.

goto-beginning Alt-< Go to the beginning of the buffer.

goto-end Alt-> Go to the end of the buffer.

goto-line Ctrl-X G Go to a certain line by number.

This command moves point to the start of the n’th line in the file, where n denotes the

command’s numeric argument. With no numeric argument, Epsilon will ask for the line

number. You may add :col after the line number (or in place of it) to specify a column. The

syntax p12345 goes to the specified byte offset instead.

195

goto-tag Ctrl-X . Ask for the name of a function, then go there.

The command prompts you for the name of a tagged function, with completion. Epsilon then

goes to the file and line where the function definition appears. If you give no name, Epsilon

goes to the next tag in the alphabetical tag list. With a nonzero numeric argument, it goes to the

next tag without asking for a tag name. Before moving to the tag, it sets a bookmark at the

current position like set-bookmark.

A numeric argument of zero forces the definition to appear in a specific window. Epsilon

prompts for a key to indicate which one. Press an arrow key to display the definition in the next

window in that direction. Press n or p to display the definition in the next or previous window.

Type the period character . to force the definition to appear in the current window. Press 2 or 5

to split the current window horizontally or vertically, respectively, and display the definition in

the new window, or 1 to delete all windows but the current one, or z to run the zoom-window

command first.

grep Alt-F7 Search multiple files or buffers for a pattern.

This command lets you search a set of files for a pattern. It prompts for the search string and the

file pattern. Then it scans the files, accumulating matching lines in the grep buffer. The grep

buffer appears in the current window. By default, the grep command interprets the search string

as a regular expression. Press Ctrl-T at the search string prompt to toggle regular expression

mode. You can also type Ctrl-W or Ctrl-C to toggle word-mode or case-folding searches,

respectively.

At the file pattern prompt, you can press 〈Enter〉 if you want Epsilon to search the same set of

files as before. Type Ctrl-S and Epsilon will type in the directory part of the current buffer’s file

name; this is convenient when you want to search other files in the same directory as the current

file. As at other prompts, you can also press Alt-〈Up〉 key or Alt-Ctrl-P to show a list of your

previous responses to the prompt. Use the arrow keys or the mouse to choose a previous

response to repeat, and press 〈Enter〉. If you want to edit the response first, press Alt-E.

You can use extended file patterns to search in multiple directories using a pattern like

**.{c,cpp,h} (which searches in the current directory tree for .c, .cpp, and .h files).

If the use-grep-ignore-file-variables variable is nonzero, Epsilon skips over any file

with an extension listed in grep-ignore-file-extensions; by default some binary file

types are excluded, or those that match the grep-ignore-file-basename,

grep-ignore-file-pattern, or grep-ignore-file-types variables.

With a numeric argument, grep instead searches through buffers, defaulting to the current

buffer. The buffer name pattern may contain the wildcard characters ? to match any single

character, * to match zero or more characters, a character class like [^a-zA-Z] to match any

non-alphabetic character, or | to separate alternatives. (The buffer-grep command provides this

functionality as a separate command.)

In grep mode, alphabetic keys run special grep commands. See the description of the grep-mode

command for details. Typing H or ‘?’ in grep mode gives help on grep subcommands.

grep-mode Edit a list of lines containing a search string.

In a grep buffer, you can move around by using the normal movement commands. Most

alphabetic keys run special grep commands. The ‘N’ and ‘P’ keys move to the next and

previous matches; Alt-N and Alt-P move to the next and previous files. You can easily go from

the grep buffer to the corresponding locations in the original files. To do this, simply position

196 Chapter 5. Alphabetical Command List

point on the copy of the line, then press 〈Space〉, 〈Enter〉, or ‘E’. The file appears in the current

window, with point positioned at the beginning of the matching line. Typing ‘1’ brings up the

file in a window that occupies the entire screen. Typing ‘2’ splits the window horizontally, then

brings up the file in the lower window. Typing ‘5’ splits the window vertically, then brings up

the file. Typing the letter ’O’ shows the file in the next window on the screen, without splitting

windows any further. Typing ‘Z’ runs the zoom-window command, then brings up the file.

help F1 Get documentation on commands.

If executed during another command, help simply pops up the description of that command.

Otherwise, you press another key to specify one of the following options:

? prints out this message.

k runs describe-key, which asks for the key, then gives full help on the command

bound to that key.

c runs describe-command, which asks for the command name, then gives full help

on that command, along with its bindings.

r runs describe-variable, which asks for the variable name, then shows the full help

on that variable.

i runs the info command, which starts Info mode. Info mode lets you read the entire

Epsilon manual, as well as any other documentation you may have in Info

format.

Ctrl-C runs the info-goto-epsilon-command command, which prompts for the name

of an Epsilon command, then displays an Info page from Epsilon’s online

manual that describes the command.

Ctrl-K runs the info-goto-epsilon-key command, which prompts for a key, then

displays an Info page from Epsilon’s online manual that describes the command

it runs.

Ctrl-V runs the info-goto-epsilon-variable command, which prompts for an Epsilon

variable’s name, then displays an Info page from Epsilon’s online manual that

describes that variable.

f runs the epsilon-info-look-up command, which prompts for a topic, then starts Info

mode and looks up that topic in the Epsilon manual.

h displays Epsilon’s manual in HTML format, by running a web browser. It

prompts for a topic, which can be a command or variable name, or any other

text. (The browser will try to find an exact match for what you type; if not, it

will search for web pages containing that word.) When you’re looking at

Epsilon’s manual in Info mode, using one of the previous commands, this

command will default to showing the same topic in a browser.

w runs the WinHelp program to display Epsilon’s online manual, in Epsilon for

Windows versions prior to Windows Vista.

a runs apropos which asks for a string, then lists commands and variables apropos

that string.

b runs show-bindings, which asks for a command name, then gives you its bindings.

q runs what-is, which asks for a key, then tells you what command runs when you

type that key.

l runs show-last-keys, which pops up a window that contains the last 60 keystrokes

you typed.

v runs about-epsilon, which displays the current Epsilon version number and similar

information.

197

m shows documentation on the current buffer’s major mode.

t shows context-sensitive help on the word at point using the context-help command.

The help source varies based on the buffer’s mode.

hex-tab-key 〈Tab〉 in Hex mode Move to the next section.

In hex mode, this command, normally bound to Tab, toggles between the hex listing and

character listing.

hex-mode Switch to a hexadecimal view of the buffer.

The hex-mode command creates a second buffer that shows a hex listing of the original buffer.

You can edit this buffer, as explained below. Press q when you’re done, and Epsilon will return

to the original buffer, offering to apply your changes.

These commands are available in hex mode:

A hex digit (0-9, a-f) in the left-hand column area moves in the hex listing to the new location.

A hex digit (0-9, a-f) elsewhere in the hex listing modifies the listing.

q quits hex mode, removing the hex mode buffer and returning to the original buffer. Epsilon

will first offer to apply your editing changes to the original buffer.

〈Tab〉 moves between the columns of the hex listing.

s or r searches by hex bytes. Type a series of hex bytes, like 0a 0d 65, and Epsilon will search

for them. S searches forward, R in reverse.

Ctrl-S or Ctrl-R searches for text. It switches for the duration of the command to the original

version of the buffer, then moves to the corresponding position in hex listing when you

exit from searching.

g prompts for a buffer offset as a hex number, then goes to that position.

t toggles between the original buffer and the hex mode buffer, going to the corresponding

position. This provides a convenient way to search for literal text: press t to return to the

original buffer, use Ctrl-S to search as usual, then exit the search and press t to go back to

the hex buffer.

prompts for a new character value and overwrites the current character with it. You can use

any of these formats: ’A’, 65, 0x41 (hex), 0b1100101 (binary), 0o145 (octal).

n or p move to the next or previous line.

o toggles the hex overwrite submode, which changes how Epsilon interprets keys you type in

the rightmost column of the hex listing. In overwrite mode, printable characters you type

in the rightmost column overwrite the text there, instead of acting as hex digits or

commands.

For instance, typing “3as” in the last column while in overwrite mode replaces the next

three characters with the characters 3, a, and s. Outside overwrite mode, they replace the

current character with one whose hex code is 3a, and then begin a search.

To use hex mode commands from overwrite mode, prefix them with a Ctrl-C character,

such as Ctrl-C o to exit overwrite mode. Or move out of the rightmost column with 〈Tab〉
or other movement keys.

? shows help on hex mode.

198 Chapter 5. Alphabetical Command List

highlight-region Ctrl-X Ctrl-H Highlight area between point and mark.

This command toggles highlighting of the region of the buffer between point and mark. If you

prefix a nonzero numeric argument, the command highlights the region; a numeric argument of

zero turns highlighting off.

html-backward-tag HTML mode: Alt-Shift-B Move backward over a tag or element.

When point is at an HTML or XML tag, this command moves to its start. At an end tag that has

a matching start tag, it moves before the start tag. It moves by words when outside a tag.

html-close-last-tag HTML mode: Alt-Shift-E Insert an end tag.

This command looks back for the most recent unclosed HTML or XML start tag, then inserts an

end tag to close it.

html-delete-tag HTML mode: Alt-Shift-D Delete the current tag and its mate.

This command deletes the HTML or XML tag at point (or just after point). If the tag is a start

tag that has a matching end tag, or an end tag with a matching start tag, the command deletes

the matching tag also.

html-fill-paragraph HTML mode: Alt-q Fill the current paragraph.

This command fills the current paragraph using the fill-paragraph command. But within

embedded scripting, it calls the fill-comment command instead.

html-find-matching-tag HTML mode: Alt-= Go to tag matching this one.

In HTML and XML modes, this command moves to the end tag that matches the start tag at

point, or vice versa.

html-forward-tag HTML mode: Alt-Shift-F Move forward over a tag or element.

When point is at an HTML or XML tag, this command moves to its end. At a start tag that has a

matching end tag, it moves after the end tag. It moves by words when outside a tag.

html-indent-cmd 〈Tab〉 in HTML mode Indent this line for HTML or XML.

In a line’s indentation, reindent the line correctly for HTML or XML code. Inside the text of a

line, or when repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

html-list-element-nesting HTML mode: Alt-i Show element nesting in effect at point.

This command displays a dialog showing the nesting of HTML or XML elements that apply at

point. It indicates point is inside an open tag by showing <tagname instead of <tagname>.

Unclosed elements and some other basic syntax problems are also reported.

Unlike Epsilon’s continuous nesting display on the mode line (see the

html-display-definition variable), which shows nesting at the beginning of the current

line, and doesn’t change as you move around within a line, this command uses the current

position within the line.

199

html-list-mismatched-tags HTML mode: Alt-Shift-L Show unpaired tags.

This command finds all start or end tags in the current buffer without a match. It lists them into

a buffer in grep-mode, which see. If HTML permits a tag to be omitted, it won’t be listed.

html-mode Set up for editing Hypertext Markup Language files.

This command puts the current buffer in HTML mode. Epsilon will do syntax-highlighting,

smart indenting, and brace-matching.

html-redirect-active-key various Self-insert, fix indentation.

Delimiter keys bound to this command in HTML/XML modes self-insert, optionally display

their matching delimiter, then reindent as appropriate.

import-colors Convert color choices to EEL source code.

This command constructs an EEL source file with color settings based on a “changes” file

produced when updating from an older version of Epsilon. It may be helpful if you prefer to

keep color settings in an EEL file.

import-customizations Build a list of prior customizations.

This command constructs an einit.ecm customization file based on the customizations recorded

in your state file for a previous version of Epsilon. It looks for variable definitions, key

bindings, color settings and so forth. The new definitions are added to the end of your einit.ecm

file, and Epsilon will use them the next time it starts. Epsilon comments out any previous

settings in that file, and deletes previous settings it commented out on a previous run. With a

numeric argument, it doesn’t comment out or delete previous settings.

It works by running the previous version of Epsilon with no customizations loaded, having it

generate a complete list of settings, and then comparing that list to the results when the previous

version of Epsilon runs with your customized settings. Each difference represents a particular

customization.

First it displays the settings it will use for the above process. You can edit them if necessary, for

instance to refer to the files of a different installed version that Epsilon didn’t automatically

locate.

If your previous configuration loaded any EEL extension files to define new commands, you

should list them on the settings page shown.

Also see the clean-customizations and list-customizations commands.

incremental-search Ctrl-S Search for a string as you type it.

Ctrl-Q quotes the next character. Backspace cancels the last character. Ctrl-S repeats a forward

search, and Ctrl-R repeats a backward search, or they change its direction. Ctrl-R or Ctrl-S with

an empty search string brings back the search string from the previous search. Ctrl-O enables or

disables incremental mode. Incremental mode searches as you type; non-incremental mode lets

you edit the search string.

Ctrl-W enables or disables word searching, restricting matches to complete words. Ctrl-T

enables or disables regular expression searching, in which the search string specifies a pattern

200 Chapter 5. Alphabetical Command List

(see regex-search for rules). Ctrl-C enables or disables case-folding. 〈Enter〉 or 〈Esc〉 exits the

search, leaving point alone.

If Epsilon cannot find all the input string, it doesn’t discard the portion it cannot find. You can

delete it, discard it all with Ctrl-G, use Ctrl-R or Ctrl-S to search the other way, change modes,

or exit from the search.

Press Alt-〈Up〉 or Ctrl-Alt-P to select from a list of previous search strings. Press Alt-g to

retrieve the last search string for the current buffer.

During incremental searching, if you type Control or Alt keys not mentioned above, Epsilon

exits the search and executes the command bound to the key. During a non-incremental search,

most Control and Alt keys edit the search string itself.

Quitting (with Ctrl-G) a successful search aborts the search and moves point back; quitting a

failing search just discards the portion of the search string that Epsilon could not find.

indent-for-comment Alt-; Indent and insert a comment, or search for one.

This command creates a comment on the current line, using the commenting style of the current

language mode. The comment begins at the column specified by the comment-column variable

(by default 40). (However, if the comment is the first thing on the line and

indent-comment-as-code is nonzero, it indents to the column specified by the buffer’s

language-specific indentation function.) If the line already has a comment, this command

reindents the comment to the comment column.

With a numeric argument, this command doesn’t insert a comment, but instead searches for one.

With a negative numeric argument, it searches backwards for a comment.

indent-previous 〈Tab〉 Indent based on the previous line.

This command makes the current line start at the same column as the previous non-blank line.

Specifically, if you invoke this command with point in or adjacent to a line’s indentation,

indent-previous replaces that indentation with the indentation of the previous non-blank line. If

point’s indentation exceeds that of the previous non-blank line, or if you invoke this command

with point outside of the line’s indentation, this command simply runs indent-to-tab-stop.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

indent-region Ctrl-Alt-\ Indent from point to mark using

the function on 〈Tab〉.

This command goes to the start of each line in the region and does what the 〈Tab〉 key would do

if pressed. It then deletes any resulting lines that contain only spaces and tabs, replacing them

with newline characters.

indent-rigidly Ctrl-X Ctrl-I Move all lines in the region left

or right by a fixed amount.

This command finds the indentation of each line in the region, and augments it by the value of

the numeric argument. With a negative numeric argument, −n, the command removes n
columns from each line’s indentation.

With no numeric argument it uses the variable soft-tab-size if it’s nonzero. Otherwise it

uses tab-size.

You can also invoke this command by highlighting the region and pressing 〈Tab〉 or Shift-〈Tab〉
to add or subtract indentation.

201

indent-to-tab-stop Indent to the next tab stop.

This command inserts spaces (and perhaps tabs, depending on the indent-with-tabs

variable) to reach the next tab stop.

It checks the variable soft-tab-size, the current thismode-soft-tab-size variable, if any,

where thismode is the current mode’s name, and the tab-size variable, and uses the first of

these that’s greater than zero.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

indent-under Ctrl-Alt-I Indent to the next text on the previous line.

This function starts at the current column on the previous non-blank line, and moves right until

it reaches the next column where a run of non-space characters starts. It then replaces the

indentation at point with indentation that reaches to the same column, by inserting tabs and

spaces. With a highlighted region, it indents all lines in the region to that same column,

scanning the last non-blank line before the region.

With a numeric prefix argument, indent-under goes to a different run of non-spaces. For

instance, with an argument of 3, it goes to the previous line and finds the third word after the

original column, then aligns the original line there.

If the previous non-blank line doesn’t have the requested number of words, it runs

indent-to-tab-stop.

info F1 i Read documentation in Info format.

This command starts Epsilon’s Info mode for reading Info-format documentation. Use ‘q’ to

switch back to the previous buffer. Commands like 〈Space〉 and 〈Backspace〉, N and P, navigate

through the tree-structured Info hierarchy. See info-mode for details.

info-backward-node Info: [Walk the leaves of the Info hierarchy in reverse.

This command goes to the previous node in the sequence of Info nodes formed by walking the

leaves of the hierarchy within the current Info file.

In detail, it goes to the previous node, then as long as it’s on a node with a menu, goes to the last

menu item. However, if there’s no previous node (or it’s the same as the current node’s parent),

it goes up to the parent node as long as it’s in the same file.

info-directory-node Info: D Go to the Directory node.

Info nodes are arranged in a hierarchy. At the top of the hierarchy is one special node that

contains links to each of the other Info files in the tree. This command goes to that topmost

node.

info-follow-nearest-reference Info: 〈Enter〉 Follow the link near point.

After navigating among the cross references or menu items in an Info node with 〈Tab〉 or

〈Backtab〉 (or in any other way), use this key to follow the selected link.

202 Chapter 5. Alphabetical Command List

info-follow-reference Info: F Prompt for a cross-reference in

this node, then go there.

This command prompts for the name of a cross-reference in this node, with completion, then

goes to the selected node.

info-forward-node Info:] Walk the leaves of the Info hierarchy.

This command goes to the next node in the sequence of Info nodes formed by walking the

leaves of the hierarchy within the current Info file.

In detail, if a menu is visible in the window, go to its next item after point. Otherwise, go to this

node’s next node. (If there is no next node, go up until reaching a node with a next node first,

but never to the Top node.)

info-goto Info: G Ask for a node’s name, then go there.

This command prompts for the name of a node, then goes to it. It offers completion on the

names of all the nodes in the current file, but you may also refer to a different file using a node

name like (FileName)NodeName.

info-goto-epsilon-command F1 Ctrl-C Prompt for a command, look up Info.

This command prompts for the name of an Epsilon command, then displays an Info page from

Epsilon’s online manual that describes the command.

info-goto-epsilon-key F1 Ctrl-K Prompt for a key, look up Info.

This command prompts for a key, then displays an Info page from Epsilon’s online manual that

describes the command it runs.

info-goto-epsilon-variable F1 Ctrl-V Prompt for a variable, look up Info.

This command prompts for an Epsilon variable’s name, then displays an Info page from

Epsilon’s online manual that describes that variable.

info-index Info: I Prompt for an index entry; then go to

its first reference.

This command prompts for some text, then goes to the destination of the first index entry

containing that text. Use the info-index-next command on 〈Comma〉 to see other entries. If you

just press 〈Enter〉 at the prompt, Epsilon goes to the first index node in the current Info file, and

you can peruse the index entries yourself.

info-index-next Info: 〈Comma〉 Go to the next matching index entry.

This command goes to the next index entry that matches the text specified by the most recent

info-index command. Upon reaching the last item, it wraps and goes to the first matching item

again.

203

info-last Info: L Return to the most recently visited node.

Info remembers the history of all nodes you’ve visited. This command goes to the last node on

that list. Repeat it to revisit older and older nodes.

info-last-node Info: > Go to the last node in this file.

This command goes to the last node in this Info file. In detail, Epsilon goes to the top node of

the file, goes to the last node in its menu, then follows Next nodes until there are no more, then

moves like info-forward-node until it can move no further.

info-menu Info: M Prompt for a menu item, then go there.

This command prompts for the name of a menu item in this node’s menu, with completion, then

goes to the selected node.

info-mode Put this buffer in Info mode.

This command sets up keys for browsing an Info file. Normally you would run the info

command, not this one.

These are the commands in Info mode:

H shows detailed documentation on using Info mode.

? displays this list of available Info commands.

〈Space〉 pages through the entire Info file one screenful at a time, scrolling either or

moving to a different node as appropriate.

〈Backspace〉 pages backwards through the Info file.

〈Tab〉 moves to the next reference or menu item in this node.

〈Backtab〉 moves to the previous reference or menu item in this node.

〈Enter〉 follows the current reference or menu item to another node. You can also

double-click one of these with the mouse to follow it.

B moves to the beginning of the current node.

L goes to the most recently visited node before this one in the history list.

N goes to the next node after this one, as designated in the heading at the top of this

node.

P goes to the previous node before this one, as designated in the heading at the top

of this node.

U goes up to the parent of this node, as designated in the heading at the top of this

node.

M prompts for the name of an entry in this node’s menu, then goes to it.

1, 2, 3, ... 0 goes to the first, second, third, ... entry in this node’s menu. 0 goes to

the last entry in this node’s menu.

F prompts for the name of a cross-reference in this node, then goes to it.

T goes to the top node in the current Info file, which is always named Top.

D goes to the directory node, a node that refers to all known Info files. From here

you can navigate to any other Info file.

G prompts for the name of a node, then goes to it.

204 Chapter 5. Alphabetical Command List

] goes to the next node in the sequence of Info nodes formed by walking the leaves

of the hierarchy within the current Info file, much like 〈Space〉 but without

paging.

[goes to the previous node in the sequence of Info nodes formed by walking the

leaves of the hierarchy within the current Info file, much like 〈Backspace〉 but

without paging.

> goes to the last node in the file, viewed as a hierarchy (the node a repeated]

would eventually reach).

S prompts for a search string, then searches for the next match, switching nodes if

necessary. Keys like Ctrl-T to toggle regular expression mode work as usual.

Use Ctrl-S or Ctrl-R instead of S to search only within the current node.

I prompts for text, then looks it up in this Info file’s indexes, and goes to the first

node with an index entry containing that text. Press 〈Enter〉 without typing any

text to just go to the first index.

, goes to the next entry in the set of index entries set by the last I command.

Q quits Info mode by switching this window to the buffer it displayed before you

entered Info mode.

info-mouse-double Follow the selected link.

Double-clicking a link (a menu item in an Info node, a cross-reference, or the Next, Prev, or Up

links at the top of a node) runs this command, which simply follows the link.

info-next Info: N Go to the next node after this one.

This command goes to the next node after this one, named in the current node’s header line.

info-next-page Info: 〈Space〉 Page down, then move to the next node.

Use this command to page through the entire Info file one screenful at a time.

In detail, if a menu is visible in the window, this command goes to its next item after point.

Otherwise, it tries to scroll down. Otherwise, it goes to this node’s next node, going up the tree

if necessary to find a node with a next node.

info-next-reference Info: 〈Tab〉 Move to the next reference or menu item.

This command moves forward to the next link in this node: either a reference or a menu item.

Use 〈Tab〉 and 〈Backtab〉 to select a link, then 〈Enter〉 to follow it.

info-nth-menu-item Info: 1, 2, ..., 0 Follow that menu entry.

This command goes to a menu entry without prompting as M does. 1 goes to the first item in

the menu, 2 to the second and so forth. 0 goes to the last item in the menu.

info-previous Info: P Go to the previous node before this one.

This command goes to the previous node before this one, named in the current node’s header

line.

205

info-previous-page Info: 〈Backspace〉 Page up, or move to a previous node.

Use this command to page backward through the entire Info file one screenful at a time.

In detail, if a menu is above point, go to its closest item and then keep following the last item in

the current node’s menu until reaching one without a menu. Otherwise (if the current node has

no menu above point), page up if possible. Otherwise move to this node’s previous node, and

then keep following the last item in the current node’s menu until reaching one without a menu.

Otherwise (if the original node had no previous node, or its previous node was the same as its

up node), move to the original node’s up node (but never to a different file).

info-previous-reference Info: 〈Backtab〉 Move to the previous reference

or menu item.

This command moves backward to the previous link in this node: either a reference or a menu

item. Use 〈Tab〉 and 〈Backtab〉 to select a link, then 〈Enter〉 to follow it.

info-quit Info: Q Exit Info mode.

This command leaves Info mode by switching this window to the buffer it displayed before you

entered Info mode.

info-search Info: S Search for text in many nodes.

This command prompts for search text, then searches for the text, switching nodes if necessary.

Keys like Ctrl-T to toggle regular expression mode work as usual. Use Ctrl-S or Ctrl-R instead

of S to search only within the current node.

info-tagify Rebuild the tag table for this Info file.

Epsilon can more quickly navigate between the nodes of a big Info file if it has an up-to-date tag

table. This command builds (or rebuilds) a tag table for the current Info file, and is useful after

you edit an Info file. The tag table is stored in a special hidden node.

info-top Info: T Go to the top node in the current file.

This command goes to the top node in the current Info file, which is always named Top.

info-up Info: U Go to parent of this node.

This command goes to the parent of the current node, indicated with “Up:” in this node’s

header line.

info-validate Check an Info file for errors.

This command checks an Info file for certain common errors. It reports on menu items or

cross-references that refer to non-existent nodes.

ini-mode A mode for editing .ini files.

This mode provides syntax highlighting suitable for MS-Windows .ini files.

206 Chapter 5. Alphabetical Command List

insert-ascii Alt-# Insert an ASCII character into the buffer.

The command prompts for a numeric value, then inserts the ASCII character with that value

into the buffer. By default, it interprets the number as a decimal value. To specify a hex value,

prefix the number with the characters “0x”. To specify an octal value, prefix the number with

the characters “0o”. To specify a binary value, prefix the number with the characters “0b”.

This command can actually insert any Unicode character too, not just the ASCII subset. You

can specify it numerically, as above, or use the syntax <Newline> or <Square Root>, using

the official name of any Unicode character. Epsilon provides completion for this. Type ? to get

a list of all the Unicode characters. You can use Ctrl-S as usual to search in the list for the one

you want.

insert-binding Make a command to re-establish

a key’s current binding.

The command prompts you for a key whose binding you want to save in command file format.

Epsilon constructs a bind-to-key command which will re-establish the current binding of the

key when executed, and inserts this command into the current buffer. You may subsequently

execute the buffer using the load-buffer command.

insert-clipboard Insert a copy of the clipboard at point.

When running under MS-Windows or X11, this command inserts the contents of the clipboard

into the buffer at point.

insert-date Ctrl-C Alt-d Insert the current time and date.

This command inserts the current time and date, formatted according to the date-format

variable.

insert-file Ctrl-X I Insert the specified file before point.

The command prompts for a file name, then inserts the contents of the file into the current

buffer before point, then sets mark to the other end of the inserted region.

insert-macro Construct a define-macro command.

The command prompts for the name of a macro. Epsilon constructs a define-macro command

which will redefine the macro when executed, and inserts this command in the current buffer.

You may subsequently execute the buffer using the load-buffer command.

insert-scratch Ctrl-X Y Insert previously copied text.

This command asks for a letter (or number) that specifies text that you previously copied with

the copy-to-scratch command. Then it inserts that text before point. See also the commands

yank and yank-pop.

invoke-windows-menu Alt-〈Space〉 Display a system menu.

The invoke-windows-menu command brings up the Windows system menu. If you bind it to an

alphabetic key like Alt-S, it will bring up the corresponding menu (in this case, the Search

menu).

207

jump-to-column Alt-g Go to the specified column.

This command prompts for a number, then moves to the specified column on the current line. In

horizontal scrolling mode, it then horizontally centers the window on that column (or, if

possible, positions the window so that the start of the line is also visible). You can specify the

column with a numeric prefix argument and avoid the prompt.

jump-to-dvi TeX mode: Alt-Shift-J Show the DVI output

from this TeX material.

In a TeX buffer, this command tells a running DVI previewer to display the DVI output

resulting from the text near point.

You must first instruct TeX or LaTeX to include “source specials” in your DVI file; these let

your DVI viewer know which parts of the DVI file correspond to particular .tex file names and

line numbers. Some versions of TeX understand flags like --src-specials or -src to do this.

With others, your TeX source file can input srctex.sty (or srcltx.sty) to include this information.

You must also configure Epsilon to communicate with your DVI viewer program, by setting the

jump-to-dvi-command variable. It contains the command line to run your DVI viewer and

instruct it to go to a particular TeX source file and line within the DVI file. For xdvi, use xdvi

-sourceposition %l%f %d or xdvi -sourceposition %l%b.tex %d. For yap, use yap

-1 -s %l%f %d.

For documents made from multiple TeX files, Epsilon can’t determine the ultimate DVI file

name by examining one of the component TeX files. If the current TeX file has no

corresponding .dvi file, it prompts for a .dvi file name. It uses that .dvi file name from then on,

even if some other TeX file has a corresponding .dvi file.

If this command displays the wrong DVI file, run jump-to-dvi with a numeric prefix argument,

which forces it to ask for the DVI file name again. An empty response makes Epsilon return to

checking for a .dvi file for each TeX file.

Under Windows, Epsilon can also communicate with Y&Y’s “DVIWindo” previewer, version

2.1.4 and later, using DDE. For this option, jump-to-dvi-command must be empty. When

jump-to-dvi uses DVIWindo, it doesn’t prompt; instead, it assumes that if the current TeX source

file has no corresponding DVI file, the DVI file is already loaded in DVIWindo.

Once you’ve set up TeX to use source specials, as above, you can also configure your DVI

viewer to run Epsilon, showing the source file and line corresponding to a certain spot in your

DVI file. The details depend on your DVI viewer, but a command line like epsilon -add +%l

"%f" is typical.

For yap, use the View/Options/Inverse Search to set the command line as above. You may need

to include the full path to Epsilon. Double-click in yap to have Epsilon display the source file

that generated the DVI text you’re viewing.

For xdvi, you can run it with its -editor flag, or set the XEDITOR environment variable, so it

contains epsilon -add +%l:%c %f. Ctrl-click in xdvi to have Epsilon display the

corresponding source file.

jump-to-last-bookmark Alt-J Go to a previously recorded place.

Use this command to jump to a location that you previously set with the set-bookmark

command. If you repeatedly press this key, you will cycle through the last 10 temporary

bookmarks.

208 Chapter 5. Alphabetical Command List

jump-to-named-bookmark Ctrl-X J Go to a named bookmark.

Use this command to jump to a location that you previously saved with the

set-named-bookmark command. The command prompts for a bookmark name (a letter), then

jumps to that bookmark.

If you specify a digit instead of a letter, the command jumps to the corresponding temporary

bookmark (set with set-bookmark). Zero refers to the last such temporary bookmark, one to the

previous one, and so on.

You can press ‘?’ to get a list of the currently defined bookmarks, along with the text that

contains the bookmarks. To select one, simply move to the desired bookmark and press 〈Enter〉.

keep-duplicate-lines Remove unduplicated lines.

This command deletes all lines that only occur once, and leaves one copy of each duplicated

line. If the case-fold variable is nonzero, lines that only differ by case will be considered

identical. Also see the uniq and keep-unique-lines command.

keep-matching-lines Delete all lines but those containing a regex pattern.

This command prompts for a regular expression pattern. It then deletes all lines below point in

the current buffer except those that contain the pattern. While you type the pattern, Ctrl-W

enables or disables word searching, restricting matches to complete words. Ctrl-T enables or

disables regular expression searching, in which the search string specifies a pattern (see

regex-search for rules). Ctrl-C enables or disables case-folding.

keep-unique-lines Entirely remove duplicate lines.

This command deletes all copies of any duplicated adjacent lines, leaving only those lines that

match neither the preceding nor the following line. If the case-fold variable is nonzero, lines

that only differ by case will be considered identical. Also see the uniq and keep-duplicate-lines

command.

kill-all-buffers Delete all user buffers.

This command discards all of Epsilon’s buffers (except hidden system buffers).

kill-buffer Ctrl-X K Make a specified buffer not exist.

This command asks for a buffer name and then deletes that buffer. The command warns you

before deleting a buffer that contains unsaved changes.

kill-comment Kill the next comment.

This command searches forward for a comment, as defined by the current mode, then kills it.

The set-comment-column command invokes this command if given a negative numeric

argument.

kill-current-buffer Ctrl-X Ctrl-K Make the current buffer not exist.

This command deletes the current buffer and switches to another, creating a new buffer if

necessary. The command warns you first if the current buffer contains unsaved changes.

209

kill-current-line Kill the current line.

This command kills the entire current line, including any newline at its end. The killed text goes

to a kill buffer for possible later retrieval.

kill-level Ctrl-Alt-K Kill a bracketed expression.

The command moves point as in forward-level, killing the characters it passes over.

kill-line Ctrl-K Kill to end of line.

If invoked with point at the end of a line, this command kills the newline. Otherwise, it kills the

rest of the line but not the newline. If you give kill-line a numeric argument, it kills that many

lines and newlines. The killed text goes to a kill buffer for possible later retrieval.

kill-process Get rid of a concurrent process.

This command disconnects Epsilon from a concurrent process in the current buffer and makes it

exit. If the current buffer isn’t a process buffer but has a running Internet job (such as an ftp://

buffer), this command tries to cancel it. If the current buffer isn’t process buffer and doesn’t

have a running Internet job, the command tries to kill a process running in the buffer named

“process”.

kill-rectangle Kill the rectangular area between point and mark.

This command removes the characters in the rectangular area between point and mark, and puts

them in a kill buffer. By default, the deleted area is replaced with spaces and tabs, and text to

the right of the rectangle remains in the same position. With a numeric argument, this command

removes the deleted rectangle and shifts leftward any text to its right. See the

kill-rectangle-removes variable to make this command remove text by default. Also see

the delete-rectangle command.

kill-region Ctrl-W Kill the text between point and mark.

This command removes the characters between point and mark from the buffer, and puts them

in a kill buffer. For rectangular regions, it simply calls kill-rectangle.

kill-sentence Alt-K Kill to the end of the sentence.

The command moves point as in forward-sentence, killing the characters it passes over.

kill-to-end-of-line Brief: Alt-K Kill the remainder of the current line.

This command kills the remainder of the current line, not including any newline at its end. If

point is at the end of the line, the command does nothing. The killed text goes to a kill buffer for

possible later retrieval.

kill-window Ctrl-X 0 Delete the current window.

This command gets rid of the current window, and gives the space to some other window. This

command does not delete the buffer displayed in the window.

210 Chapter 5. Alphabetical Command List

kill-word Alt-D Kill the word after point.

The command moves point forward through the buffer as with forward-word, then kills the

region it traversed.

last-kbd-macro Ctrl-F4 Execute the last keyboard macro

defined from the keyboard.

This command runs the last keyboard macro you defined with the start-kbd-macro and

end-kbd-macro commands.

latex-mode Set up for editing LaTeX documents.

This command sets up Epsilon for editing LaTeX documents. Keys in LaTeX mode include

Alt-i for italic text, Alt-Shift-I for slanted text, Alt-Shift-T for typewriter, Alt-Shift-B for

boldface, Alt-Shift-C for small caps, Alt-Shift-F for a footnote, and Alt-s for a centered line.

Alt-Shift-E prompts for the name of a LaTeX environment, then inserts \begin{env} and

\end{env} lines.

For all these commands, you can highlight a block of text first and Epsilon will make the text

italic, slanted, etc. or you can use the command and then type the text to be italic, slanted, etc.

The keys ‘{’ and ‘$’ insert matched pairs of characters (either {} or $$), the keys 〈Comma〉 and

〈Period〉 remove a preceding italic correction \/, the " key inserts the appropriate kind of

doublequote sequence like ‘‘ or '', and Alt-" inserts an actual " character.

line-to-bottom Brief: Ctrl-B Scroll window to move this line to bottom.

This command tries to scroll the current window so that the line containing point becomes the

last line in the window.

line-to-top Brief: Ctrl-T Scroll the window to move this line to the top.

This command tries to scroll the current window so that the line containing point becomes the

first line in the window.

list-all Describe Epsilon’s state in text form.

This command puts a description of Epsilon’s state, including bindings, macros, variables, and

commands, in a buffer named list-all. It provides complete descriptions for bindings, macros,

and simple variables, but for commands and subroutines, it only records the fact that a function

with that name exists. You can copy key binding or macro lines from this listing, modify them,

and put them in your einit.ecm file to customize Epsilon, or load them using load-buffer.

list-bookmarks Pop up a list of all the bookmarks.

This command works like jump-to-named-bookmark, but pops up a list of bookmarks, as if you

had typed ‘?’ to that command. If you always want the pop up list, you can bind this command

to a key (perhaps replacing the default binding of jump-to-named-bookmark on Ctrl-X J).

list-debug Show EEL functions set for debugging.

This command displays the names of all functions that have had debugging enabled using the

set-debug command.

211

list-changes List variables added or changed when updating.

You would use this command when updating to a new version of Epsilon. It asks for the names

of two files, then makes a list of all lines from the second that don’t appear in the first. It sorts

the second file, but not the first.

list-colors Make a list of all color settings.

This command constructs a buffer with all of Epsilon’s current color settings, one to a line. The

export-colors command is another way to save color selections in human-readable form.

list-customizations Build a list of current customizations.

This command constructs an einit.ecm customization file based on your current set of variable

definitions, key bindings, color settings, loaded EEL extensions, and so forth. The new

definitions are added to the end of your einit.ecm file, and Epsilon will use them the next time it

starts. Epsilon comments out any previous settings in that file, and deletes previous settings it

commented out on a previous run. With a numeric argument, it doesn’t comment out or delete

previous settings.

It works by running another copy of Epsilon with no customizations loaded, having it generate a

complete list of settings, and then comparing that list to current settings. Each difference

represents a particular customization.

Some definitions and settings may be the result of loading an EEL extension file. Rather than

list these individually, this command lists just the EEL source file name. It displays all EEL

source files it knows of, before it starts, and you can edit this list if you like.

Also see the clean-customizations and import-customizations commands.

list-definitions Alt-’ List functions defined in this file.

This command displays a list of all functions and global variables defined in the current file. It

uses Epsilon’s tagging facility, so it works for any file type where tagging works.

You can move to a definition in the list and press 〈Enter〉 and Epsilon will go to that definition.

Or press Ctrl-G to remain at the starting point.

By default, it skips over external declarations. With a prefix numeric argument, it includes those

too. (If the buffer contains only external declarations and no definitions, a prefix argument is

unnecessary; Epsilon will automatically include them.)

list-files Create a buffer listing all files matching a pattern.

This command prompts for a file name pattern containing wildcards, then creates a list of all the

files matching the pattern in a buffer named “file-list”. Use this command when you need a plain

list of file names, without any of the extra information that the similar dired command provides.

With a numeric argument, the command lists matching directory names, as well as file names.

list-make-preprocessor-conditionals Makefile mode: Alt-i Show conditionals

in effect for this line.

In makefile mode buffers, this command displays a list of all preprocessor conditionals that

affect the current line.

212 Chapter 5. Alphabetical Command List

list-preprocessor-conditionals C mode: Alt-i Show conditionals in effect for this line.

In C mode buffers, this command displays a list of all preprocessor conditionals that affect the

current line.

list-undefined Which EEL functions are not defined anywhere?

This command makes a list of all EEL functions that are called from some other EEL function,

but have not been defined. Epsilon doesn’t report any error when you load an EEL function that

refers to an undefined function, but you’ll get an error message when the function runs. This

command helps to prevent such errors. The list also includes any variables or functions that

have been deleted.

load-buffer Interpret a buffer as a command file.

This command prompts you for the name of a buffer containing macro definitions and key

bindings in command file format, then executes the commands contained in that buffer. For

information on command file format, see the section of the manual entitled “Command Files”.

load-bytes Load compiled EEL commands and variables.

This command prompts you for the name of a file produced by the EEL compiler, then loads

that file. You may omit the file name’s extension. The command changes any file name

extension you provide to “.b”.

load-changes Load the changes into Epsilon.

The load-changes command prompts for a file name, then loads the changes described in that

file. Use this command when updating to a new version of Epsilon, to load the output of the

list-changes command.

load-file Read in a command file.

This command prompts you for the name of a command file containing macro definitions and

key bindings, then executes the commands contained in that file. For information on command

file format, see the section of the manual entitled “Command Files”.

locate-file Search for a file.

This command prompts you for a file name and then searches for that file. In Windows, it

searches for the file on all local hard drives, skipping over removable drives, CD-ROM drives,

and network drives. On Unix, it searches through particular parts of the directory hierarchy

specified by the locate-path-unix variable.

lowercase-word Alt-L Make the current word lower case.

Point travels forward through the buffer as with forward-word. It turns all the letters it

encounters to lower case. If the current buffer contains a highlighted region, Epsilon instead

changes all the letters in the region to lower case, leaving point unchanged.

213

mail-fill-paragraph Ctrl-C Alt-q Fill a paragraph preserving email quoting.

Email messages commonly use lines beginning with > or # to indicate quoting. This command

fills paragraphs in such emails, preserving such quoting, and recognizing that different amounts

of quoting serve to separate paragraphs. It uses the mail-quote-pattern and

mail-quote-skip variables to determine the permissible quoting characters.

With a numeric argument, it fills paragraphs using the current column as the right margin,

instead of the margin-right variable.

The prefix-fill-paragraph command is similar, but uses different rules that aren’t as well-adapted

for email.

With a highlighted region, it fills each paragraph in the region.

mail-quote-region Ctrl-C > Quote the current region or paragraph for email.

This command inserts a > character before each line in the current paragraph, quoting it for

email. When a region is highlighted, it instead inserts a > character before each line in the

region. The actual text inserted comes from the mail-quote-text variable.

mail-unquote Ctrl-C < Remove quoting from the current quoted section.

This command removes email-style quoting. It examines the lines around point to find a range

of lines with matching quoting, then removes the quoting (by default, > or # characters) from

those lines. If a region has been highlighted, it removes quoting only from those lines. It uses

the mail-quote-pattern and mail-quote-skip variables to determine the permissible

quoting characters.

make Ctrl-X M Run a program, then look for errors.

Execute a program (by default “make”) as the push command does. With a numeric argument,

the command prompts for the program to execute and sets the default for next time. Epsilon

captures the program’s output and parses it for error messages using the next-error command.

makefile-mode Set up for editing makefiles.

This command sets up syntax highlighting suitable for makefiles.

man Read Unix man pages.

This command prompts for a line of text, then runs the Unix “man” command, passing that text

as its command line argument, and displays the result in a buffer. (This command also works

with the Cygwin environment’s “man” command under Windows.)

If you don’t use any flags or section names, Epsilon will provide completion on available topics.

For example, type “?” to see all man page topics available. Within man page output, you can

double-click on a reference to another man page, such as echo(1), or press 〈Enter〉 to follow it,

or press m to be prompted for another man page topic.

See the man page for the man command itself for information on available flags like -k. Also

see the search-man-pages command.

214 Chapter 5. Alphabetical Command List

mark-c-paragraph C mode: Alt-h Set point and mark around a paragraph.

This command sets point and mark around the current paragraph in a block comment in C mode.

mark-inclusive-region Brief: Alt-M Begin marking a Brief-style inclusive region.

This command begins marking and highlighting a region of text, defining it as an inclusive

region. An inclusive region includes all the characters between point and mark, plus one

additional character at the end of the region. When you run this command, it sets the mark

equal to the value of point, so initially the highlighted region has one character, the character

just after point. This is Brief’s normal region type.

If Epsilon is already highlighting a region of another type, this command redefines the region as

an inclusive region. If mark-unhighlights is nonzero and Epsilon is already highlighting an

inclusive region, this command turns off the highlighting.

mark-line-region Brief: Alt-L Begin marking a line region.

This command begins marking and highlighting a region of text, defining it as a line region. A

line region includes complete lines of the buffer: the line containing point, the line containing

the mark and all the lines between them. When you run this command, it sets the mark equal to

the value of point, so initially the highlighted region contains just the current line.

If Epsilon is already highlighting a region of another type, this command redefines the region as

a line region. If mark-unhighlights is nonzero and Epsilon is already highlighting a line

region, this command turns off the highlighting.

mark-normal-region Brief: Alt-A Begin marking a normal region.

This command begins marking and highlighting a region of text, defining it as a normal

(non-inclusive) region. A normal region includes all the characters between point and mark.

When you run this command, it sets the mark equal to the value of point, so initially the

highlighted region is empty.

If Epsilon is already highlighting a region of another type, this command redefines the region as

a normal region. If mark-unhighlights is nonzero and Epsilon is already highlighting a

normal region, this command turns off the highlighting. See set-mark for a command that

always begins defining a new region, even when a region has already been highlighted.

mark-paragraph Alt-H Put point and mark around the paragraph.

This command positions mark before the first character in the current paragraph, and positions

point after the last character in the paragraph. You can use this command in conjunction with

the kill-region command to kill paragraphs and move them around.

For information on Epsilon’s notion of a paragraph, see the help entry for the forward-paragraph

command.

mark-rectangle Ctrl-X #, Brief: Alt-C Begin marking a rectangular region.

This command begins marking and highlighting a rectangular region of text, setting mark equal

to the value of point. A rectangular region consists of all columns between those of point and

mark, on all lines in the buffer between point and mark.

If Epsilon is already highlighting a region of another type, this command redefines the region as

a rectangular region. If mark-unhighlights is nonzero and Epsilon is already highlighting a

rectangular region, this command turns off the highlighting.

215

mark-whole-buffer Ctrl-X H Highlight the entire buffer.

This command sets point at the start of the current and mark at its end, and turns on

highlighting.

maybe-show-matching-delimiter Insert character and show match.

This command first invokes normal-character to insert the key that invoked it, then, if the

Matchdelim variable is nonzero, shows the delimiter character matching this one using

find-delimiter.

merge-diff Use #ifdef to mark buffer changes.

This command is a variation on the diff command that’s useful when comparing files in a C-like

language. It marks differences by surrounding them with #ifdef preprocessor lines, first

prompting for the #ifdef variable name to use. The resulting buffer receives the mode and

settings of the first of the original buffers.

mouse-center M-〈Center〉 Pan or yank, as appropriate.

This command runs either mouse-yank to yank text, mouse-pan to provide panning, or does

nothing. See the variable mouse-center-yanks to customize this behavior. By default this

command yanks if you press Shift, and pans if not.

mouse-move M-〈Move〉 Pop up a scroll bar or menu bar as needed.

Epsilon runs this command when you move the mouse. It pops up a scroll bar or menu bar, or

changes the mouse cursor’s shape, based on the mouse’s current position on the screen.

mouse-pan M-〈Center〉 Autoscroll or pan the current buffer.

This command is bound to the middle mouse button on three button (or wheeled) mice. It

provides autoscrolling and panning when you click that button.

mouse-select M-〈Left〉 Select text, move borders,

or run menu command.

Press and release this mouse button to position point to wherever the mouse cursor indicates,

switching windows if needed. Hold down the mouse button and drag to select and highlight

text. Double-clicking selects full words. (When a pop-up list of choices appears on the screen,

double-clicking on a choice selects it.) Shift-clicking extends the current selection. Holding

down the Alt key while selecting produces a rectangle selection.

Drag selected text to move it someplace else. Hold down the Control key to copy the text

someplace else.

On scroll bars, this button scrolls the window. You can drag the central scroll box up and down,

click on the arrows at the top and bottom of the scroll bar to scroll by lines, or click between the

arrows and the box to scroll by pages.

On other window borders and corners, dragging resizes windows. For pop-up windows only,

dragging the title bar moves the window.

216 Chapter 5. Alphabetical Command List

mouse-to-tag M-〈Right〉 Go to the definition of the indicated function.

In Epsilon for Windows, display the context menu by calling the context-menu command. In

other versions, behave like the left mouse button, with one exception:

In C files, double-clicking on the name of a subroutine jumps to that routine’s definition using

the tags system. Before jumping, it sets a bookmark at the current position like the

set-bookmark command.

mouse-yank Unix: M-〈Center〉 Yank from the clipboard or kill buffer.

This command yanks text from the clipboard or a kill buffer, like the yank command, at the

mouse’s current location.

move-to-window Ctrl-X 〈Arrows〉 Move to a different window.

This command changes the current window to the window in the direction of the arrow key

from the cursor. For example, typing Ctrl-X 〈Right〉 moves to the window to the right of the

cursor; Ctrl-X 〈Left〉 moves to the left. Ctrl-X 〈Up〉 and Ctrl-X 〈Down〉 move up and down,

respectively.

name-kbd-macro Name the last keyboard macro defined.

Use this command to give a name to a keyboard macro that you defined with start-kbd-macro

and end-kbd-macro. The command prompts you for the name. Thereafter, you may invoke that

macro by name using named-command, or bind it to a key using bind-to-key. Also see

bind-last-macro, which combines this command with binding.

named-command Alt-X Invoke the given command by name.

This command prompts for the name of a command or keyboard macro, with completion, then

executes it.

narrow-to-region Temporarily restrict editing to between

point and mark.

This command temporarily restricts your access to the current buffer. Point can only vary

between the values point and mark had when you invoked narrow-to-region. The commands that

go to the beginning and end of the buffer will instead go to the beginning and end of this region.

Searches will only operate within the region. However, the commands that write the buffer to a

file will write the entire buffer, not just the constricted region. See also the widen-buffer

command.

new-file Create an empty buffer.

This command creates a new, empty buffer and marks it so that Epsilon will prompt for a file

name when you try to save it. You can customize the behavior of the new-file command by

setting the variables new-file-mode and new-file-ext.

next-buffer F12 Select the next buffer.

This command selects the next buffer and connects it to the current window. You can cycle

through all the buffers by repeating this command. To cycle in the other direction, use the

previous-buffer command.

217

next-difference Vdiff: Alt-〈Down〉 or Alt-] Move to the next change.

Use this command in a buffer created by the visual-diff command to move to the next group of

changed lines, or the next group of common lines. Added lines are shown in yellow, deleted

lines in red, and common lines are colored as in the original buffers.

next-error Find a compiler error message, then

jump to the offending line.

This command searches in the process buffer for a line containing a compiler error message.

Epsilon uses a regular expression search to recognize these messages.

If a window displays the file containing the error, Epsilon switches to that window. Otherwise,

it uses the find-file command to display the file in the current window. It then goes to the

indicated line of the file using the goto-line command, then displays the error message in the

echo area. A positive numeric argument of n moves to the nth next error message. A negative

numeric argument of −n moves to the nth previous error message. A numeric argument of zero

repeats the last message.

Users running Cygwin tools may wish to set the cygwin-filenames variable to make Epsilon

recognize file names in this format.

next-match Go to the next matching line.

This command moves to the next match that the last grep command found.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,

it uses the find-file command to display the file in the current window. It then goes to the

matching line. A positive numeric argument of n moves to the nth next match. A negative

numeric argument of −n moves to the nth previous match. A numeric argument of zero goes to

the same match as last time.

next-page Ctrl-V Display the next window full of text.

This command scrolls the current window up so that the last few lines appear at the top of the

window. It moves point so that it appears centered vertically in the window.

next-position Ctrl-X Ctrl-N Go to the next matching line.

This command moves to the next compiler error message by calling next-error, or to the next

match found by the grep command by calling next-match, depending on whether you’ve run a

process or compilation command, or a grep command, most recently.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,

it uses the find-file command to display the file in the current window. It then goes to the

appropriate line of the file. A positive numeric argument of n moves to the nth next match. A

negative numeric argument of −n moves to the nth previous match. A numeric argument of

zero goes to the same place as last time.

next-tag Ctrl-〈NumPlus〉 Go to the next tag with this name.

After you use the goto-tag or pluck-tag commands to go to a tag that occurs in multiple places,

you can use this command to go to the next instance of the tag.

218 Chapter 5. Alphabetical Command List

next-window Alt-〈End〉, Ctrl-X N Move to the next window.

This command moves to the next window, wrapping around to the first window if invoked from

the last window.

You can think of the window order as the position of a window in a list of windows. Initially

only one window appears in the list. When you split a window, the two child windows replace it

in the list. The top or left window comes before the bottom or right window. When you delete a

window, that window leaves the list.

normal-character Insert the invoking key into the buffer.

When you type a character bound to the normal-character command, Epsilon inserts the

character into the buffer, generally before point. See also the overwrite-mode command.

Nothing happens if the key that invokes normal-character does not represent a valid 8-bit ASCII

character.

During auto fill mode, when you type a key bound to this command, the line breaks if

appropriate. In particular, if point’s column equals the fill column, the command breaks the line.

If the value of point’s column exceeds the fill column, the command breaks the line at the

closest whitespace to the left of the fill column, and uses the normal-character command to

insert a space. Otherwise, this command just invokes the normal-character command to insert

the key into the buffer. See the auto-fill-mode command.

oem-to-ansi Convert buffer’s DOS character set to Windows.

Windows programs typically use a different character set than do DOS programs. The DOS

character set is known as the DOS/OEM character set, and includes various line drawing

characters and miscellaneous characters not in the Windows/ANSI set. The Windows/ANSI

character set includes many accented characters not in the DOS/OEM character set. Epsilon for

Windows uses the Windows/ANSI character set (with most fonts).

The oem-to-ansi command converts the current buffer from the DOS/OEM character set to the

Windows/ANSI character set. If any character in the buffer doesn’t have a unique translation,

the command warns first, and moves to the first character without a unique translation.

This command ignores any narrowing established by the narrow-to-region command. It’s only

available in Epsilon for Windows.

one-window Ctrl-X 1 Display only one window.

The current window becomes the only window displayed. The buffers associated with other

windows, if any, remain unaffected. See also the zoom-window command.

open-line Ctrl-O Open up some vertical space.

This command inserts a newline after point, instead of before point as the other inserting

commands do. Use this command to open up some vertical space in the file.

219

overwrite-mode 〈Ins〉 Enter/Exit overwrite mode.

This command changes the behavior of the normal-character command, causing it to insert

characters into the buffer destructively, replacing the character after point. However, Epsilon

will never overwrite a newline character, or overwrite another character with a newline

character. This ensures proper behavior with respect to the ends of lines.

Without a numeric argument, the command toggles the state of overwrite mode. With a numeric

argument of zero, the command disables overwrite mode. With a nonzero numeric argument, it

turns overwrite mode on.

page-left Alt-〈PageUp〉 Show more text to the left.

This command moves left on the current line by half the window’s width. In horizontal

scrolling mode, it then horizontally centers the window on that column (or, if possible, positions

the window so that the start of the line is also visible).

page-right Alt-〈PageDown〉 Show more text to the right.

This command moves right on the current line by half the window’s width. In horizontal

scrolling mode, it then horizontally centers the window on that column (or, if possible, positions

the window so that the start of the line is also visible).

pause-macro Shift-F4 Suspend/resume recording or running a macro.

When defining a keyboard macro, pressing this key temporarily stops recording the macro.

Press the same key again to resume recording. Epsilon won’t record any of your keystrokes

while recording is suspended.

When Epsilon runs the resulting keyboard macro, it will pause at the same place in the macro

and let you enter commands. To resume the macro, press this same key.

Use this command to write macros that pause in the middle for a file name, or to let you do

some custom editing, before continuing their work.

perl-mode Set up for editing Perl.

This command puts the current buffer in a mode suitable for editing Perl. Syntax highlighting,

indenting, tagging, comment filling, delimiter highlighting and commenting commands are all

provided.

perldoc Read Perl documentation.

This command prompts for a line of text, then runs the “perldoc” program, passing that text as

its command line argument, and displays the result in a buffer.

In a perldoc buffer, you can double-click on a reference to another perldoc page and Epsilon

will display it. Press 〈Enter〉 to display the reference at point, or press m to be prompted for

another perldoc topic.

php-mode Set up for editing PHP.

This command puts the current buffer in a mode suitable for editing PHP code. Syntax

highlighting and other features are provided.

220 Chapter 5. Alphabetical Command List

pluck-tag Ctrl-X , Go to the definition of the function at point.

This command first retrieves the routine name adjacent to or to the right of point, then jumps to

that routine’s definition. Before jumping, it sets a bookmark at the current position like

set-bookmark.

A numeric argument of zero forces the definition to appear in a specific window. Epsilon

prompts for a key to indicate which one. Press an arrow key to display the definition in the next

window in that direction. Press n or p to display the definition in the next or previous window.

Type the period character . to force the definition to appear in the current window. Press 2 or 5

to split the current window horizontally or vertically, respectively, and display the definition in

the new window, or 1 to delete all windows but the current one, or z to run the zoom-window

command first.

postscript-mode Set up for editing PostScript files.

This command sets up syntax highlighting suitable for PostScript documents.

prefix-fill-paragraph Alt-Shift-Q Fill a paragraph preserving indentation and similar.

This command examines the current line to determine its “prefix”, a run of non-alphanumeric

characters at the start of the line. Then it determines the boundaries of the current paragraph

among those adjacent lines that share this prefix. Then it fills that paragraph, ensuring the prefix

remains at the start of each line. With a region highlighted, it fills all paragraphs within the

region in the same manner.

With a numeric argument, it fills paragraphs using the current column as the right margin,

instead of the margin-right variable.

The mail-fill-paragraph command is similar, but specialized for email quoting rules.

previous-buffer F11 Select the previous buffer.

This command selects the previous buffer and connects it to the current window. You can cycle

through all the buffers by repeating this command. To cycle in the other direction, use the

next-buffer command.

previous-difference Vdiff: Alt-〈Up〉 or Alt-[Move to the previous change.

Use this command in a buffer created by the visual-diff command to move to the start of the

previous group of changed lines, or the previous group of common lines. Added lines are shown

in yellow, deleted lines in red, and common lines are colored as in the original buffers.

previous-error Find a compiler error message, then

jump to the offending line.

This command works like next-error, except that it searches backwards instead of forwards.

previous-match Go to the previous matching line.

This command moves to the previous match from the last grep command.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,

it uses the find-file command to display the file in the current window. It then goes to the

matching line. A positive numeric argument of n moves to the nth previous match. A negative

numeric argument of −n moves to the nth next match. A numeric argument of zero goes to the

same match as last time.

221

previous-page Alt-V Display the previous window full of text.

This command scrolls the contents of the current window down so that the first few lines appear

at the bottom of the window. It moves point so that it appears centered vertically in the window.

previous-position Ctrl-X Ctrl-P Go to the previous matching line.

This command moves to the previous compiler error message by calling previous-error, or to the

previous match found by the grep command by calling previous-match, depending on whether

you’ve run a process or compilation command, or a grep command, most recently.

If a window displays the file containing the match, Epsilon switches to that window. Otherwise,

it uses the find-file command to display the file in the current window. It then goes to the

appropriate line of the file. A positive numeric argument of n moves to the nth previous match.

A negative numeric argument of −n moves to the nth next match. A numeric argument of zero

goes to the same place as last time.

previous-tag Ctrl-〈NumMinus〉 Go to the previous tag with this name.

After you use the goto-tag or pluck-tag commands to go to a tag that occurs in multiple places,

you can use this command to go to the previous instance of the tag.

previous-window Alt-〈Home〉, Ctrl-X P Move to the previous window.

This command moves to the previous window, wrapping around to the last window if invoked

from the first window.

You can think of the window order as the position of a window in a list of windows. Initially

only one window appears in the list. When you split a window, the two child windows replace it

in the list. The top or left window comes before the bottom or right window. When you delete a

window, that window leaves the list.

print-buffer Alt-F9 Print the current buffer.

This command prints the current buffer. Under Windows, it displays the standard Windows

printing dialog. You can choose to print the current selection, the entire buffer, or just certain

pages.

Under other environments, this command prints the current highlighted region. If no region in

the buffer is highlighted, the command prints the entire buffer.

It prompts for the device name of your printer, storing your response in the variable

print-destination (or, under Unix, print-destination-unix), and then writes a copy of

the buffer to that device.

If the printer name begins with the ! character, Epsilon interprets the remainder of the name as

a command line to execute in order to print a file. Epsilon substitutes the file to be printed for

any %f sequence in the command line. For example, if your system requires you to type

“netprint filename” to print a file, enter !netprint %f as the device name and Epsilon will run

that command, passing it the file name of the temporary file it generates holding the text to

print. The device name can include any of the file name template sequences, such as %p for the

path to the file to print. It can also include %t, which substitutes the name of the buffer or file

being printed (which will be different from the name of temporary file with the text to print). It

may be used as a title or heading.

If the variable print-tabs is zero, Epsilon will make a copy of the text to print and convert

any tabs into spaces before sending it to the printer.

222 Chapter 5. Alphabetical Command List

print-buffer-no-prompt Print the current buffer without prompting.

This command prints the current buffer, exactly like print-buffer, but doesn’t prompt. It uses

default settings.

print-region Shift-F9 Print the current region.

Under Windows, this command displays the standard Windows printing dialog. You can choose

to print the current selection, the entire buffer, or just certain pages.

Under other environments, this command always prints the current region.

See the print-buffer command for details on printing.

print-setup Display the Print Setup dialog.

Under Windows, this command displays the standard Print Setup dialog. You can choose a

printer and select other options. In other environments, this command does nothing.

process-backward-kill-word Process mode: Ctrl-Alt-H Kill the word before point.

The command moves point as in backward-word, killing the characters it passes over. But it

stops before deleting any part of the prompt, treating that as a word boundary.

process-complete Process mode: 〈Tab〉 Finish typing a file name.

In a process buffer, 〈Tab〉 performs completion on file names. If no more completion is

possible, it displays all the matches in the echo area, if they fit. If not, press 〈Tab〉 again to see

them listed in the buffer. See the process-completion-style variable to customize how

process completion works. The variables process-completion-dircmds and

process-completion-windows-programs provide additional customization options.

The command uses different rules for the first word on the command line, searching for a

command along the PATH in a manner appropriate to the operating system. (It won’t know

about any commands that may be built into the current shell command processor, though.)

At buffer positions before the prompt, this command indents.

process-enter Process mode: 〈Enter〉 Send a line to the

concurrent process.

Pressing the 〈Enter〉 key in process mode moves the error spot backwards to point, so that

Epsilon searches for error messages from this new location. If the

process-enter-whole-line variable is nonzero, Epsilon moves to the end of the current line

before sending it to the process, but only when in a line that has not yet been sent to the process.

If the process-enter-whole-line variable is two, Epsilon copies the current line to the end

of the buffer, making it easier to repeat a command.

process-mode Interact with a concurrent process.

Epsilon puts its process buffer in this mode. Pressing the 〈Enter〉 key in process mode moves

the error spot backwards to point, so that Epsilon searches for error messages from this new

location. Process mode also includes commands for completing on file names and command

names (using the process-complete command on 〈Tab〉) and retrieving previous command lines

(using the process-previous-cmd and process-next-cmd commands on Alt-p and Alt-n).

223

process-next-cmd Process: Alt-N Retrieve the next command

from the history list.

Epsilon’s concurrent process buffer maintains a command history. This command retrieves the

next command from the history. Use it following a process-previous-cmd command. With a

numeric prefix argument, the command shows a menu of previous commands and you can

select one to repeat.

process-previous-cmd Process: Alt-P Retrieve the previous command

from the history list.

Epsilon’s concurrent process buffer maintains a command history. This command retrieves the

previous command from the history. Also see process-next-cmd command. With a numeric

prefix argument, the command shows a menu of previous commands and you can select one to

repeat.

process-yank Process mode: Ctrl-Y Insert the contents of a kill buffer.

This command behaves just like the yank command, but if more than one line would be yanked

(and then immediately executed by the running shell command processor), it first prompts for

confirmation. When a keyboard macro is running or being defined, this prompting is disabled.

profile Collect timing information on EEL commands.

This command starts a recursive edit and begins collecting timing data. Many times per second,

Epsilon makes a note of the currently executing EEL source line. When you exit with exit-level,

it fills a buffer named “profile” with this timing data. Epsilon doesn’t collect any profiling

information on commands or subroutines that you compile with the -s option.

pull-word F3, Ctrl-〈Up〉 Complete this word by scanning the buffer.

This command scans the buffer before point, and copies the previous word to the location at

point. If you type the key again, it pulls in the word before that, etc. Whenever Epsilon pulls in

a word, it replaces any previously pulled-in word. If you like the word that has been pulled in,

you do not need to do anything special to accept it–Epsilon resumes normal editing when you

type any key except for the few special keys reserved by this command. Type Ctrl-G to erase

the pulled-in word and abort this command.

If a portion of a word immediately precedes point, that subword becomes a filter for pulled-in

words. For example, suppose you start to type a word that begins WM, then you notice that the

word WM_QUERYENDSESSION appears a few lines above. Just type Ctrl-〈Up〉 and Epsilon fills in

the rest of this word.

pull-word-fwd Ctrl-〈Down〉 Complete this word by scanning the buffer.

This command scans the buffer after point, and copies the next word to the location at point. If

you type the key again, it pulls in the word after that, etc. Whenever Epsilon pulls in a word, it

replaces any previously pulled-in word. If you like the word that has been pulled in, you do not

need to do anything special to accept it—Epsilon resumes normal editing when you type any

key except for the few special keys reserved by this command. Type Ctrl-G to erase the

pulled-in word and abort this command.

If a portion of a word immediately precedes point, that subword becomes a filter for pulled-in

words. For example, suppose you start to type a word that begins WM, then you notice that the

word WM_QUERYENDSESSION appears a few lines below. Just type Ctrl-〈Up〉 and Epsilon fills in

the rest of this word.

224 Chapter 5. Alphabetical Command List

python-indenter 〈Tab〉 in Python mode Indent this line for Python.

In a line’s indentation, reindent the line correctly for Python code. Inside the text of a line, or

when repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

python-mode Set up for editing programs in the Python language.

This command puts the current buffer in a mode suitable for editing programs in the Python

language. Syntax highlighting, indenting, tagging, comment filling, delimiter highlighting and

commenting commands are all provided.

push Ctrl-X Ctrl-E Invoke an inferior command processor.

This command invokes a command processor, or shell. While in the command processor, you

can do whatever you normally do outside of Epsilon. If you prefix a numeric argument, the

command prompts you for a line to pass to the command processor. After you have passed a

command to the command processor, that command becomes the default command until you

type in another one.

Unlike start-process, this command will work with all but the most extremely misbehaved

programs.

query-replace Alt-% Interactively replace strings.

This command behaves like replace-string. Instead of replacing everything automatically, it

positions point after each occurrence of the old string, and you may select whether or not to

replace it. With a numeric argument, the command will match only complete words.

Y or 〈Space〉 replaces and goes to the next match.

N or 〈Backspace〉 doesn’t replace, but goes to the next match.

〈Esc〉 exits immediately.

. replaces and then exits.

^ backs up to the previous match.

! replaces all remaining occurrences.

, replaces the current match but doesn’t go to the next match.

Ctrl-R enters a recursive edit, allowing you to modify the buffer arbitrarily. When

you exit the recursive edit with exit-level, the query-replace continues.

Ctrl-G exits and returns point to its original location.

Ctrl-W toggles the state of word mode.

Ctrl-T toggles the state of regular expression mode (see the description of

regex-replace).

Ctrl-C toggles the state of case-folding.

Any other key causes query-replace to exit and any command bound to that key to

execute.

See the replace-in-region variable to restrict matches to a highlighted region.

225

quick-dired-command Alt-o Perform operations on the current file.

This command provides a convenient way to perform various operations on the file associated

with the current buffer. It prompts for another key, with choices as listed below. Many of them

are similar to the corresponding commands in a dired buffer.

D deletes the file associated with the current buffer, after prompting for

confirmation.

C copies the file associated with the current buffer, prompting for a destination. If

the buffer contains unsaved changes, they won’t be in the copy; this command

affects the file on disk only.

M renames or moves the file associated with the current buffer, prompting for a

destination. It doesn’t change the file name associated with the current buffer,

which will still refer to the original file.

〈Period〉 runs the dired command on the current file.

G changes the current directory to the one containing the current file.

+ prompts for a subdirectory name, then creates a new subdirectory in the directory

containing the current file.

! prompts for a command line, then runs that command, appending the current file

name to it. If the command line you type contains an *, Epsilon substitutes the

current file name at that position instead of at the end. If the command line ends

in a & character, Epsilon runs the program asynchronously; otherwise it waits

for the program to finish.

V runs the “viewer” for the current file; the program assigned to it according to

Windows file associations. For executable files, it runs the program. For

document files, it typically runs the Windows program assigned to that file

extension. In Epsilon for Unix, it tries to display the file using the KDE,

Gnome, or Mac OS X view setting for that type of file, by means of an

epsilon-viewer script you can customize.

A under Windows displays the file’s current attributes (Hidden, System, Read-only

and Archive) and lets you specify a new attribute list. Under Unix it runs the

chmod command, passing it the mode specification you type, such as g+w to let

group members write to the file.

T displays the Windows property page for the file. (Epsilon for Windows only.)

F opens the folder containing this file in Explorer. (Epsilon for Windows only.)

? displays this list of subcommands.

quoted-insert Ctrl-Q Take the next character literally.

The command reads another key and inserts it into the buffer, even if that key would not

normally run normal-character. Nothing happens if the key does not represent an 8-bit ASCII

character. Use this command to insert control characters, meta characters, or graphics

characters into the buffer.

read-session Restore files from the last session.

By default, Epsilon automatically restores the previous session (the files you were editing, the

window configuration, bookmarks, search strings, and so forth) only when you start it without

specifying a file name on the command line. This command restores the previous session

manually. Reading in a session file rereads any files mentioned in the session file, as well as

226 Chapter 5. Alphabetical Command List

replacing search strings, all bookmarks, and the window configuration. (If there are unsaved

files, Epsilon asks if you want to save them first.) Any files not mentioned in the session file

will remain, as will keyboard macros, key bindings, and most variable settings.

rebuild-menu Put modified bindings into menu.

This command makes Epsilon reconstruct its menus, adding current key bindings.

record-kbd-macro Brief: F7 Start or stop recording a macro.

This command begins recording a keyboard macro. Keys you press execute normally, but also

become part of an accumulating keyboard macro. Run this command again to finish defining

the macro.

redisplay Rewrite the entire screen.

Normally Epsilon does not write to the screen during the execution of a keyboard macro. This

command forces a complete rewrite of the screen. Use it if you need to create a keyboard macro

that updates the screen in the middle of execution.

redo F10 Redo the last buffer change or movement.

This command reverses the effect of the last undo command. If repeated, it restores earlier

changes. You may remove the changes again with undo.

redo-by-commands Redo, grouping by commands.

This command operates like redo, except that it groups editing operations based on commands,

similar to Brief.

redo-changes Ctrl-F10 Redo, grouping movements.

This command operates like redo, except that it will automatically redo any run of changes to

the buffer that involve only movements of point as a unit, and stop just before a change of actual

buffer contents. When you invoke redo-changes, it performs a redo, and if the redone operation

simply moved point, then it continues to redo changes until it encounters a non-movement

operation.

redo-movements Ctrl-F12 Return to the site of previous edits.

After making changes at various spots in a buffer, use the undo-movements command and this

command to move to the location of previous edits. Epsilon uses undo information to record

where in a buffer editing has occurred. This command moves forward through the list of

locations, toward more recent locations.

refresh-files Check to see which files have changed on disk.

This command makes Epsilon check each buffer to see if its associated file has been modified

on disk. It rereads the modified file automatically, or asks permission to do so, just as if you had

switched to every buffer one by one.

227

regex-replace Alt-* Substitute for replace expressions.

This command functions like query-replace, but starts in regular expression mode.

pat1|pat2 matches either pat1 or pat2.

pat* matches zero or more matches of pat.

pat+ matches one or more matches of pat.

pat? matches zero or one matches of pat.

[abx] matches any of the characters a, b, or x.

[^abx] matches any but a, b, or x.

[a-z3] matches a, b, c, ... z, or 3.

. matches any character except newline.

() group patterns for +, *, ?, and |.

^ only matches at the beginning of a line.

$ only matches at the end of a line.

<#50> means the character with ASCII code 50.

% removes the special meaning from the following character, so that %$matches

only $.

! marks the end of the match. The command does not change any characters that

match the pattern after the exclamation point.

In the replacement text, #1 means substitute the part of the text that matched the first

parenthesized pattern piece. For example, using regex-replace to replace

“([A-Z][a-z]+)([.!?])” with “#2 ends #1” changes the text “Howard!” to “! ends

Howard”. #0 means to substitute the whole match. #U forces any following replacement text to

uppercase, #L and #C to lowercase or capitalized. #E ends such case modifications; the

remaining replacement text will be substituted as-is. #S substitutes the next alternative, when

the search pattern consists of simple alternative bits of fixed text separated by |’s. Characters

may be included by name in replacement text using the syntax #<Newline>, which substitutes

a 〈Newline〉 character.

regex-search Ctrl-Alt-S Search for a string after point.

The command prompts for a regular expression, then positions point after the next match of that

pattern. If no such match exists, a message appears in the echo area.

pat1|pat2 matches either pat1 or pat2.

pat* matches zero or more matches of pat.

pat+ matches one or more matches of pat.

pat? matches zero or one matches of pat.

[abx] matches any of the characters a, b, or x.

[^abx] matches any but a, b, or x.

[a-z3] matches a, b, c, ... z, or 3.

. matches any character except newline.

() group patterns for +, *, ?, and |.

^ only matches at the beginning of a line.

$ only matches at the end of a line.

<#50> means the character with ASCII code 50.

% removes the special meaning from the following character, so that %$matches

only $.

! marks the end of the match.

228 Chapter 5. Alphabetical Command List

release-notes Display the release notes.

Epsilon searches for the file readme.txt and loads it.

rename-buffer Change the name of the current buffer.

Epsilon prompts for a buffer name, then renames the current buffer.

replace-again Brief: Shift-F6 Do the last replacement again.

This command repeats the last replace command you did, using the same text to search for, and

the same replacement text.

replace-string Alt-& Replace one string with another.

The command asks you for the old and new strings. From point to the end of the buffer, it

replaces occurrences of the old string with the new string. If you prefix a numeric argument, it

will only replace matches that consist of complete words. See also query-replace.

reset-mode Pick the appropriate mode for this buffer.

When you first load a file, Epsilon auto-detects the correct mode for it, by examining the file’s

extension and sometimes the contents of the file. This command makes Epsilon repeat that

process, setting the buffer to a different mode if appropriate. It can be handy after you’ve

temporarily switched to a different mode for any reason, or after you’ve started creating a new

file with no extension and have now typed the first few lines, enough for Epsilon to auto-detect

the proper mode.

For instance, if you’re creating a new file with no extension, there might not be enough

information for Epsilon to choose the right mode at the start. Once you’ve typed the usual first

line of a Perl, PostScript, shell script, or similar file, then Epsilon should have enough

information to pick the right mode.

resume-client Ctrl-C # Tell a waiting client you’ve finished editing.

You can set up Epsilon so an external program can run it as its editor. In Unix-style

environments this is typically done by setting the EDITOR environment variable. The external

program will invoke the editor program, and then wait for it to exit before continuing with its

work.

You may have an existing session of Epsilon running, and want all editing requests from other

programs to be routed to the existing session. You can set that up with Epsilon by setting

EDITOR to epsilon -wait. The external program will run a second copy of Epsilon (the

client), which will pass the name of the file to be edited to the existing Epsilon session (the

server), and wait for the server before continuing.

When you’ve finished editing the passed file, save it, and then use the resume-client command

to notify the client instance of Epsilon that the editing job is done, and it should exit.

In Windows, there’s no convention similar to EDITOR, but individual programs may have an

option to set the name of the editor program to be used. Note that by default, the Windows

command processor never waits for a GUI-style program to exit before prompting again;

putting “start /wait” before the program name tells it to wait. So “start /wait epsilon -wait” may

be needed.

229

retag-files Tag all files again.

This command retags all files in mentioned in the current tag file.

reverse-incremental-search Ctrl-R Incremental search backwards.

This command starts incremental-search in reverse.

reverse-regex-search Ctrl-Alt-R Search for a string before point.

This command prompts for a regular expression, then positions point before the first match of

that string before point. If no such match exists, a message appears in the echo area.

reverse-replace Interactively replace strings, moving backward.

This command behaves like query-replace, but searches backward through the buffer for text to

replace, instead of forward. It positions point before each occurrence of the old string, and you

may select whether or not to replace it. With a numeric argument, the command will match only

complete words.

reverse-search-again Search backward for the same search string.

reverse-sort-buffer Reverse sort the current buffer.

This command asks for the name of a buffer and fills it with a copy of the current buffer reverse

sorted by lines. If you specify a numeric argument of n, the command will ignore the first n
columns on each line when comparing lines. You can press Alt-g at the prompt to insert the

current buffer’s name, to make it easier to sort the current buffer in place.

reverse-sort-region Reverse sort part of the buffer in place.

This command reverse sorts in place the lines of the current buffer appearing between point and

mark. If you specify a numeric argument of n, the command will ignore the first n columns on

each line when comparing lines.

reverse-string-search Reverse search in non-incremental mode.

This command starts a reverse search in non-incremental mode. It functions like starting a

reverse-incremental-search, then disabling incremental searching with Ctrl-O.

revert-file Read the current file into this buffer again.

Epsilon replaces the contents of the current buffer with the contents of the current file on disk.

If the current buffer has unsaved changes, Epsilon asks if you want to discard the changes by

reading the file.

run-with-argument Prompt for a numeric argument, then get key and run.

This command prompts for a numeric argument, then passes it to the next command you

invoke. It’s similar to the argument command, but it lets you enter an argument saved in a kill

buffer (say, inside a keyboard macro), or enter the argument in a different base (e.g. 0x100), or

using any other syntax Epsilon recognizes when prompting for a number.

230 Chapter 5. Alphabetical Command List

save-all-buffers Ctrl-X S Save every buffer that contains a file.

This command will save all modified buffers except those that do not have files associated with

them. If it encounters some sort of error while saving the file, this command displays the error

message, and aborts any running keyboard macros.

save-file Ctrl-X Ctrl-S Save the buffer to its file.

This command writes the contents of the current buffer to its file. If the current buffer does not

have an associated file, Epsilon asks for a file name. If it encounters some sort of problem (like

no more disk space), an appropriate error message appears in the echo area. Otherwise, Epsilon

displays the file name in the echo area. To explicitly write the contents of the buffer to a file

whose name you specify, use the write-file command.

Epsilon writes the file using the same line termination rules as it used when it read the file,

perhaps altered by a subsequent use of the set-line-translate command. With a numeric prefix

argument, the save-file command first asks for a new translation rule.

scroll-down Alt-Z Scroll the buffer contents down.

This command scrolls the contents of the current window down one line, and adjusts point if

necessary to keep it in the window.

scroll-left Alt-{ Stop wrapping, then scroll the buffer

contents to the left.

This command first causes Epsilon to scroll long lines. Subsequently, it scrolls the buffer

contents to the left by one column. If you prefix the command with a numeric argument, the

command enables scrolling, then scrolls the buffer contents that many columns to the left. The

command adjusts point if necessary to stay within the displayed section of the buffer.

scroll-right Alt-} Scroll the buffer contents to the right, or wrap lines.

This command scrolls the buffer contents to the right by one column, if possible. If not

possible, this command causes Epsilon to switch to wrapping long lines. This command adjusts

point if necessary to stay within the displayed section of the buffer.

scroll-up Ctrl-Z Scroll the buffer contents up.

This command scrolls the contents of the current window up by one line, then adjusts point if

necessary to keep it in the window.

search-again Brief: Shift-F5 Repeat the last search in the same direction.

This command searches again for the last text you searched for, in the same direction as before.

search-all-help-files Look for a keyword in a list of help files.

This command searches for a keyword in any one of a list of help files. If you highlight a

keyword first, Epsilon will look for help on the highlighted text. Otherwise, Epsilon will display

a list of possible keywords.

Before you can use this command, you should use the select-help-files command to tell Epsilon

which help files it should search. You can also edit the file epswhlp.cnt to modify the list of help

files.

This command is only available under Windows.

231

search-man-pages Search for text in manual pages.

This command searches through a set of man pages for text you specify, putting its results in the

grep buffer. It first prompts for the search string. You can use Ctrl-T, Ctrl-C, or Ctrl-W to toggle

regular expression, case folding, or word searching behavior, as with grep and other searching

commands.

Then it asks if you want to restrict searching to particular man page sections, such as 1 for

commands or 3 for subroutines. Finally, it asks if you want to restrict the search to man page

entries matching a certain file pattern, such as *file* to search only pages whose names

contain “file”.

For speed reasons, it searches each man page without processing it through the man command,

searching the man page in source format. By default, it shows only the first match in each page;

set the search-man-pages-shows-all variable to see all matches. The result appears in the

grep buffer; when you view a match from there, Epsilon will then use the man command to

display its processed form.

search-region Search for text only in the current region.

This command begins a search that is restricted to the region between point and mark. It works

with rectangular and line regions too. Epsilon will highlight the region until the command ends.

This command is a variation on the incremental-search command, and all its special keys

operate as usual. In particular, you can use Ctrl-R and Ctrl-S to change the direction of the

search.

You can set the search-in-region variable to make this type of restricted search happen

whenever you highlight a region and then search using the usual search commands.

select-buffer Ctrl-X B Display a buffer in the current window.

This command prompts for a buffer name. If a buffer with that name exists, the command

connects it to the current window. Otherwise, it creates a buffer with the indicated name, and

connects that to the current window. If you just press 〈Enter〉 to the prompt for a buffer, it

defaults to the last buffer associated with the current window. So, repeated Ctrl-X B’s will

generally switch back and forth between two buffers.

select-help-files Add installed help files to Epsilon’s menu.

You can set up Epsilon for Windows to search for help on a programming language construct

(like an API function or a C++ keyword) in a series of help files. First use this command to look

for some common help files that may be on your disk. It will prompt for a list of drive letters,

then show you the help files it found.

After you have an opportunity to edit the list of help files, the command then adds the help files

to Epsilon’s Help menu, to the context menu that the secondary mouse button displays, and to

the list of files searched by the search-all-help-files command on the Help menu. Edit the file

gui.mnu to further modify the contents of Epsilon’s menus.

When you select a help file from the menu after running this command, Epsilon will open that

help file. If you highlight a keyword first, Epsilon will look for help on the highlighted text.

Otherwise, Epsilon will display the help file’s table of contents or a list of keywords. (See the

winhelp-display-contents variable for details.)

232 Chapter 5. Alphabetical Command List

select-browse-file Pick a .bsc file for the source code browser interface.

This command selects the Microsoft browser database file to be used by the browse-symbol

command. It sets the browser-file variable to the chosen .bsc file name. If you don’t use this

command to select a .bsc file, but you have selected a .bsc file for tagging using the

select-tag-file command, Epsilon will use it for browsing too.

select-tag-file Ctrl-X Alt-, Change to a different tag file.

This command prompts for a file name, then starts using the tags in that file instead of the ones

in the current tag file.

send-invisible Type a password in a telnet or process buffer.

This command prompts for a line of text, hiding what you type with *’s, and then sends it to the

telnet or concurrent process running in the current buffer. It arranges things so the password

isn’t recorded for show-last-keys or in a command history. A numeric prefix argument makes

the command omit the newline sequence it includes by default after the line of text you enter.

set-abort-key Specify the key which interrupts commands.

You can set the abort key with the set-abort-key command. Pressing the abort key cancels any

currently executing keyboard macros. If you interrupt Epsilon while reading a file from disk or

writing a file to disk, it will ask you whether you want to abort or continue. You must set the

abort key to an unprefixed key.

set-any-variable Set even dangerous variables.

Like set-variable, this command prompts for the name of a variable, then for a new value.

Unlike set-variable, however, this command lets you set even those internal variables that

may produce unexpected or undesired side-effects if you set them.

set-bookmark Alt-/ Remember the current editing position.

This command remembers the current buffer and position, so that you can easily return to it

later with jump-to-last-bookmark. Epsilon stores the last 10 bookmarks that you set with this

command. See also set-named-bookmark and jump-to-named-bookmark.

set-color Select new screen colors.

This command displays a dialog listing all defined color schemes and color classes, and the

colors Epsilon should use for each combination.

In the Win32 GUI and X11 environments, this command displays a dialog; use the usual dialog

navigation keys.

In the Win32 console and Unix terminal environments, this command displays a map of

possible screen color combinations, instead of a normal dialog. By moving the cursor, you may

select a color for each element on the screen, called a color class. The N and P keys change

from one color class to the next (or previous), and the arrow keys change the color of the

currently-selected color class.

In all environments, color classes appear grouped in a tree control. Press + and - to expand or

collapse categories in the tree. In dialog-based versions of set-color, the 〈Right〉 and 〈Left〉 keys

233

also expand and collapse categories. In most environments, you can press Ctrl-S or Ctrl-R to

search for color class names.

Epsilon has many pre-configured sets of color classes. These are known as color schemes. Use

the F and B keys to select a color scheme. You can then fine-tune it using the above commands.

Or you can press D to define a brand-new color scheme based on the current one.

Once you’ve selected colors, you can make them permanent for the current editing session by

pressing the S key. (Use the write-state command to save the changes for future editing

sessions.) Or you can press T to try out the colors in a recursive editing session. Run the

exit-level command on Ctrl-X Ctrl-Z to return to setting colors. If you decide you don’t like the

colors, you can cancel all your changes by pressing C.

You can use the mouse to select colors, too. Click on a name to select a color scheme or color

class. Click on a color to select it. Click on the capital letters in the help window to run those

commands (like S to set).

It’s also possible to change colors by editing an EEL file like mycolors.e, which you can

construct using the export-colors command, or by copying from the stdcolor.e file which defines

Epsilon’s standard color schemes.

set-comment-column Ctrl-X ; Specify where comments go.

This command set the value of the comment-column variable to the current column. With a

positive argument, it sets the variable based on the indentation of the previous comment in the

buffer. In that case, it also reindents any comment on the line.

With a negative argument, it doesn’t change the comment column, but runs the kill-comment

command to remove the line’s comment.

set-debug Enable or disable single-stepping

for a command or subroutine.

This command prompts you for the name of a command or subroutine, with completion. With

no numeric argument, this command toggles the debugging status for that function. With a

non-zero numeric argument, the command enables the debugging status. With a zero numeric

argument, it disables the debugging status.

Whenever Epsilon calls a function with debugging enabled, the Epsilon debugger starts, and

displays the function’s source code at the bottom of the screen. A 〈Space〉 executes the next line

of the function, a G turns off debugging until the function returns, and ? shows all the

debugger’s commands. If you compile a function with the system switch (eel -s filename), you

cannot use the debugger on it.

set-dialog-font Select the font to use in Epsilon dialogs.

Use this command to select the font Epsilon uses in dialog windows (like the one bufed

displays). It sets the variable font-dialog.

set-display-characters Select new screen characters.

The set-display-characters command lets you alter the various characters that Epsilon uses to

construct its display. The command displays a matrix of possible characters, and guides you

through the selection process.

234 Chapter 5. Alphabetical Command List

The first group specifies which graphic characters Epsilon should use to draw window borders.

It defines all the line-drawing characters needed for drawing four different styles of borders, and

all possible intersections of these.

The next group specifies which characters Epsilon uses to display various special characters like

〈Tab〉 or Control-E. For example, Epsilon usually displays a control character with the ^

symbol. Set the appropriate character in this group to make Epsilon use a different character.

You can also make Epsilon display a special character at the end of each line, or change the

continuation character.

The following group defines the characters Epsilon uses to display window scroll bars. Epsilon

replaces the window’s selected border characters with characters from this group. The last

group is for a graphical mouse cursor, unused in the current version.

set-display-look Make the screen look like another editor.

This command makes Epsilon’s window decoration and screen appearance resemble that of

some other editor. It displays a menu of choices. You can select Epsilon’s original look, Brief’s

look, the look of the DOS Edit program (which is the same as the QBasic program), or the look

of Borland’s IDE.

set-encoding Make Epsilon use a different encoding.

When Epsilon reads or writes a file that uses Unicode characters, it uses an encoding such as

UTF-8 or UTF-16 to represent the file on disk. This command sets the encoding Epsilon will

use from now on for the current buffer. Press “?” to see a list of known encodings.

Some encodings are special. The “raw” encoding makes Epsilon read a file without doing any

conversion. The “auto-detect” encoding makes Epsilon determine the encoding as it reads the

file, by looking for a signature (byte order mark). Some encodings like UTF-8 have “-No-Sig”

variants that omit the signature when writing.

To read a file into a new buffer using specific encoding, use a numeric prefix argument with a

file-reading command like find-file.

set-file-name Brief: Alt-O Change the file name associated

with this buffer.

This command prompts for a new file name for the current buffer, and changes the file name

associated with the buffer. The next time you save the file, Epsilon will save it under the new

name.

set-fill-column Ctrl-X F Set the column at which filling occurs.

If you provide a numeric argument, the command sets the fill column for the current buffer to

that value. Otherwise, the command prompts you for a new fill column, with the point’s column

offered as a default. The fill column controls what auto fill mode and the filling commands

consider the right margin.

To set the default value for new buffers you create, use the set-variable command on F8 to set

the default value of the margin-right variable. (Or for C mode buffers, set the

c-fill-column variable.)

235

set-font Select a different font.

This command changes the font Epsilon uses, by displaying a font dialog box and letting you

pick a new font. It’s available under Windows and X11.

To select a Unicode font on X11 and Mac systems, first select iso10646-1 in the list of character

sets on the Filter pane of the font selection dialog.

set-line-translate Specify Epsilon’s line translation scheme.

The operating system uses the sequence of characters Return Newline to indicate the end of a

line. Epsilon normally changes this sequence to a single Newline when it reads in a file (by

removing all the Return characters). When it writes a file, it adds a Return before each Newline

character.

Epsilon automatically selects one of several other translation types when appropriate, based on

the contents of the file you edit (regular text, binary, Unix, or Macintosh). You can explicitly

override this if Epsilon guesses wrong by providing a numeric argument to a file reading

command like find-file. Epsilon will then prompt for which translation scheme to use.

This command sets the desired translation method for the current buffer. It prompts for the

desired type of translation, and makes future file reads and writes in this buffer use that

translation. Epsilon will display “Binary”, “Unix”, “DOS”, or “Mac” in the mode line to

indicate any special translation in effect.

set-mark Ctrl-@ Set the mark to the current position.

Commands that operate on a region of the buffer use the mark and point to delimit the region.

This command sets the mark to the current value of point.

set-named-bookmark Ctrl-X / Name the current editing position.

This command prompts you for a letter, then associates that letter with a bookmark at the

current location. Subsequently, you can return to that location with the

jump-to-named-bookmark command. If you provide a digit instead of a letter, Epsilon sets the

appropriate temporary bookmark (0 refers to the last one, 1 to the one before that, and so on).

You can press ‘?’ to get a list of the currently defined bookmarks, along with the text that

contains the bookmarks. To select one, simply move to the desired bookmark and press 〈Enter〉.

See also set-bookmark and jump-to-last-bookmark.

set-printer-font Select the font to use when printing.

Use this command to select the font Epsilon uses when printing. It sets the variable

font-printer.

set-show-graphic Enable or disable use of IBM

graphic characters.

By default, Epsilon displays most control characters by prefixing to them a caret, e.g., Control

C appears as “^C”. It displays other characters, including national characters, with their graphic

symbol. Epsilon has four different modes for displaying all these characters.

In mode 0, Epsilon displays Meta characters (characters with the 8th bit on) by prefixing to

them a “M-”, e.g., Meta C appears as “M-C”. Epsilon display Control-meta characters by

236 Chapter 5. Alphabetical Command List

prefixing to them “M-^”, e.g., “M-^C”. Epsilon displays most control characters by prefixing to

them a caret, e.g., Control C appears as “^C”.

In mode 1, all-graphic mode, Epsilon uses graphic characters to display all control characters

and meta characters (except for the few that have a special meaning, like 〈Tab〉 or 〈Newline〉).

In mode 2, hex mode, Epsilon displays control and meta characters by their hexadecimal ASCII

values, with an “x” before them to indicate hex.

In mode 3, which is the default, Epsilon displays control characters as “^C”, and uses the

graphic symbol for other characters, as described above.

If you provide no numeric argument, this command cycles to the next mode in the above list. A

numeric argument of 0, 1, 2, or 3 selects the corresponding mode.

set-tab-size Set how many columns are between tab settings.

This command sets the number of spaces between tab stops for the current buffer. If given a

numeric argument, Epsilon sets the tab size to that number. Otherwise the command prompts

for the tab size. By default, Epsilon puts tab settings every 8 columns. Some language modes

like C mode default to a different setting; see c-tab-override and similarly-named variables.

This command will offer to set one of those too if appropriate.

set-variable F8 Set any EEL variable.

This command prompts for the name of a variable and a new value for that variable. This

command cannot set variables with complicated types involving structures or pointers. After

setting the variable, Epsilon shows the new value using show-variable.

If you specify a buffer-specific or window-specific variable, Epsilon uses the numeric argument

to determine whether to set the value for the current buffer or window (zero numeric argument),

the default value (1), or both (2). The value 3 also sets all it for all non-system buffers and

windows, and 4 includes system ones too. If you provide no numeric argument, Epsilon asks.

As with most prompts for a numeric value, you can enter the value in hexadecimal, octal or

binary as 0x2A, 0o52, or 0b101010, respectively, or write an integer expression using the usual

arithmetic operators +, -, *, / and so forth.

set-want-backup-file Brief: Ctrl-W Turn backup files on or off in this buffer.

This command toggles whether or not Epsilon makes a backup file each time you save the

current buffer.

shell-command Alt-! Run a program and collect its output.

This command prompts for the name of an external program to run. Any output it produces

goes to a buffer named “filter-output”. The program runs asynchronously.

With a numeric prefix argument, the program runs synchronously, and the output goes into the

current buffer.

shell-mode Set up for editing shell scripts.

This command puts the current buffer in a mode suitable for editing Unix shell scripts and

similar files.

237

show-bindings F5, F1 B Find a key bound to a command.

The command prompts for a command name, then displays a message telling which keys, if

any, run that command.

show-connections Ctrl-Alt-C Show all Internet connection buffers.

This command lists all active Telnet, FTP, and similar Internet activities and buffers. You can

select a buffer and press 〈Enter〉 to switch to it, or press 〈Escape〉 to remain in the current buffer.

show-last-keys F1 L Display recently typed keys.

This command pops up a window that displays the last 60 keystrokes you typed.

show-matching-delimiter Insert character and show match.

This command first invokes normal-character to insert the key that invoked it, then shows the

delimiter character matching this one using find-delimiter. Some people like to bind this

command to keys such as “)” or “}”.

show-menu Alt-F2 Display a menu of commands.

This command displays a menu of commands and lets you choose one. Use the arrow keys to

navigate through the menu. Letter keys move to the next command in the current column

beginning with that letter. Press 〈Enter〉 to execute the highlighted command, or click on a

command with the mouse. Press Ctrl-G or 〈Esc〉 to exit from the menu.

show-point Ctrl-X = Show information about point.

This command displays the column number, value of point, and size of the buffer, as well as the

ASCII, decimal, and hex codes of the character after point. In Unicode UTF-8 buffers, it

displays the numeric code of the Unicode character at or around point.

The file may occupy more space on disk than the buffer size indicates, due to the line translation

scheme that Epsilon uses when reading and writing files, or other translations. Use the

count-lines command, bound to Ctrl-X L, to get the exact number of bytes the buffer would

occupy on disk. See the mode-format variable to display the current column number

continuously.

show-standard-bitmaps Display available icons for the tool bar.

You can use this function to see some of the icons that may appear on Epsilon’s tool bar

(Windows GUI version only). It’s useful when modifying the contents of the tool bar.

show-variable Ctrl-F8 Display the value of an EEL variable.

This command prompts for the name of a variable and displays its value in the echo area. This

command cannot show variables with complicated types involving structures or pointers. If the

variable can have a different value for each buffer or window (buffer-specific or

window-specific), this command uses its numeric argument or asks the user in the same fashion

as set-variable.

238 Chapter 5. Alphabetical Command List

show-version F1 V Display Epsilon’s version number.

This command displays Epsilon’s version number in the echo area. Epsilon automatically

invokes this command at startup.

show-view-bitmaps Display available icons for the tool bar.

You can use this function to see some of the icons that may appear on Epsilon’s tool bar

(Windows GUI version only). It’s useful when modifying the contents of the tool bar.

shrink-window Ctrl-〈PgDn〉 Shrink the current window by one line.

If possible, the mode line of the window on top of the current window moves down. Otherwise,

the current window’s mode line moves up. This command has no effect if it would make the

current window smaller than two lines, counting the mode line.

shrink-window-horizontally Alt-〈PgDn〉 Shrink the current window by one column.

If possible, the left boundary of the current window moves to the right by one column.

Otherwise, the right boundary moves to the left by one column. This command has no effect if

it would make the window smaller than one character wide.

shrink-window-interactively Ctrl-X – Use arrow keys to resize a window.

This command lets you interactively change the size of the current window. After you invoke

the command, use the arrow keys to point to a window border. The indicated border moves in a

direction so as to make the current window smaller. Keep pressing arrow keys to move window

borders. To switch from shrinking to enlarging, press the minus key. Thereafter, the arrow keys

cause the window border to move in a direction so as to enlarge the window. When the window

looks right, press 〈Enter〉 to leave the command.

sort-buffer Sort the current buffer.

This command asks for the name of a buffer and fills it with a copy of the current buffer sorted

by lines. If you specify a numeric argument of n, the command will compare lines starting at

column n. You can press Alt-g at the prompt to insert the current buffer’s name, to make it

easier to sort the current buffer in place.

sort-region Sort part of the buffer in place.

This command sorts in place the lines of the current buffer appearing between point and mark.

If you specify a numeric argument of n, the command will ignore the first n columns on each

line when comparing lines.

sort-tags Sort the list of tags manually.

By default, Epsilon sorts the tag list whenever it needs to display a list of tag names for you to

choose from. Instead, you can set the want-sorted-tags variable to 0, and sort the tags

manually, whenever you want, using this command.

239

spell-buffer-or-region Correct misspelled words.

This command moves to each misspelled word in the current buffer, one by one, and prompts,

asking if you want to replace with a correction or ignore it. It calls the spell-correct command to

do this.

With a highlighted region, it operates on only the words within the region.

spell-configure Set up dictionary for spell checking.

This command configures the dictionary file Epsilon uses for spell checking, installing it if

necessary. The first time you run it, it will download (if necessary) and unpack a set of

dictionary files. See http://www.lugaru.com/spell.html if you need to download these manually.

Then it will ask for your preferences on dictionary size, variety of English (American, British,

or Canadian spellings), and so forth. (Bigger dictionaries recognize rarer words, but won’t catch

misspellings that result in rare words.) Run it again to change these preferences.

You can choose to include abbreviations and acronyms like “TV”, “VIP”, or “rpm”, contractions

like “doesn't”, or “I'm”, or words that must start with an uppercase letter, like “Doctor”,

“December”, or “Europe”. The proper names category includes less common names like

“Brian” or “Altman” that are not included in the uppercase category. (Some words appear in

more than one category.)

Variants permit words like “fiascos” in addition to “fiascoes” or “Hanukah” in addition to

“Hanukkah”.

It also asks if you want to run an external helper program to generate better suggestions. If you

have one of the supported programs installed, letting Epsilon use it will produce faster, more

appropriate suggestions. Epsilon can use the free aspell and ispell programs often installed on

Unix systems (and available on Windows systems through a Cygwin package from

http://www.cygwin.com), the commercial MicroSpell spell checker for Windows from

http://www.microspell.com (version 9.1f or later), or the Mac’s spelling engine.

This option sets the spell-helper-program variable. If your external speller program is not

on your PATH, you’ll have to modify this variable to include its full pathname.

spell-correct Ctrl-C Ctrl-O Replace or ignore a misspelled word.

You can use this command to replace a misspelled word from a list of suggestions, or enter it

into an “ignore list” so Epsilon will no longer complain about it.

Your global ignore list is a file named ignore.lst in your customization directory. Epsilon also

checks directory-specific and file-specific ignore lists. When checking a file named file.txt,

for example, Epsilon looks for an ignore list file named .file.txt.espell in that same

directory, and a directory-specific ignore list file in that directory named .directory.espell.

All these files contain one word per line. You can edit them to remove words you no longer

wish the speller to ignore. Epsilon automatically sorts ignore list files when it uses them.

Epsilon can generate suggestions in one of several ways. Its default method can be replaced by

a faster but less accurate method by setting a bit in the appropriate mode-specific variable, such

as c-spell-options for C mode or default-spell-options for modes without their own

variable. Or by setting the spell-helper-program variable, using the spell-configure

command, Epsilon can use an external program to provide suggestions.

240 Chapter 5. Alphabetical Command List

spell-grep List the misspelled words.

This command makes a list of all lines in the current buffer with a misspelled word, putting its

results in the grep buffer. You can then select particular lines to correct using the commands of

grep-mode.

With a highlighted region, it operates on only the words within the region.

spell-mode Toggle highlighting of misspelled words.

This command toggles the Spell minor mode. With a nonzero numeric argument, it turns Spell

mode on; with a zero argument it turns Spell mode off. In Spell mode, Epsilon highlights

misspelled words. The change affects all buffers in the same major mode (and sometimes those

in other modes, whenever both modes lack a dedicated spell-options variable and use the

default-spell-options variable for their settings). See the buffer-spell-mode command to

toggle Spell minor mode for a single buffer, not a group.

Use the spell-correct command to ignore certain words or show suggestions for a misspelled

word.

split-window Ctrl-X 2 Split the current window in two.

This command splits the current window into two windows, one on top of the other, occupying

the same total space. Nothing happens if either resulting window would have fewer than two

lines of height (counting the mode line).

split-window-vertically Ctrl-X 5 Split the current window in two.

This command splits the current window into two windows, one beside the other, occupying the

same total space. Nothing happens if either resulting window would have fewer than one

character of width.

ssh Connect to another computer securely.

This command prompts for the name of a computer, then connects to it by running an ssh

(secure shell) program on your system. You can use a name such as bob@example.com to

connect using a specific user name, not the default one determined by the ssh program.

ssh-mode A mode for secure shell connections.

The ssh command creates buffers in this mode, used for connections to a remote host using an

ssh program. It provides coloring of some ANSI escape sequences, command history using

Alt-p and Alt-n, and parsing of password prompts. The variables ssh-interpret-output and

recognize-password-prompt control some of these features. In ssh mode, Ctrl-C Ctrl-C

sends an interrupt signal to the remote machine.

standard-toolbar Display Epsilon’s normal tool bar.

Epsilon calls this function to display its tool bar (Windows GUI version only). By redefining

the function, you can change what appears on the tool bar.

241

start-kbd-macro Ctrl-X (Start defining a keyboard macro.

After you invoke this command, everything you type executes normally, but it also becomes

part of an accumulating keyboard macro. The macro definition ends when you invoke the

end-kbd-macro command.

start-process Ctrl-X Ctrl-M Invoke a concurrent command processor.

You can create a concurrent subprocess with Epsilon. The start-process command shows the

“Process” buffer in the current window, and starts a command processor running in it. Epsilon

will capture the output of commands that you run in the window, and insert that output into the

process buffer. When the process reads input from its standard input, Epsilon will give it the

characters that you insert at the end of the buffer. You can move to other windows or buffers

and issue Epsilon commands during the execution of a concurrent process.

With a numeric argument, the start-process command will create an additional concurrent

process (in versions of Epsilon that support this). The stop-process command on Ctrl-C Ctrl-C

will stop a running program, just as Ctrl-C would outside of Epsilon. You may generate an

end-of-file for a program reading from the standard input by inserting a Control-Z character

(quoted with Ctrl-Q) on a line by itself, at the end of the buffer. (Use Ctrl-Q Ctrl-D 〈Enter〉 for

Unix.)

Programs invoked with this command should not do any cursor positioning or graphics. We

provide the concurrent process facility primarily to let you run programs like compilers, linkers,

assemblers, filters, etc.

Under Windows 95/98/ME, Epsilon will let you run only one other program at a time.

stop-process Ctrl-C Ctrl-C Abort the concurrent process.

This command makes a concurrent process (see start-process) believe that you typed Ctrl-C (or,

for Unix, the interrupt key).

Under Windows, providing a numeric argument makes this command send a Ctrl-Break signal

instead of the usual Ctrl-C signal. (Under Windows 95/98/ME, providing a numeric argument

makes this command try to force the current process to exit, instead of sending a Ctrl-C

character.) A numeric argument has no effect under Unix.

string-search Start a search in non-incremental mode.

This command starts a search in non-incremental mode. It works like starting an incremental

search with the incremental-search command, then disabling incremental mode with Ctrl-O.

suspend-epsilon Suspend or minimize Epsilon for Unix.

This command suspends Epsilon for Unix, returning control to the shell that launched it. Use

the shell’s fg command to resume Epsilon. When Epsilon runs as an X11 program, it instead

minimizes Epsilon’s window.

switch-buffers Ctrl-〈Tab〉 Switch to another buffer.

This command switches to the buffer you last used. If you press 〈Tab〉 again while still holding

down Ctrl, you can switch to still older buffers. Hold down Shift as well as Ctrl to move in the

reverse order. You can press Ctrl-G to abort and return to the original buffer.

See the switch-buffers-options variable to customize the order in which buffers appear.

242 Chapter 5. Alphabetical Command List

switch-windows Switch to the next or previous window.

This command switches to the next window. Hold down shift while pressing its key, and it will

switch to the previous window.

tabify-buffer Replace spaces in buffer with the right number of tabs.

This command removes all sequences of spaces and tabs throughout the buffer. In their place, it

inserts a sequence of tabs followed by a sequence of spaces to reach the same column that the

prior whitespace did.

tabify-region Ctrl-X Ctrl-Alt-I Convert whitespace to tabs.

Between point and mark, this command removes all sequences of spaces and tabs. In their

place, it inserts a sequence of tabs followed by a sequence of spaces to reach the same column

that the prior whitespace did.

tag-files Ctrl-X Alt-. Locate all tags in the given files.

This command prompts for a file name or file pattern. In each file, it locates each subroutine or

function and makes a tag for it, so commands like goto-tag can find it later. You can use

extended file patterns to tag files in multiple directories, even using a pattern like

**.{c,cpp,h} to tag all the .c, .cpp, and .h files in a hierarchy. See page 128.

With a prefix numeric argument, this command tags function declarations as well as function

definitions, and external variable declarations as well as variable definitions. Use a numeric

argument if you have an #include file for a package but no source file, and you want tag

references to a function in the package to go to the #include file.

tcl-indent-and-show-matching-delimiter Insert braces in Tcl mode.

The brace keys run this command in Tcl mode. It self-inserts, indents, then displays its match.

tcl-indent-cmd Indent this line for Tcl.

In a line’s indentation, reindent the line correctly for Tcl code. Inside the text of a line, or when

repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

tcl-mode Set up for editing Tcl files.

This command sets up syntax highlighting, indenting and other functions suitable for Tcl

documents.

telnet Connect to a remote computer and run a shell.

The telnet command lets you connect to a command shell on a remote computer. It puts you in a

buffer that works much like the Epsilon process buffer, except the commands you type are

executed on the remote machine. Provide a numeric prefix argument, or use the syntax

hostname:port for the host name, and telnet will connect on the specified port instead of the

default port. You can either use the telnet command directly, or specify a telnet: URL to

find-file. (Epsilon ignores any username or password included in the URL.)

243

telnet-mode Connect to a remote computer and send commands.

In Telnet mode, the key Ctrl-C Ctrl-C immediately sends an interrupt signal to the remote

machine, and Ctrl-O immediately sends a Ctrl-O character (which typically makes the remote

machine discard pending output). The key 〈Enter〉 sends a line of input to the server, while

Ctrl-U 〈Enter〉 (running the 〈Enter〉 key with a numeric argument) sends a partial line.

tex-boldface TeX mode: Alt-Shift-B Make boldface text in TeX mode.

This command inserts the TeX command to make a section of text bold. You can highlight a

block of text first and Epsilon will make the text bold, or you can use the command and then

type the text to be bold.

tex-center-line TeX mode: Alt-S Create a centered line of text

in TeX mode.

This command inserts the TeX or LaTeX command to center a line of text. (See the variable

tex-force-latex.)

tex-close-environment TeX mode: Alt-Shift-Z Insert an \end for the last \begin.

This command searches backwards for the last \begin{env} directive without a matching

\end{env} directive. Then it inserts the correct \end{env} directive at point.

tex-display-math TeX mode: \[Insert \] when you type \[.

When you type \[, this command inserts \] for you.

tex-environment TeX mode: Alt-Shift-E Create the specified

LaTeX environment.

This command prompts for the name of a LaTeX environment, then inserts LaTeX \begin{env}
and \end{env} commands for that environment. You can highlight a block of text first and

Epsilon will put the environment commands around it, or you can run this command and then

type the text to go in that environment. Press ? to select an environment from a list. (The list of

environments comes from the file latex.env, which you can edit.)

tex-fill-paragraph TeX mode: Alt-q Fill the current paragraph.

This command fills the current paragraph using the fill-paragraph command. But within a TeX

comment, it instead fills the comment using the fill-comment command.

tex-footnote TeX mode: Alt-Shift-F Make a footnote in TeX mode.

This command inserts the TeX command to mark a section of text as a footnote. You can

highlight a block of text first and Epsilon will make it a footnote, or you can use the command

and then type the footnote.

tex-force-quote TeX mode: Alt-” Insert a " character.

This command inserts a true " character. Normally typing " itself inserts either a ‘‘ or a ''

sequence.

244 Chapter 5. Alphabetical Command List

tex-inline-math TeX mode: \(Insert \) when you type \(.

When you type \(, this command inserts \) for you.

tex-italic TeX mode: Alt-i Make italic text in TeX mode.

This command inserts the TeX command to make a section of text italic. You can highlight a

block of text first and Epsilon will make the text italic, or you can use the command and then

type the italic text.

tex-left-brace TeX mode: { Insert } when you type {.

This command inserts a matched pair of braces. After a \ character, it inserts a \ before the

closing brace. But if you type this key just before a non-whitespace character, it inserts only a {.

This makes it easier to surround existing text with braces.

tex-math-escape TeX mode: $ Insert $when you type $.

This command inserts a matched pair of $characters (except after a \ character).

tex-mode Set up for editing TeX or LaTeX documents.

This command sets up Epsilon for editing TeX or LaTeX documents. Keys in TeX mode

include Alt-i for italic text, Alt-Shift-I for slanted text, Alt-Shift-T for typewriter, Alt-Shift-B

for boldface, Alt-Shift-C for small caps, Alt-Shift-F for a footnote, and Alt-s for a centered line.

Alt-Shift-E prompts for the name of a LaTeX environment, then inserts \begin{env} and

\end{env} lines.

For all these commands, you can highlight a block of text first and Epsilon will make the text

italic, slanted, etc. or you can use the command and then type the text to be italic, slanted, etc.

The keys ‘{’ and ‘$’ insert matched pairs of characters (either {} or $$), the keys 〈Comma〉 and

〈Period〉 remove a preceding italic correction \/, the " key inserts the appropriate kind of

doublequote sequence like ‘‘ or '', and Alt-" inserts an actual " character.

tex-quote TeX mode: ” Insert the right TeX doublequote sequence.

This command inserts the appropriate doublequote sequence like ‘‘ or '', based on the

preceding characters. Alt-" inserts an actual " character.

tex-rm-correction TeX mode: 〈Comma〉, 〈Dot〉 Remove an italic correction.

This command removes any nearby italic correction \/ when appropriate.

tex-slant TeX mode: Alt-Shift-I Make slanted text in TeX mode.

This command inserts the TeX command to make a section of text slanted. You can highlight a

block of text first and Epsilon will make the text slanted, or you can use the command and then

type the text to be slanted.

245

tex-small-caps TeX mode: Alt-Shift-C Make small caps text in TeX mode.

This command inserts the TeX command to set a section of text in small caps. You can

highlight a block of text first and Epsilon will put the text in small caps, or you can use the

command and then type the text.

tex-typewriter TeX mode: Alt-Shift-T Use a typewriter font in TeX mode.

This command inserts the TeX command to set a section of text in a typewriter font. You can

highlight a block of text first and Epsilon will set that text in a typewriter font, or you can use

the command and then type the text.

to-indentation Alt-M Move point to the end of the indentation.

This command positions point before the first non-whitespace character in the line.

to-left-edge Brief: Shift-〈Home〉 Move to the left edge of the window.

This command moves point to the left edge of the current window.

to-right-edge Brief: Shift-〈End〉 Move to the right edge of the window.

This command moves point to the right edge of the current window.

toggle-borders Brief: Alt-F1 Remove borders around windows,

use color to distinguish them.

This command removes the borders around ordinary tiled windows, letting the text regions

occupy more of the screen. If the windows have no borders already, this command restores

them. When this command reenables borders, it does so according to the settings of the

variables border-left, border-top, and so forth. Epsilon displays a border only if the

appropriate variable has been set, and toggle-borders hasn’t disabled all borders.

When there are no window borders, Epsilon provides each window with its own separate color

scheme, in place of the single one selected by set-color. (You can still use set-color to set the

individual colors in a color scheme, but Epsilon doesn’t care which particular color scheme you

select when it displays the contents of individual windows. It does use the selected color

scheme for other parts of the screen like the echo area or screen border.)

The color schemes Epsilon uses for borderless windows have names like “window-black”,

“window-blue” and so forth. Epsilon assigns them to windows in the same order they appear in

set-color. You can remove one from consideration using the delete-name command, or create a

new one using set-color (give it a name starting with “window-”).

toggle-case-fold Turn off case folding in search or turn it on again.

This command toggles the state of case folding for the current buffer by setting the case-fold

variable. When case folding is on, searching and other operations ignore the case of letters.

With a nonzero numeric argument, the command enables case folding instead of toggling it;

with a zero numeric argument, it turns off case folding.

246 Chapter 5. Alphabetical Command List

toggle-menu-bar Toggle whether a permanent menu bar appears.

Add a menu bar at the top of the screen, moving windows down one line. If Epsilon already

displays a menu bar, remove it.

toggle-scroll-bar Toggle whether tiled windows have permanent scroll bars.

Put a scroll bar on the right edge of all tiled windows. If tiled windows already have scroll bars,

remove them.

toggle-toolbar Turn the tool bar on or off.

The Windows GUI versions of Epsilon can display a tool bar. Position the mouse over a tool bar

button for a moment and Epsilon will describe what it does. This command hides or displays

the tool bar.

transpose-characters Ctrl-T Swap the characters around point.

At the end of a line, the command switches the two previous characters. At the beginning of a

line, it switches the following two characters. Otherwise, it switches the characters before and

after point. If the current line has less than two characters, however, nothing happens. Point

never changes.

transpose-lines Ctrl-X Ctrl-T Swap the current and previous lines.

After the exchange, the command positions point between the two lines.

transpose-words Alt-T Swap the current and previous words.

The command leaves untouched the text between the words. After the exchange, the command

positions point between the two words.

tutorial This command shows Epsilon’s tutorial.

unbind-key Remove the binding from a key.

The unbind-key command prompts for a key and then offers to rebind the key to the

normal-character command, or to remove any binding it may have. A key bound to

normal-character will self-insert; that’s how keys like ‘j’ are bound. A key with no binding at all

simply displays an error message.

undo F9 Undo the last buffer change or movement.

This command undoes the last change you made to the buffer. If repeated, it undoes earlier

changes. You may reinstate the changes with redo.

undo-by-commands Undo, grouping by commands.

This command operates like undo, except that it groups editing operations based on commands,

similar to Brief.

247

undo-changes Ctrl-F9 Undo, grouping movements.

This command operates like undo, except that it will automatically undo any run of changes to

the buffer that involve only movements of point as a unit, and stop just before a change of actual

buffer contents. When you invoke undo-changes, it performs an undo, and if the undone

operation simply moved point, then it continues to undo changes until it encounters a

non-movement operation.

undo-movements Ctrl-F11 Return to the site of previous edits.

After making changes at various spots in a buffer, use this command and redo-movements to

move to the location of previous edits. Epsilon uses undo information to record where in a

buffer editing has occurred. This command moves backward through the list of locations,

toward the oldest location.

unicode-convert-from-encoding Interpret buffer as Unicode encoding.

This command converts multi-character sequences in the buffer, representing individual

Unicode characters, into the Unicode characters they represent. It prompts for the name of the

encoding scheme it should use.

If there’s a highlighted region, only characters in the region are converted in this way.

unicode-convert-to-encoding Replace Unicode characters with encoded versions.

This command prompts for the name of an encoding, then converts each character in the buffer

to its representation in that encoding.

If there’s a highlighted region, only characters in the region are converted in this way.

uniq Remove extra copies of duplicate lines.

The command goes through the current buffer and looks for adjacent identical lines, deleting

the duplicate copies of each repeated line and leaving just one. It doesn’t modify any lines that

only occur once. If the case-fold variable is nonzero, lines that only differ by case will be

considered identical. Also see the keep-unique-lines and keep-duplicate-lines command.

untabify-buffer Replace tabs in the buffer with spaces.

This command replaces each tab in the buffer by the number of spaces required to fill the same

number of columns.

untabify-region Ctrl-X Alt-I Convert tabs to spaces

between point and mark.

This command replaces each tab between point and mark by the number of spaces required to

fill the same number of columns.

untag-files Discard tags for one or more files.

This command constructs a list of all files represented in the current tag file. You can edit the

list in a recursive edit. When you exit the recursive edit with the exit-level command on Ctrl-X

Ctrl-Z, any files you’ve removed from the list will be untagged.

248 Chapter 5. Alphabetical Command List

up-line Ctrl-P Point moves to the previous line.

The command tries to keep point near the same horizontal position.

uppercase-word Alt-U Make the current word upper case.

Point travels forward through the buffer as with forward-word, changing all the letters it

encounters to upper case. If the current buffer contains a highlighted region, Epsilon instead

changes all the letters in the region to upper case, leaving point unchanged.

vbasic-mode Set up for editing Visual Basic.

This command puts the current buffer in a mode suitable for editing Visual Basic or similar

languages (like VBscript or VBA). Syntax highlighting, indenting, tagging, delimiter

highlighting and commenting commands are all provided.

vhdl-indenter 〈Tab〉 in VHDL mode Indent this line for VHDL.

In a line’s indentation, reindent the line correctly for VHDL code. Inside the text of a line, or

when repeated, insert a tab.

If a region is highlighted, Epsilon indents all lines in the region by one tab stop. With a numeric

prefix argument, Epsilon indents by that amount.

vhdl-mode Set up for editing VHDL files.

This command puts the current buffer in a mode suitable for editing VHDL files.

view-lugaru-web-site Connect to Lugaru’s web site.

This command starts your web browser and points it to Lugaru’s web site. It only works under

Epsilon for Windows on systems with more recent web browsers, and in Epsilon for Unix under

X11.

view-process Shift-F3 Pop up a window of process output;

pick an error msg.

This command pops up a window showing the process buffer, including all compiler command

lines and any resulting error messages. You can move to any line and press 〈Enter〉, and Epsilon

will immediately locate the error message on the current line (or a following line) and move to

the file and line number in error.

view-web-site Pass a URL to a browser.

This command prompts for a URL, scanning the current buffer for a suitable default. Then it

starts your web browser and passes the URL to it. In Epsilon for Unix, it only works under X11.

visit-file Ctrl-X Ctrl-V Read a file into the current buffer.

This command prompts for a file name, then reads that file into the current buffer, and positions

point to the beginning. If no file with the given name exists, it creates a blank buffer. In either

case, the command discards the old buffer contents.

Before discarding modified buffers, the command asks if you want to save the current buffer

contents. With a numeric argument, it asks no questions. This comes in handy for reverting the

buffer to the contents of its file.

249

visual-diff Use color-coding to compare two buffers.

The visual-diff command is like the diff command but uses colors to show differences. It

compares the current buffer with the one shown in the next window on the screen, and

constructs a new buffer that contains all the lines of the two buffers. Lines from the first buffer

that don’t appear in the second are displayed with a red background. Lines in the second buffer

that don’t appear in the first have a yellow background. Lines that are the same in both buffers

are colored normally, as are those parts of an added or removed line that are the same in both

buffers. With a numeric argument, the command prompts for the name of a buffer to hold the

results, instead of using a buffer named #diff#.

visual-diff-mode Use color-coding to compare two buffers.

The visual-diff command creates a buffer in visual diff mode that shows the changes between

one buffer and another. Added lines are shown with a yellow background, deleted lines are

shown with a red background, and common lines are colored as in the original buffers.

In a visual-diff buffer, the keys Alt-〈Down〉 and Alt-] move to the start of the next changed or

common section. The keys Alt-〈Up〉 and Alt-[move to the previous one.

wall-chart Make a chart of the current key bindings.

This command creates a wall chart consisting of all bound keys and their current bindings. You

can print it using the print-buffer command.

what-is F6, F1 Q Find a command bound to a key.

The command prompts for a key, then displays a message telling what command runs when you

press that key.

widen-buffer Restore normal access to the current buffer.

This command gives you normal access to the buffer. Use it after a narrow-to-region command

to cancel the effect of that command.

write-file Ctrl-X Ctrl-W Write the buffer to a file.

This command prompts for a file name, then writes the buffer to a file with that name. The file

associated with the current buffer becomes that file, so subsequent uses of the save-file

command will write the buffer to that file without asking for a file name. See also copy-to-file

and save-file.

Epsilon writes the file using the same line termination rules as it used when it read the file,

perhaps altered by a subsequent use of the set-line-translate command. With a numeric prefix

argument, the write-file command first asks for a new translation rule.

write-files-and-exit Brief: Ctrl-X Save modified files, then leave Epsilon.

This command saves all modified buffers except those that do not have files associated with

them. If there are no errors, it then exits Epsilon.

250 Chapter 5. Alphabetical Command List

write-region Ctrl-X W Write the region to the specified file.

The command prompts for a file name, then writes the characters between point and mark to

that file.

write-session Record the current file & window configuration.

The new write-session command writes a session file, detailing the files you’re currently

editing, the window configuration, default search strings, and so forth. By default, Epsilon

writes a session file automatically whenever you exit, but you can use this command if you

prefer to save and restore sessions manually.

write-state Ctrl-F3 Save all commands and variables

for later automatic loading.

This command prompts for a file name. It alters any extension to “.sta”, and then loads the

documentation file and records the position of each of the definitions in it (to speed up the help

system). Epsilon then writes all its commands, variables, and bindings to the named file.

Restarting Epsilon with the command “epsilon -sfilename”, where “filename” denotes the name

of the state file, makes Epsilon use the commands in that file. Epsilon normally uses the state

file “epsilon-v13.sta”.

xml-mode Set up for editing XML files.

This command puts the current buffer in XML mode. Epsilon will do syntax-highlighting,

smart indenting, and brace-matching.

xml-sort-by-attribute-name XML mode: Alt-Shift-R Reorder attributes, align them.

In XML and HTML modes, this command sorts the attributes of the current tag alphabetically

by attribute name. With a highlighted region, it sorts the attributes of each tag in the region,

then aligns corresponding attributes so they start at the same column in each tag. It uses the first

tag in the region for its list of attribute names to be aligned, so attributes that aren’t used in the

first tag will not be aligned.

yank Ctrl-Y Insert the contents of a kill buffer.

This command inserts the contents of the last kill buffer at point, then positions point after the

insertion, and the mark before it. In some modes this command then reindents the inserted text.

See the reindent-after-yank variable. If another program has placed text on the system

clipboard, this command will use it instead of the kill buffer, except in keyboard macros. See

the clipboard-access variable for more information.

If the kill buffer contains a rectangle, the command inserts it at the current column, on the

current and successive lines. It shifts existing text to the right, unless you’ve enabled overwrite

mode, in which case the block replaces any existing text in those columns. (When yanked text

comes from the system clipboard, Epsilon never treats it as a rectangle.)

yank-pop Alt-Y Cycle through previous kill buffers.

This command replaces the just-yanked kill buffer with the contents of the previous kill buffer.

It only works after a yank or yank-pop command.

251

yank-x-selection Insert selection from X11 Window System.

When Epsilon for Unix runs under the X11 window system, yanking normally inserts text from

its clipboard, and killing text normally puts it on the clipboard as well. But X11 has more than

one way of transferring text from one program into another. An older method uses the “primary

selection”. Selecting text with the mouse sets the primary selection, and middle-clicking the

mouse (with Shift, or after setting the mouse-center-yanks variable to 1) pastes it. This

command offers another way to paste X11’s primary selection.

zoom-window Ctrl-X Z Zoom in on the current window.

This command, like the one-window command, makes the current window occupy the entire

screen. But it also saves away the old window configuration. Later, when you invoke

zoom-window again, it restores the old window configuration.

Chapter 6

Variables

253

This chapter lists all of Epsilon’s user-settable variables, with the exception of some variables used only

within a particular subsystem, and not meant to be set by the user.

The variables typically modified to customize Epsilon are marked “Preference”. Be careful when

setting variables marked “System”. They should generally be set only via the appropriate EEL commands,

not directly by the user. By default, the set-variable and edit-variables commands omit system variables.

abort-file-io System Default: -3

If the user presses the abort key when Epsilon is reading or writing a file, Epsilon asks whether

to abort the file input/output operation. If the user says to abort, the file reading or writing

primitive returns an error code, EREADABORT or EWRITEABORT, respectively. This variable

changes Epsilon’s behavior; EEL code may set it using a save_var statement to one of these

values: A value of ABORT_IGNORE (0) makes Epsilon ignore the abort key during file I/O. A

value of ABORT_ASK (-3, the default) makes Epsilon ask the user as above and return an error

code. A value of ABORT_ERROR (-2) make Epsilon return the error code without prompting

first. The value ABORT_JUMP (-1) doesn’t ask either; it calls the check_abort() primitive,

which typically aborts the entire command.

abort-file-matching Default: 0

Epsilon’s file matching primitives respond to the abort key based on the value of this variable. If

0, they ignore the abort key. If 1, they abort out of the calling function. If 2, they return an error

code. EEL functions that are prepared to handle aborting should set this variable.

abort-key System Default: 7 (Ctrl-G)

Epsilon aborts the current command when you press the key whose value is abort-key. To

disable the abort key, set abort-key to -1. By default, the abort-key variable is set to

Control-G. For correct behavior, use the set-abort-key command to set this variable.

abort-searching Default: -1

If the user presses the abort key during searching, Epsilon’s behavior depends upon the value of

the abort-searching variable. If it’s 0, the key is ignored and the search continues. If it’s

ABORT_JUMP (-1, the default), Epsilon aborts the search and jumps by calling the

check_abort() primitive. If it’s ABORT_ERROR (-2), Epsilon aborts the search and returns the

value ABORT_ERROR. The search(), re_search(), re_match(), and buffer_sort()

primitives all use the abort-searching variable to control aborting.

align-region-extra-space Preference Default: 0

You can use this variable to increase the space between columns aligned using the align-region

command. To have align-region apply additional space just once, run it with a numeric prefix

argument.

align-region-rules Preference Default: 1023

The align-region command uses a series of mode-specific alignment rules. Each of these rules

corresponds to a bit in this variable that enables using that rule. Some rules only apply in certain

modes. The rules: align the first = on a line (1, default rule, most modes), align comments (2,

default rule, most modes), align variable names being defined (4, C mode), align definitions

with #define (8, C mode), align a backslash character at the end of a line (16, C mode).

254 Chapter 6. Variables

all-must-build-mode Default: 0

Epsilon “precomputes” most of the text of each mode line, so it doesn’t have to figure out what

to write each time it updates the screen. Setting the all-must-build-mode variable nonzero

warns Epsilon that all mode lines must be rebuilt. Epsilon resets the variable to zero after every

screen update.

already-made-backup System Buffer-specific Default: 0

Epsilon sets this buffer-specific variable nonzero whenever it saves a file and makes a backup.

alt-invokes-menu Preference Default: 0

In a typical Windows program, pressing and releasing the Alt key without pressing any other

key moves to the menu bar, highlighting its first entry. Set this variable to 1 if you want Epsilon

to do this. The variable has no effect on what happens when you press Alt and then press

another key before releasing Alt: this will run whatever command is bound to that key. If you

want Alt-E, for example, to display the Edit menu, you can bind the command

invoke-windows-menu to it.

alt-numpad-keys Preference Default: 0

Epsilon for Windows normally interprets Alt plus Numeric Pad keys as a way to enter a

character by its numeric code, as in other Windows programs. Type a number on the numeric

pad while holding down Alt to use this feature.

But if this variable is nonzero, Epsilon instead treats Alt plus Numpad keys as individual keys,

which can be bound to commands like any other keys. (The Win32 Console version of Epsilon

ignores this setting under Windows 95/98/ME.)

anon-ftp-password Preference Default:

"-EpsilonUser@unknown.host"

When Epsilon uses FTP to read or write files to a computer on the Internet, and logs in

anonymously, it provides the contents of this variable as a password. (Anonymous FTP sites ask

that you provide your email address as a password when you log in anonymously.) You can set

this to your email address.

argc System Default: varies

The argc variable contains the number of words on Epsilon’s command line, after Epsilon

removes several flags it processes internally. The count includes the command name “epsilon”

at the start of the command line.

auto-fill-comment-rules Preference Default: 3

Bits in this variable let you customize how Epsilon breaks and fills comment lines, in modes

where Epsilon does this. The value 1 lets Epsilon break an overlong comment line when you

press 〈Enter〉. The value 2 lets Epsilon break an overlong comment line when you insert any

other character. The value 4 applies to C-style block comments only, when Epsilon continues a

comment line following one that starts with /*. It tells Epsilon to create new lines with a prefix

of a single space, not a space, star, and space. The value 8 tells Epsilon not to merge adjacent

block comments when filling, as it does by default.

255

auto-fill-indents Preference Buffer-specific Default: 1

When Epsilon automatically inserts new lines for you in auto fill mode, it indents new lines (by

calling the indenter function for the current buffer) only if the buffer-specific variable

auto-fill-indents has a nonzero value.

auto-indent Preference Buffer-specific Default: 0

Epsilon can automatically indent for you when you press 〈Enter〉. Setting the buffer-specific

variable auto-indent nonzero makes Epsilon do this. The way Epsilon indents depends on the

current mode. For example, C mode knows how to indent for C programs. In Epsilon’s default

mode, fundamental mode, Epsilon indents like indent-previous if you set auto-indent

nonzero.

auto-menu-bar Preference Default: 1

If nonzero, moving the mouse past the top edge of the screen makes Epsilon for DOS display

the menu bar, in environments that support this. Other versions of Epsilon ignore this variable.

auto-read-changed-file Preference Buffer-specific Default: 0

If nonzero, when Epsilon notices that a file on disk has a different timestamp than the file in

memory, it automatically reads the new version of the file and displays a message to that effect.

Epsilon won’t do this if you’ve edited the copy of the file in memory, or if the file’s disk size is

substantially smaller than it was. In those cases, Epsilon asks what to do. Also see the variable

want-warn.

auto-save-biggest-file Preference Default: 5,000,000

Buffers larger than this many characters will never be auto-saved.

auto-save-count Preference Default: 500

When want-auto-save is nonzero, Epsilon automatically saves a copy of each unsaved file

every auto-save-count keystrokes.

auto-save-idle-seconds Preference Default: 30

When want-auto-save is nonzero, Epsilon automatically saves a copy of each unsaved file

after you’ve been idle for this many seconds.

auto-save-name Preference Default: "%p#%b%e.asv#"

When want-auto-save is nonzero, Epsilon regularly saves a copy of each unsaved file. This

variable contains a template which determines how Epsilon chooses the file name for the

autosaved file. Epsilon substitutes pieces of the original file name for codes in the template, as

follows (examples are for the file c:\dos\read.me):

%p The original file’s path (c:\dos\).

%b The base part of the original file name (read).

%e The extension of the original file name (.me).

256 Chapter 6. Variables

%f The full name of the original file (c:\dos\read.me).

%r The name of the file relative to the current directory. (read.me if the current

directory is c:\dos, dos\read.me if the current directory is c:\, otherwise

c:\dos\read.me).

%x The full pathname of the directory containing the Epsilon executable.

%X The full pathname of the directory containing the Epsilon executable, after

converting all Windows long file names to their equivalent short name aliases.

By default, Epsilon writes to a file in the same directory but with a # character before the name

and .asv# after it. If you change this to %f (to auto-save to the original file name) or some

other setting that could name a file you want to keep, be sure to set appropriate bits in the

want-auto-save variable to disable automatic deletion of auto-save files.

auto-save-tags Preference Default: 1

Whenever Epsilon retags a file, it saves the modified tag file. Set this variable to zero to disable

this behavior; you can then save the tag file as you would any other file.

auto-show-adjacent-delimiter Preference Default: 3

When the cursor is on a delimiter character in various language modes, Epsilon highlights the

character and its match. Epsilon can also highlight when the cursor is adjacent to a delimiter

character. Bits in this variable control this. The 1 bit makes Epsilon highlight if the cursor is

just past a right-hand delimiter. The 2 bit makes Epsilon highlight if the cursor is just past a

left-hand delimiter. The 4 bit lets highlighting appear in all windows showing the current buffer,

not just the current one. (Changing this last setting won’t affect existing buffers.)

auto-show-batch-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Batch file mode, Epsilon will try to

locate its matching brace, bracket, or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-c-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in C mode, Epsilon will try to locate

its matching brace, bracket, or parenthesis, and highlight them both. If the current character has

no match, Epsilon will not highlight it. Set this variable to zero to disable this feature. Also see

the auto-show-adjacent-delimiter variable.

auto-show-conf-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Conf file mode, Epsilon will try to

locate its matching brace, bracket, or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

257

auto-show-css-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in CSS mode, or in a CSS block

within an HTML file, Epsilon will try to locate its matching brace, bracket, or parenthesis, and

highlight them both. If the current character has no match, Epsilon will not highlight it. Set this

variable to zero to disable this feature. Also see the auto-show-adjacent-delimiter

variable.

auto-show-delimiter-delay System Default: 5

Epsilon uses this variable internally to decide how long to wait before searching and

highlighting matching delimiters.

auto-show-gams-delimiters Preference Default: 1

When the cursor is next to a bracket or parenthesis in GAMS mode, Epsilon will try to locate its

matching bracket or parenthesis, and highlight them both. If the current character has no match,

Epsilon will not highlight it. Set this variable to zero to disable this feature. Also see the

auto-show-adjacent-delimiter variable.

auto-show-html-delimiters Preference Default: 7

Bits in this variable control automatic highlighting in HTML, XML, and PHP modes. When the

cursor is next to a < or > character in HTML mode, Epsilon will try to locate its matching > or <

and highlight them both. The 1 bit enables this. If the current character has no match, Epsilon

will not highlight it. Also see the auto-show-adjacent-delimiter variable.

The 2 bit tells Epsilon to look for matching start and end tags. Inside such tag names, Epsilon

will highlight both the start and end tags. Tags with no match will not be highlighted. The 4 bit

controls how Epsilon highlights tags that have no match but should. If on, they receive a

different color; otherwise they’re not highlighted.

auto-show-matching-characters System Buffer-specific Default: none

Epsilon’s auto-show-delimiters feature stores the set of delimiter characters for the current

mode in this variable.

auto-show-perl-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Perl mode, Epsilon will try to

locate its matching brace, bracket, or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-php-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in PHP mode, Epsilon will try to

locate its matching brace, bracket, or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

258 Chapter 6. Variables

auto-show-postscript-delimiters Preference Default: 1

When the cursor is next to a bracket or parenthesis in PostScript mode, Epsilon will try to locate

its matching brace, bracket or parenthesis, and highlight them both. If the current character has

no match, Epsilon will not highlight it. Set this variable to zero to disable this feature. Also see

the auto-show-adjacent-delimiter variable.

auto-show-python-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Python mode, Epsilon will try to

locate its matching brace, bracket or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-shell-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Shell mode, Epsilon will try to

locate its matching brace, bracket, or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-tcl-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Tcl mode, Epsilon will try to

locate its matching brace, bracket, or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-tex-delimiters Preference Default: 1

When the cursor is next to a curly brace or square bracket character like {, }, [, or] in TeX

mode, Epsilon will try to locate its matching character and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-vbasic-delimiters Preference Default: 1

When the cursor is next to a brace, bracket, or parenthesis in Visual Basic mode, Epsilon will

try to locate its matching brace, bracket or parenthesis, and highlight them both. If the current

character has no match, Epsilon will not highlight it. Set this variable to zero to disable this

feature. Also see the auto-show-adjacent-delimiter variable.

auto-show-vhdl-delimiters Preference Default: 1

When the cursor is next to a parenthesis in VHDL mode, Epsilon will try to locate its matching

parenthesis, and highlight them both. If the current character has no match, Epsilon will not

highlight it. Set this variable to zero to disable this feature. Also see the

auto-show-adjacent-delimiter variable.

avoid-bottom-lines Preference Default: 1

This variable tells Epsilon how many screen lines at the bottom of the screen are reserved, and

may not contain tiled windows. By default, this variable is one, to make room for the echo area.

259

avoid-top-lines Preference Default: 0

This variable tells Epsilon how many screen lines at the top of the screen are reserved, and may

not contain tiled windows. By default, this variable is zero, indicating that tiled windows reach

to the top of the screen. If you create a permanent menu bar, Epsilon sets this variable to one.

backup-by-renaming Preference Default: 2

When the want-backups variable tells Epsilon to back up files before it saves them, it can do

this in one of two ways, either by renaming the original file and then writing a new file by that

name, or by copying the data from the original file to the backup file, then modifying the

original file.

Renaming is faster, but if the file system provides the original file with some special properties

or attributes, and Epsilon doesn’t know how to copy them from one file to another, the

properties may become associated with the backup file, not the original. Copying instead of

renaming avoids this problem.

If this variable is zero, Epsilon always copies files to back them up. If this variable is one,

Epsilon tries to rename the file, only copying the file if it can’t successfully rename the file. If

this variable is two, the default, Epsilon copies under Unix (since some security-enhanced

versions of Linux use just such attributes) and tries to rename first under Windows.

backup-name Preference Default: "%p%b.bak"

If you’ve set want-backups nonzero, telling Epsilon to make a backup whenever it saves a file,

Epsilon uses this variable to construct the name of the backup file. The variable contains a

template, which Epsilon copies, substituting pieces of the original file for codes in the template,

as follows (examples are for the file c:\dos\read.me):

%p The original file’s path (c:\dos\).

%b The base part of the original file name (read).

%e The extension of the original file name (.me).

%f The full name of the original file (c:\dos\read.me).

%r The name of the file relative to the current directory. (read.me if the current

directory is c:\dos, dos\read.me if the current directory is c:\, otherwise

c:\dos\read.me).

%x The full pathname of the directory containing the Epsilon executable.

%X The full pathname of the directory containing the Epsilon executable, after

converting all Windows long file names to their equivalent short name aliases.

By default, Epsilon renames the old file so it has extension “.bak”.

batch-auto-show-delim-chars Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Batch mode. Epsilon will search for and highlight the match of

each delimiter.

beep-duration Preference Default: 5

This variable specifies the duration of Epsilon’s warning beep, in hundredths of a second. If

zero, Epsilon uses a default beeping sound. Under Windows and Unix, setting the variable has

no effect.

260 Chapter 6. Variables

beep-frequency Preference Default: 370

This variable specifies the frequency of Epsilon’s warning beep in hertz. If zero, Epsilon instead

flashes the mode line of each window for a moment. Under Windows, setting the variable has

no effect. Under Unix, Epsilon will flash if the variable is zero, but won’t change the frequency.

bell-on-abort Preference Default: 0

If nonzero, Epsilon will beep when you abort a command or press an unbound key.

bell-on-autosave-error Preference Default: 1

If nonzero, Epsilon will beep when it can’t autosave a file.

bell-on-bad-key Preference Default: 1

If nonzero, Epsilon will beep when you press an illegal option at a prompt.

bell-on-completion Preference Default: 1

If nonzero, Epsilon will beep when it’s completing on command names, file names, or similar

things, and it can’t find any matches.

bell-on-date-warning Preference Default: 1

If nonzero, Epsilon will beep when it puts up its warning that a file has been changed on disk.

bell-on-read-error Preference Default: 1

If nonzero, Epsilon will beep when it gets an error reading a file.

bell-on-search Preference Default: 1

If nonzero, Epsilon will beep when it can’t find the text you’re searching for.

bell-on-write-error Preference Default: 1

If nonzero, Epsilon will beep when it gets an error writing a file.

border-bottom Preference Default: 0

If nonzero, Epsilon puts a border on the bottom edges of tiled windows that touch the bottom of

the screen (or the echo area, if it’s at the bottom of the screen). If Epsilon is set to display a

mode line below each tiled window, it puts a border there too, regardless of this variable’s

setting. If you’ve run the toggle-borders command to suppress borders entirely, you must run

that command again to reenable the borders.

border-inside Preference Default: 1

If nonzero, Epsilon puts a vertical border between two side-by-side tiled windows. If you’ve run

the toggle-borders command to suppress borders entirely, you must run that command again to

reenable the borders.

261

border-left Preference Default: 0

If nonzero, Epsilon puts a border on the left edges of tiled windows that touch the left edge of

the screen. If you’ve run the toggle-borders command to suppress borders entirely, you must

run that command again to reenable the borders.

border-right Preference Default: 0

If nonzero, Epsilon puts a border on the right edges of tiled windows that touch the right edge

of the screen. If you’ve run the toggle-borders command to suppress borders entirely, you must

run that command again to reenable the borders.

border-top Preference Default: 0

If nonzero, Epsilon puts a border on the top edges of tiled windows that touch the top edge of

the screen. If nonzero, Epsilon puts a border on the top edges of tiled windows that touch the

top of the screen (or the echo area, if it’s at the top of the screen). If Epsilon is set to display a

mode line above each tiled window, it puts a border there too, regardless of this variable’s

setting. If you’ve run the toggle-borders command to suppress borders entirely, you must run

that command again to reenable the borders.

browser-file Preference Default: ""

The browse-symbol command retrieves its data from the browser database file named by this

variable. Use the select-browse-file command to set it.

browser-filter Preference Default: 127

The browse-set-filter command saves its filter setting in this variable.

browser-filter-usedby Preference Default: 127

The browse-set-usedby-filter command saves its filter setting in this variable.

browser-options Preference Default: 0x7fff

Bits in this variable controls various options for the #symbols# buffer. It’s constructed by the

browse-symbol command, and when following tags using a browser database file.

These bits apply only when a tagging command looks up a symbol, and Epsilon generates a

#symbols# buffer for it as a side effect:

The 0x1 bit lets Epsilon include actual source file lines in the #symbols# buffer. If off, the

buffer will just show their file names and line numbers.

The 0x2 bit includes references to the symbol, not just definitions, when it lists source file lines.

That is, it includes the section labeled “is used at”.

The 0x4 bit includes the section that lists other symbols the current symbol uses (the “uses”

section).

The 0x8 bit includes the section that lists those symbols that use the current symbol (the “used

by” section).

These similar bits apply when you use the browse-symbol command, or keys like 〈Enter〉 or L

in the #symbols# buffer:

262 Chapter 6. Variables

The 0x10 bit lets Epsilon include actual source file lines in the #symbols# buffer. If off, the

buffer will just show their file names and line numbers.

The 0x20 bit includes references to the symbol, not just definitions, when it lists source file

lines. That is, it includes the section labeled “is used at”.

The 0x40 bit includes the section that lists other symbols the current symbol uses (the “uses”

section).

The 0x80 bit includes the section that lists those symbols that use the current symbol (the “used

by” section).

Finally, the 0x100 bit applies no matter how the #symbols# buffer is built. It lets Epsilon

adjust the source line number recorded in the browser database by examining the original

source code file. Sometimes the line number recorded in the browser database is off by a line or

two, and this option corrects for that.

buf-accessed System Buffer-specific Default: none

Epsilon uses this variable to remember which buffer was accessed most recently. Older buffers

have lower values. Each time you switch to a new buffer, Epsilon increments

buf-accessed-clock and stores it as the new buffer’s setting for buf-accessed.

buf-accessed-clock System Default: none

Epsilon uses this variable to remember which buffer was accessed most recently. See

buf-accessed.

bufed-column-width Preference Default: 18

The bufed display leaves this much space for each buffer’s name.

bufed-grouping Preference Default: 0

Epsilon can subdivide the list of buffers displayed by the bufed command, and sort each group

separately. First it lists buffers with associated files, as well as buffers created by the new-file

command. Then it lists buffers without files, typically dired buffers and other special-purpose

buffers. Finally (and only if you invoked bufed with a numeric argument), Epsilon lists

“system” buffers. The 1 bit in this variable tells Epsilon to separately sort each of these groups

according to the current bufed sorting rules, and present the groups in the order shown.

Otherwise, Epsilon sorts all groups together, according to the current bufed sorting rules. The 2

bit in this variable, toggled by bufed’s m subcommand, puts modified buffers at the top of the

list.

bufed-show-absolute-path Preference Default: 0

Set this variable to 1 if you want the bufed window to display the absolute pathname of each

file. A setting of 0 makes Epsilon display a relative path. Under Windows, a setting of 2 makes

Epsilon display the 8.3 form of the file name.

The value 3 makes Epsilon always display the base name of the file first, then the directory

portion inside square brackets.

The value 4 combines options 0 and 3. For files that can be shown with a relative path (those

within the current directory set by the cd command, or its subdirectories), bufed shows a relative

pathname, followed by the name of the current directory inside square brackets. For other files,

bufed shows the full path.

263

bufed-width Preference Default: 50

This variable contains the width of the pop-up window that the bufed command creates.

(Epsilon for Windows doesn’t use this variable; instead drag a dialog’s border to resize it.)

buffer-color-scheme System Buffer-specific Default: 0

If the buffer-specific variable buffer_color_scheme is non-zero in a buffer, Epsilon uses its

value in place of the selected_color_scheme variable when displaying that buffer. It takes

precedence over the similar window_color_scheme variable.

buffer-not-saveable System Buffer-specific Default: 0

Some buffers may have an associated file name but should never be automatically saved to that

file name or counted as an unsaved file. This variable is set nonzero in such buffers. Also see

the force-save-as variable.

bufname System Default: "startup"

This variable contains the name of the current buffer. Setting it in an EEL program switches to a

different buffer. If the indicated buffer does not exist, nothing happens. Use this method of

switching buffers only to temporarily switch to a new buffer; use the to_buffer() or

to_buffer_num() subroutines to change the buffer a window will display.

EEL code must use assignment, not strcpy() or similar, to set it: bufname = "name". It’s

not necessary to preserve the source character array; Epsilon will copy the value.

bufnum System Default: none

This variable contains the number of the current buffer. Setting it in an EEL program switches

to a different buffer. If the indicated buffer does not exist, nothing happens. Use this method of

switching buffers only to temporarily switch to a new buffer; use the to_buffer() or

to_buffer_num() subroutines to change the buffer a window will display.

build-first Window-specific Default: 0

Epsilon normally displays each window line by line, omitting lines that have not changed.

When a command has moved point out of the window, Epsilon must reposition the display point

(the buffer position at which to start displaying text) to return point to the window. However,

Epsilon sometimes does not know that repositioning is required until it has displayed the entire

window. When it discovers that point is not in the window, Epsilon moves the display point to a

new position and immediately displays the window again. Certain commands which would

often cause this annoying behavior set the build-first variable nonzero to prevent it.

byte-extension Default: ".b"

This variable holds the correct extension of bytecode files in this version of Epsilon.

c-access-spec-offset Preference Default: 0

In C mode, Epsilon offsets the indentation of an access specifier (public:, private:, or

protected:) by the value of this variable.

264 Chapter 6. Variables

c-align-break-with-case Preference Default: 0

If this variable is nonzero, C mode aligns each break statement the same as the previous case

statement.

c-align-contin-lines Preference Default: 48

By default, the C indenter tries to align continuation lines under parentheses and other syntactic

items on prior lines. If Epsilon can’t find anything on prior lines to align with, or if aligning the

continuation line would make it start past column c-align-contin-lines, Epsilon uses a

fixed indentation: two levels more than the original line, plus the value of the variable

c-contin-offset (normally zero).

Set this variable to zero if you don’t want Epsilon to ever try to align continuation lines under

syntactic features in previous lines. If zero, Epsilon indents continuation lines by one level

(normally one tab stop), plus the value of the variable c-contin-offset (which may be

negative).

c-align-contin-max-offset Preference Default: 0

Set this variable nonzero if you want Epsilon to reduce a continuation line’s indentation based

on the total width of that line. Set it to -1 to use the current window’s width, or a positive value

to limit line width to that many columns. (Compare c-align-contin-lines, which reduces a

continuation line’s indentation based on a maximum indentation width, not the total width of a

line.)

When a continuation line is wider than the specified number of columns, Epsilon uses the value

in the c-align-contin-max-offset variable to determine its indentation.

c-align-contin-max-width Preference Default: 0

When a continuation line is longer than the limit set by the c-align-contin-max-offset

variable, C mode uses this variable to choose a new indentation for the long line.

If greater than zero, Epsilon indents by that amount past the base line (similar to how

c-contin-offset works). If zero, Epsilon right-aligns the wide line to the column specified

by the c-align-contin-max-width variable. If negative, it right-aligns but with that amount

of extra space.

c-align-extra-space Preference Default: 2

When C mode indents a continuation line, it tries to line up text under previous syntactic

constructs. For instance, it may position text just after a (character on the previous line.

Sometimes (commonly with continued if statements) this causes the continuation line to be

indented to the same column as following lines. If Epsilon thinks this will happen, it adds the

additional indentation specified by this variable to the continuation line.

c-align-inherit Preference Default: 4

When Epsilon indents a continued declaration line that uses C++ inheritance syntax, it indents

this much more than the original line.

265

c-align-open-paren Preference Default: 0

This variable controls the way Epsilon indents lines that contain only a (left parenthesis

character. If nonzero, Epsilon aligns it with the start of the current statement. If zero, it uses

extra indentation like other types of continuation lines.

c-align-selectors Preference Default: 48

When Epsilon indents a multi-line Objective-C message expression or definition using selectors

(argument labels), it right-aligns the selector on each line with the first selector, as long as they

don’t go past the column specified by this variable. If they do, or if this variable is zero, it

doesn’t try to align selectors in this manner.

c-auto-fill-mode Preference Default: 1

Epsilon can break long C/C++/Java/EEL comments as you type them, using a variation of

auto-fill mode. Set this variable to 0 to disable this feature. Set it to 2 to let Epsilon break all

comments. The default value of 1 tells Epsilon not to break comments that follow non-comment

text on the same line, but permit Epsilon to break comments on other lines.

c-auto-show-delim-chars Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in C mode. Epsilon will search for and highlight the match of each

delimiter.

c-biggest-declarator Preference Default: 20000

When C mode displays the name of the current function in the mode line, it assumes the count

of characters between the function name and the opening brace character that starts its

definition is no greater than this value.

c-block-macro-close-pat Preference Default: (omitted)

When permitted by the use-c-macro-rules variable, Epsilon treats a macro matching this

pattern like a close brace character, decreasing the indent level on the following lines.

c-block-macro-inner-pat Preference Default: (omitted)

When permitted by the use-c-macro-rules variable, Epsilon treats a macro matching this

pattern as if it were a normal statement ending in a semicolon, even if the line doesn’t end in

one.

c-block-macro-open-pat Preference Default: (omitted)

When permitted by the use-c-macro-rules variable, Epsilon treats a macro matching this

pattern like an open brace character, increasing the indent level on the following lines.

c-brace-offset Preference Default: 0

In C mode, Epsilon offsets the indentation of a left brace on its own line by the value of this

variable. The closeback variable also helps to control this placement.

266 Chapter 6. Variables

c-case-offset Preference Default: 0

In C mode, Epsilon offsets the indentation of a case statement by the value of this variable.

c-contin-offset Preference Default: 0

In C mode, Epsilon offsets its usual indentation of continuation lines by the value of this

variable. The variable only affects lines that Epsilon can’t line up under the text of previous

lines.

c-delete-trailing-spaces Preference Default: 0

If this variable is nonzero, Epsilon will delete any spaces or tabs at the end of each line just

before saving a C mode file.

c-extra-keywords System Buffer-specific Default: 3

C mode automatically sets the buffer-specific c-extra-keywords variable based on file name

extensions, to indicate which identifiers are considered keywords in the current buffer. The

value 1 tells Epsilon to recognize C++ keywords when code coloring. The value 2 tells Epsilon

to recognize EEL keywords. The values 4 and 8 indicate Java and IDL keywords, respectively.

Epsilon always recognizes those keywords common to C, C++, Java, and EEL.

c-fill-column Preference Default: 72

This variable sets the default fill column for filling comments in C/C++/Java buffers. If positive,

Epsilon uses it to initialize the fill column whenever a buffer enters C mode. (Otherwise Epsilon

uses the default value of the margin-right variable.)

c-indent Preference Buffer-specific Default: 0

C mode indents each additional level of nesting by this many columns. If the variable is less

than or equal to zero, Epsilon uses the value of tab-size instead. Set this variable if you want

Epsilon to use one number for displaying tab characters, and a different number for indenting C

code. (Epsilon will indent using a combination of spaces and tabs, as necessary.)

c-indent-after-extern-c Preference Default: 0

If zero, a block that starts with extern "C" receives no additional indentation.

c-indent-after-namespace Preference Default: 0

If zero, a block that starts with a namespace declaration receives no additional indentation.

c-label-indent Preference Default: 0

This variable provides the indentation of lines starting with labels in C mode. Normally,

Epsilon moves labels to the left margin.

267

c-look-back Preference Default: 100000

When C mode tries to determine the correct indentation of a line, it looks back in the buffer at

previous lines. To prevent long delays, Epsilon gives up if it finds itself looking back more than

this many characters, and uses its best indentation guess so far.

c-mode-mouse-to-tag Preference Default: 1

If this variable is nonzero, double-clicking the right mouse button on a function or variable

name in a C mode buffer makes Epsilon jump to that item’s definition. Epsilon uses the

pluck-tag command to do this. (In Epsilon for Windows, use the right mouse button’s context

menu to jump to a definition.)

c-param-decl Preference Default: 0

Epsilon indents pre-ANSI K&R-style parameter declarations by the number of characters

specified by this variable.

c-reindent-previous-line Preference Default: 1

This variable controls whether Epsilon reindents the previous line when you press 〈Enter〉 in C

mode.

c-spell-options Preference Default: 0

This variable controls the Spell minor mode in C mode. Use the spell-mode command to set it

to 1, and Epsilon will highlight misspelled words in C strings and comments. See the

default-spell-options variable for the other bits you can set to customize spell checking in

C mode.

c-tab-always-indents Preference Default: 0

By default, if you press 〈Tab〉 when point is not in the current line’s indentation, C mode inserts

a tab character instead of recomputing the current line’s indentation. If this variable is nonzero,

the 〈Tab〉 key will reindent the current line, regardless of your position on the line. If you press

the key again, it will insert an additional tab.

c-tab-override Preference Default: -1

If you want the width of a tab character in C mode buffers to be different than in other buffers,

set this variable to the desired value. C mode will change the buffer’s tab size to the specified

number of columns. Setting this variable doesn’t change existing buffers; set the tab-size

variable for that.

c-tagging-class System Default: ""

Epsilon uses this variable while tagging C++/Java files to record the name of the current class.

c-top-braces Preference Default: 0

Epsilon indents the braces of the top-level block of a function by the number of characters

specified by this variable. By default, Epsilon puts such braces at the left margin.

268 Chapter 6. Variables

c-top-contin Preference Default: 3

Epsilon indents continuation lines outside of any function body by the number of characters

specified by this variable, whenever it cannot find any text on previous lines to align the

continuation line beneath.

c-top-struct Preference Default: 8

When the definition of a top-level structure, union, or class appears over several lines, Epsilon

indents the later lines by the number of characters specified in this variable, rather than the

value of c-top-contin.

c-top-template Preference Default: 0

Successive lines of a definition that uses a C++ template will be indented to the column

specified by this variable, when no other indenting rules apply.

call-on-modify Buffer-specific Default: 0

If the buffer-specific call-on-modify variable has a nonzero value in a particular buffer,

whenever any primitive tries to modify that buffer, Epsilon calls the EEL subroutine

on_modify() first.

can-get-process-directory Default: varies

Epsilon sets this variable nonzero to indicate that it is able to retrieve current directory

information from the concurrent process. Unix versions of Epsilon will set this variable nonzero

only after the process has started and its first prompt has appeared.

capture-output Preference Default: 0

If nonzero, Epsilon makes a transcript of console input and output when it runs another program

via the push command. Epsilon puts the transcript in a buffer named “process”.

case-fold Preference Buffer-specific Default: 1

If nonzero, Epsilon considers upper case and lower case the same when searching, so a search

string of “Word” would match “word” and “WORD” as well. This variable sets the default for a

search in each buffer, but when searching you can change case-folding status for that particular

search by pressing Ctrl-C.

catch-mouse Preference Default: varies

If nonzero, Epsilon queues up mouse events. If zero, Epsilon ignores the mouse. Right now

only the Win32 Console version of Epsilon pays attention to this variable. See the mouse-mask

variable to disable mouse support in other versions.

coldfusion-empty-elements Default: "|abort|applet|...(omitted)|"

HTML mode treats ColdFusion elements named in this list as never using an end tag; thus, they

will not begin a region with additional indentation. The “cf” beginning each ColdFusion

element name is omitted in this list, so if the list contains “abort”, Epsilon will assume that a

start tag named “cfabort” doesn’t have an end tag. Each name must be surrounded by ‘|’

characters.

269

conf-auto-show-delim-chars Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Conf file mode. Epsilon will search for and highlight the match

of each delimiter.

clear-process-buffer Preference Default: 0x20

If 1, the commands push, start-process, compile-buffer, and make will each begin by emptying

the process buffer. If 0, the commands append to whatever text is already in the process buffer.

Other bit values instruct individual commands to empty the process buffer: 0x2 affects push,

0x4 affects start-process, 0x8 affects compile-buffer, and 0x10 affects make, while 0x1

overrides these and forces all these commands to clear. You can add these bit values together.

If Epsilon isn’t set to use the buffer “process” for one of these commands, then that command

will ignore this variable. (For instance, compile-in-separate-buffer normally tells

Epsilon to use a separate buffer for compilations; this variable won’t affect that.)

The 0x20 bit makes Epsilon clear ssh buffers when it reuses them.

clipboard-access Preference Default: 1

If this variable is non-zero, all commands that put text on the kill ring will also try to copy the

text to the MS-Windows or X11 clipboard. Similarly, the yank command will retrieve any new

text from the clipboard before retrieving text from Epsilon’s kill ring if this variable is nonzero.

If you’re running Epsilon for Unix as a console program, Epsilon ignores the clipboard, just as

if this variable were zero.

During a keyboard macro Epsilon also ignores the clipboard contents. Use the insert-clipboard

or copy-to-clipboard commands if you want to access the clipboard from a keyboard macro. Or

set clipboard-access to 2, forcing Epsilon to use the clipboard even in a keyboard macro.

clipboard-convert-mac-lines Preference Default: 2

When Epsilon inserts text from the clipboard into a buffer not in binary mode, it can replace all

Return characters (the traditional Mac line-ending character) with Newline characters

(Epsilon’s line-ending character). Set this variable to 0 to force this behavior off or 1 to force it

on. The default setting 2 enables it only on Mac OS X systems.

clipboard-convert-unicode Preference Default: 3

Bits in this variable control whether Epsilon converts text when accessing the clipboard. When

the 1 bit is set, yanking text from the clipboard converts certain Unicode characters with codes

outside the 0–255 range to corresponding characters that have codes within that range. For

instance, Unicode EM SPACE U+2003 becomes a space character, and Unicode HYPHEN

U+2011 becomes a - character. The 2 bit enables the opposite conversion when putting text

onto the clipboard, but only for characters in the range 128–159, as some programs don’t

display characters in this range. Epsilon skips such conversions when yanking and pasting from

Unicode buffers (typically, those that already contain characters outside the 0–255 range).

270 Chapter 6. Variables

clipboard-format Preference Default: 0

By default, when the Win32 Console version of Epsilon puts characters on the MS-Windows

clipboard and it can’t put them there in Unicode format, it lets Windows translate the characters

from the DOS/OEM character set to Windows ANSI. Epsilon needs to do this so that national

characters display correctly. When Epsilon retrieves characters from the clipboard, it has

Windows perform the reverse translation.

But each character set contains some characters that the other does not, so that copying

characters in one direction and then back can change the characters. Instead, you can tell

Epsilon to copy characters without translating them. Then copying back and forth will never

change the characters, but Epsilon for DOS and Windows won’t display the same symbols for

any character except the original ASCII printable characters (32 to 127).

Setting this variable to 7 makes Epsilon tell Windows that all text in Epsilon is in the OEM

character set, and Windows must translate between DOS/OEM and Windows ANSI. Setting the

variable to 1 makes Epsilon tell Windows that all text in Epsilon uses the Windows ANSI

character set, so no translating is necessary. The default value of zero makes Epsilon translate

only when appropriate. (Epsilon uses the value of this variable as the “clipboard format” to ask

Windows for; you can see the raw clipboard data Windows uses by setting the variable to other

values, if you like.)

Epsilon for Unix uses this variable to decide which of two X11 system clipboards it should use.

A zero value makes Epsilon use the “clipboard selection” used by newer software, a value of

one makes it use the “primary selection”.

closeback Preference Default: 1

If nonzero, C mode aligns a right brace character that ends a block with the line containing the

matching left brace character. If zero, C mode aligns the right brace character with the first

statement inside the block. Additionally, the value 2 makes Epsilon indent lines starting with a

right parenthesis so they match the start of the line with its matching left parenthesis, not the

left parenthesis itself.

cmd-len Default: 0

This variable counts the number of keys in the current command. Epsilon resets it to zero each

time it goes through the main loop. It doesn’t count mouse keys or other events that appear as

keys.

cmd-line-session-file System Default: none

If you use the -p flag to provide the name of a particular session file, Epsilon puts the name in

this variable.

color-html-look-back Preference Default: 50000

When Epsilon begins coloring HTML in the middle of a buffer, it has to determine whether it’s

inside a script by searching back. This can be slow in very large HTML files, so Epsilon limits

its search by assuming that a script can be no longer than this many characters.

271

color-look-back Preference Default: 0

When Epsilon begins coloring in the middle of a buffer, it has to determine whether it’s inside a

comment by searching back for comment characters. If color-look-back is greater than zero,

Epsilon only looks back over that many characters for a block comment delimiter like /* or */

before giving up and concluding that the original text is not inside a comment. If you edit

extremely large C files with few block comments, you can speed up Epsilon by setting this

variable. Any block comments larger than this value may not be colored correctly. A value of

zero (the default) lets Epsilon search as far as it needs to, and correctly colors comments of any

size.

color-names System Default: "|black|blue| ...|"

Epsilon recognizes various color names in command files. It stores the names in this variable.

color-whole-buffer Preference Default: 0

Normally Epsilon colors buffers as needed. You can set Epsilon to instead color the entire

buffer the first time it’s displayed. Set this variable to the size of the largest buffer you want

Epsilon to entirely color at once.

coloring-flags System Buffer-specific Default: 0

Epsilon’s syntax highlighting functions use this variable to record various types of status. Bits

in the variable are specified by macros in colcode.h.

Epsilon uses some bits independently of any particular language mode. COLOR_DO_COLORING

indicates that Epsilon should perform coloring. COLOR_IN_PROGRESS means Epsilon is in the

middle of coloring; Epsilon uses this bit to detect when a coloring function has aborted due to a

programming error; it then disables coloring for that buffer. COLOR_MINIMAL records whether

minimal coloring (an option in C/C++/Java mode) is in use for that buffer; Epsilon uses it to

notice when this setting has changed.

The remaining bits are set by individual language modes. COLOR_INVALIDATE_FORWARD

indicates that after the user modifies a buffer, any syntax highlighting information after the

modified region should be discarded. COLOR_INVALIDATE_BACKWARD indicates that syntax

highlighting information before the modified region should be discarded. (Without these bits,

Epsilon only discards syntax highlighting information that’s very close to the modified part of

the buffer.)

COLOR_INVALIDATE_RESETS tells Epsilon that whenever it invalidates syntax highlighting in a

region, it should also set the color of all text in that region to the default of -1.

COLOR_RETAIN_NARROWING indicates that coloring should respect any narrowing in effect

(instead of looking outside the narrowed area to parse the buffer in its entirety).

COLOR_IGNORE_INDENT says that a simple change of indentation shouldn’t cause any

recoloring. Languages with no column-related highlighting rules may set this for better

performance.

column-in-window Default: none

On each screen refresh, Epsilon sets this variable to the column of point within the current

window, counting from zero. If you switch windows or move point, Epsilon will not update this

variable until the next refresh.

272 Chapter 6. Variables

comment-begin Buffer-specific Default: "; "

When Epsilon creates a comment, it inserts the contents of the buffer-specific variables

comment-begin and comment-end around the new comment.

comment-column Buffer-specific Default: 40

Epsilon creates and indents comments so they begin at this column, if possible.

comment-end Buffer-specific Default: none

When Epsilon creates a comment, it inserts the contents of the buffer-specific variables

comment-begin and comment-end around the new comment.

comment-pattern Buffer-specific Default: ";.*$"

The comment commands look for comments using regular expression patterns contained in the

buffer-specific variables comment-pattern (which should match the whole comment) and

comment-start (which should match the sequence that begins a comment, like ‘/*’).

comment-repeat-indentation-lines Preference Default: 2

Modes that provide language-sensitive indenting, such as C mode (for C, C++, Java, and EEL)

and Perl mode, typically indent single-line comments (such as C++’s // comments) to the same

indentation level as code. Sometimes in the midst of a block of indented code, you may wish to

write a series of comment lines with some different indentation.

When Epsilon notices that the 2 previous lines are comment lines, its auto-indenter decides that

a blank line that follows should be indented like them, and not as if the line will contain code.

Set this variable to change the number of comment lines Epsilon checks for. Set it to zero to

make Epsilon always indent blank lines based on language syntax rules.

comment-start Buffer-specific Default: ";[\t]*"

The comment commands look for comments using regular expression patterns contained in the

buffer-specific variables comment-pattern (which should match the whole comment) and

comment-start (which should match the sequence that begins a comment, like ‘/*’).

common-open-curdir System Default: none

In Windows, Epsilon uses this variable to maintain the current directory used in the Common

File Dialog that appears when you use the File/Open, File/Save As, or similar menu or toolbar

commands.

EEL code must use assignment, not strcpy() or similar, to set it: common_open_curdir =

"name". It’s not necessary to preserve the source character array; Epsilon will copy the value.

273

common-open-use-directory Preference Default: 0

Bits in this variable modify how Epsilon for Windows treats the current directory when it uses a

common file dialog (as with the File/Open menu command and similar).

By default, the dialog starts in Epsilon’s current directory (which is used to display relative

pathnames, among other things, and is set with the cd command), the first time you display the

common dialog. It is then maintained separately. Navigating in the common file dialog doesn’t

change Epsilon’s current directory. And changing Epsilon’s current directory doesn’t change

the starting directory of the next common file dialog. Epsilon saves the common file dialog’s

directory from session to session.

Set the variable to 3 if you want this dialog to follow and modify Epsilon’s global current

directory, as set with the cd command. Set it to 1 if you want the dialog to start in Epsilon’s

current directory, but not to alter it. Set it to 2 if you want the dialog to maintain its own current

directory and set Epsilon’s current directory to match whenever you select a file.

Set it to 4 if you want the dialog to start in the current buffer’s associated directory, if it has one,

or the same directory as last time if not. Set it to 8 if want the dialog to start in the current

buffer’s associated directory if it has one, or Epsilon’s global current directory if not. With these

last two options, Epsilon’s global current directory won’t be modified by the dialog.

compare-to-prior-version-style Preference Default: 1

The compare-to-prior-version command uses this variable to determine what type of difference

listing to generate. A value of 0 produces a listing like that of the diff command. A value of 1

produces a listing like visual-diff. A value of 2 produces a listing like merge-diff.

compare-windows-ignores-space Preference Default: 2

This variable says whether the compare-windows command should consider any run of one or

more whitespace characters in one buffer to match a run of one or more whitespace characters

in the other. If 0, it doesn’t, and requires all characters to match. If 1, it merges runs of spaces,

tabs and newlines. If 2, it merges runs of spaces and tabs only. If 3, it completely ignores

differences of only spaces, tabs, and newlines, so abcdef matches abc def. If 4, it completely

ignores differences of only spaces and tabs, but not newlines.

compile-asm-cmd Preference Default: ml "%r"

Epsilon uses the command line contained in the compile-asm-cmd variable to compile

Assembly files; those files ending with a .asm extension. See compile-c-cmd for details on

this variable’s format.

compile-buffer-cmd Buffer-specific Default: none

The compile-buffer command retrieves the command to compile the current buffer from this

buffer-specific variable. For C, C++, and EEL files this variable normally just points to the

compile-c-cmd, compile-cpp-cmd, or compile-eel-cmd variables, respectively. To make

all files with one of the above extensions use a different compile command, set one of these

other variables. To make only the current buffer begin to use a different compile command, set

this variable.

See compile-c-cmd for details on this variable’s format.

274 Chapter 6. Variables

compile-c-cmd Preference Default: cl "%r"

Epsilon uses the command line contained in the compile-c-cmd variable to compile C files;

those files ending with a .c extension. (Epsilon for Unix uses the compile-c-cmd-unix

variable instead.)

The command line works as a file name template, so you can substitute parts of the file name

into the command line. The sequence %p substitutes the path part of the file name, the sequence

%b substitutes the base name (without path or extension), the sequence %e substitutes the

extension (including the “.”), the sequence %f substitutes the full name as an absolute pathname,

and the sequence %r substitutes a pathname relative to the current directory. The sequence %x

substitutes the full pathname of the directory containing the Epsilon executable. The sequence

%X substitutes the same pathname to the Epsilon executable, but converts all Windows long file

names to their equivalent short name aliases.

compile-c-cmd-unix Preference Default: cc "%r"

Epsilon for Unix uses the command line contained in this variable to compile C files; those that

end with a .c extension. See compile-c-cmd for details on this variable’s format, or for the

equivalent variable in non-Unix versions.

compile-cpp-cmd Preference Default: cl "%r"

Epsilon uses the command line contained in the compile-cpp-cmd variable to compile C++

files; those files ending with a .cpp or .cxx extension. See compile-c-cmd for details on this

variable’s format. (Epsilon for Unix uses the compile-cpp-cmd-unix variable instead.)

compile-cpp-cmd-unix Preference Default: cc "%r"

Epsilon for Unix uses the command line contained in this variable to compile C files; those that

end with a .cpp or .cxx extension. See compile-c-cmd for details on this variable’s format.

See compile-cpp-cmd for the equivalent variable in non-Unix versions.

compile-csharp-cmd Preference Default: csc "%r"

Epsilon uses the command line contained in the compile-csharp-cmd variable to compile C#

files; those files ending with a .cs extension. See compile-c-cmd for details on this variable’s

format.

compile-eel-cmd Preference Default: %Xeel "%r"

Epsilon uses the command line contained in the compile-eel-cmd variable to compile EEL

files; those files ending with a .e extension. After an EEL file has been successfully compiled,

Epsilon will automatically load it. Epsilon for Windows or Unix generally uses its built-in EEL

compiler instead of this variable; see compile-eel-dll-flags to set its flags. See

compile-c-cmd for details on this variable’s format.

compile-eel-dll-flags Preference Default: "-n -q"

When Epsilon compiles EEL code using its internal EEL compiler, it looks in this variable for

EEL command line flags.

275

compile-gams-cmd Preference Default: gams "%r"

Epsilon uses the command line contained in the compile-gams-cmd variable to compile

GAMS files; those files ending with a .gms extension (or others). See compile-c-cmd for

details on this variable’s format.

compile-html-cmd Preference Default:

The compile-buffer command uses the command line contained in the compile-html-cmd

variable to “compile” an HTML file. In the case of HTML files, this means to run a

user-specified command that could perform syntax-checking or some similar function. (To

display the file in a browser, use the command quick-dired-command by pressing Alt-o v.) See

compile-c-cmd for details on this variable’s format.

compile-idl-cmd Preference Default: midl "%r"

Epsilon uses the command line contained in the compile-idl-cmd variable to compile IDL

files; those files ending with an .idl or .acf extension. Epsilon normally edits such files using C

mode. See compile-c-cmd for details on this variable’s format.

compile-in-separate-buffer Preference Default: 1

In some environments, the compile-buffer and make commands can do their work in a separate

compilation buffer. This is the most reliable way for them to work. Set this variable to zero to

force them to share an existing process buffer.

By default, when Epsilon compiles in a separate buffer, it doesn’t display the buffer if the

compilation finishes without errors. Set this variable to 2 if you want Epsilon to display the

buffer as soon as the compilation starts.

compile-java-cmd Preference Default: javac "%r"

Epsilon uses the command line contained in the compile-java-cmd variable to compile Java

files; those files ending with a .java extension. See compile-c-cmd for details on this

variable’s format.

compile-latex-cmd Preference Default:

latex --interaction scrollmode "%r"

Epsilon uses the command line contained in the compile-latex-cmd variable to compile

LaTeX files; those files ending with a .ltx, .sty, or (in some cases) .cls extension. See

compile-c-cmd for details on this variable’s format.

compile-makefile-cmd Preference Default: nmake /f "%r"

The compile-buffer command uses the command line contained in the compile-makefile-cmd

variable to “compile” a makefile (those files ending with a .mak extension or named makefile).

In the case of makefiles, this means to run make on it. See compile-c-cmd for details on this

variable’s format. See compile-makefile-cmd-unix for the Unix equivalent.

276 Chapter 6. Variables

compile-makefile-cmd-unix Preference Default: make -f "%r"

The compile-buffer command uses the command line contained in the compile-makefile-cmd

variable to “compile” a makefile (those files ending with a .mak extension or named makefile)

under Unix. In the case of makefiles, this means to run make on it. See compile-c-cmd for

details on this variable’s format. See compile-makefile-cmd for the non-Unix equivalent.

compile-perl-cmd Preference Default: perl "%r"

The compile-buffer command uses the command line contained in the compile-perl-cmd

variable to “compile” a Perl file (those files ending with a .perl extension or others). In the case

of Perl files, this means to execute it. See compile-c-cmd for details on this variable’s format.

compile-php-cmd Preference Default: ""

The compile-buffer command uses the command line contained in the compile-php-cmd

variable to “compile” a PHP file. In the case of PHP files, this means to run a user-specified

command that could perform syntax-checking or some similar function. (To display the file in a

browser, use the command quick-dired-command by pressing Alt-o v.) See compile-c-cmd for

details on this variable’s format.

compile-python-cmd Preference Default: python "%r"

The compile-buffer command uses the command line contained in the compile-python-cmd

variable to “compile” a Python file (those files ending with a .py or .jy extension or others). In

the case of Python files, this means to execute it. See compile-c-cmd for details on this

variable’s format.

compile-tcl-cmd Preference Default: tclsh "%r"

Epsilon uses the command line contained in the compile-tcl-cmd variable to compile Tcl

files; those files ending with a .tcl or .ttml extension. See compile-c-cmd for details on this

variable’s format.

compile-tex-cmd Preference Default:

tex --interaction scrollmode "%r"

Epsilon uses the command line contained in the compile-tex-cmd variable to compile TeX

files; those files ending with a .tex extension. See compile-c-cmd for details on this variable’s

format.

compile-typescript-cmd Preference Default: tsc "%r"

Epsilon uses the command line contained in the compile-typescript-cmd variable to

compile TypeScript files, a variant of JavaScript that uses files ending with a .ts extension. See

compile-c-cmd for details on this variable’s format.

compile-vbasic-cmd Preference Default: vbc "%r"

Epsilon uses the command line contained in the compile-vbasic-cmd variable to compile

Visual Basic files. See compile-c-cmd for details on this variable’s format.

277

compile-vhdl-cmd Preference Default: vhdl "%r"

The compile-buffer command uses the command line contained in the compile-vhdl-cmd

variable to compile a VHDL file (those files ending with a .vhdl extension or others). See

compile-c-cmd for details on this variable’s format.

compile-xml-cmd Preference Default:

The compile-buffer command uses the command line contained in the compile-xml-cmd

variable to “compile” an XML file. In the case of XML files, this means to run a user-specified

command that could perform syntax-checking or some similar function. See compile-c-cmd

for details on this variable’s format.

completion-pops-up Preference Default: 1

If Epsilon cannot add any letters when you ask for completion on a file name or similar item, it

will pop up a list of items that match what you’ve typed so far. To disable automatic pop-ups on

completion, set the completion-pops-up variable to zero.

concurrent-compile Preference Buffer-specific Default: 3

The buffer-specific concurrent-compile variable controls how the compile-buffer command

behaves. If 0, compile-buffer always runs the compiler or other program non-concurrently,

exiting the concurrent process if it needs to. If 2, the compile-buffer command always runs the

compiler concurrently, creating a concurrent process if it needs to. If 1, the compile-buffer

command runs the compiler concurrently if a concurrent process is already running,

non-concurrently otherwise. If 3 (the default), compile-buffer uses the value of the

concurrent-make variable instead.

concurrent-make Preference Default: 1

The concurrent-make variable controls how the make command behaves. If 0, the make

command always runs the compiler or other program non-concurrently, exiting the concurrent

process if it needs to. If 2, the make command always runs the compiler concurrently, creating a

concurrent process if it needs to. If 1 (the default), the make command runs the compiler

concurrently if a concurrent process is already running, non-concurrently otherwise.

console-ansi-font Preference Default: 0

The Win32 Console version of Epsilon normally uses a font with a DOS/OEM character set. It

can only display characters from that character set, not arbitrary Unicode characters, even if the

underlying font contains them.

Under Windows NT/2000/XP and later Windows versions, you can set this variable nonzero to

make Epsilon display Unicode characters if they’re in the console’s font. This also makes

Epsilon for Win32 Console use Unicode rules for 8-bit character classifications (such as

whether a particular character number in the range 128–255 represents an uppercase letter)

instead of the rules for the character set of the current DOS/OEM code page, and modifies how

Epsilon uses the Windows clipboard.

278 Chapter 6. Variables

context-help-default-rule Preference Default:

"=http://www.google.com/search?q="

This variable defines the context help rule Epsilon uses when no mode-specific rule is available.

See page 96 for details on its format.

context-help-rule-asm-unix Preference Default: ""

This variable specifies the context help rule Epsilon uses in Asm mode under Unix. See page 96

for details on its format.

context-help-rule-asm-windows Preference Default:

"+context_help_windows_compilers"

This variable specifies the context help rule Epsilon uses in Asm mode under Windows. See

page 96 for details on its format.

context-help-rule-c-unix Preference Default: "+context_help_man"

This variable specifies the context help rule Epsilon uses in C mode under Unix. See page 96

for details on its format.

context-help-rule-c-windows Preference Default:

"+context_help_windows_compilers"

This variable specifies the context help rule Epsilon uses in C mode under Windows. See page

96 for details on its format.

context-help-rule-eel Preference Default: ">epsilon"

This variable specifies the context help rule Epsilon uses for EEL files. See page 96 for details

on its format.

context-help-rule-gams Preference Default: ""

This variable specifies the context help rule Epsilon uses in GAMS mode. See page 96 for

details on its format.

context-help-rule-html Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in HTML mode. See page 96 for

details on its format.

context-help-rule-java Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in Java mode. See page 96 for details

on its format.

context-help-rule-jscript Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in JavaScript mode. See page 96 for

details on its format.

279

context-help-rule-latex Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in LaTeX mode. See page 96 for

details on its format.

context-help-rule-perl Preference Default: "+context_help_perldoc"

This variable specifies the context help rule Epsilon uses in Perl mode. See page 96 for details

on its format.

context-help-rule-php Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in PHP mode. See page 96 for details

on its format.

context-help-rule-postscript Preference Default: ""

This variable specifies the context help rule Epsilon uses in PostScript mode. See page 96 for

details on its format.

context-help-rule-python Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in Python mode. See page 96 for

details on its format.

context-help-rule-shell Preference Default: "+context_help_man"

This variable specifies the context help rule Epsilon uses in Shell mode. See page 96 for details

on its format.

context-help-rule-tcl Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in Tcl mode. See page 96 for details

on its format.

context-help-rule-tex Preference Default: ""

This variable specifies the context help rule Epsilon uses in TeX mode. See page 96 for details

on its format.

context-help-rule-vbasic-unix Preference Default: ""

This variable specifies the context help rule Epsilon uses in Visual Basic mode under Unix. See

page 96 for details on its format.

context-help-rule-vbasic-windows Preference Default:

"+context_help_windows_compilers"

This variable specifies the context help rule Epsilon uses in Visual Basic mode under Windows.

See page 96 for details on its format.

280 Chapter 6. Variables

context-help-rule-vbscript Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in VBScript mode. See page 96 for

details on its format.

context-help-rule-vhdl Preference Default: (omitted)

This variable specifies the context help rule Epsilon uses in VHDL mode. See page 96 for

details on its format.

context-help-rule-xml Preference Default: None

This variable specifies the context help rule Epsilon uses in XML mode. See page 96 for details

on its format.

copy-include-file-name-batch Preference Default: "call %r"

In Batch mode (used for Windows .bat files and similar), the copy-include-file-name command

uses this variable to construct a line that will call the current file, when inserted into some other

batch file. The variable holds a file name template (see page 115) which is used to format the

current file’s name.

copy-include-file-name-latex Preference Default: "\RequirePackage{%b}"

In LaTeX mode, the copy-include-file-name command uses this variable to construct a line that

will input the current file, when inserted into some other LaTeX file. The variable holds a file

name template (see page 115) which is used to format the current file’s name.

copy-include-file-name-options Preference Default: 0

This file contains bits that alter the behavior of the copy-include-file-name command. Set the 1

bit to make the command always use the syntax #include "file" in C mode. By default, it

uses the syntax #include <file> for files it finds on the include path.

copy-include-file-name-perl Preference Default: "use %b;"

In Perl mode, the copy-include-file-name command uses this variable to construct a line that will

import the current file, when inserted into some other Perl file. The variable holds a file name

template (see page 115) which is used to format the current file’s name.

copy-include-file-name-shell Preference Default: "source %r"

In Shell mode, the copy-include-file-name command uses this variable to construct a line that

will call the current file, when inserted into some other shell script. The variable holds a file

name template (see page 115) which is used to format the current file’s name.

copy-include-file-name-tex Preference Default: "\input{%b}"

In TeX mode, the copy-include-file-name command uses this variable to construct a line that

will input the current file, when inserted into some other TeX file. The variable holds a file

name template (see page 115) which is used to format the current file’s name.

281

css-auto-show-delim-chars Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in CSS mode, or in CSS code embedded in an HTML file. Epsilon

will search for and highlight the match of each delimiter.

css-indent Preference Default: 8

CSS mode indents by this many columns for each additional level of nesting.

cursor-output-color System Buffer-specific Default: varies

Process buffer coloring uses this variable internally to interpret ANSI color escape sequences

and apply the color. It contains the color class number set by the most recent escape sequence.

cursor-blink-period Preference Default: 100

This variable controls the rate at which the text cursor blinks. It specifies the period of the

on/off cycle in hundredths of a second. It only applies when Epsilon runs as an X11 program in

Unix. Set this to -1 to disable blinking.

cursor-shape System Default: 98099

This variable holds the current cursor shape code. Epsilon copies values from

overwrite-cursor, normal-cursor, or one of the other cursor variables, as appropriate, into

this variable whenever you switch windows or buffers. Set those variables instead of this one.

Epsilon only uses this variable in console environments. See gui-cursor-shape for the

Windows or Unix equivalent.

cursor-to-column Window-specific Default: -1

The window-specific cursor-to-column variable lets you position the cursor in a part of a

window where there are no characters. It’s normally -1, and the cursor stays on the character

after point. If it’s non-negative in the current window, Epsilon puts the cursor at the specified

column in the window instead. Epsilon resets cursor-to-column to -1 whenever the buffer

changes, or point moves from where it was when you last set cursor-to-column. (Epsilon

only checks these conditions when it redisplays the window, so you can safely move point

temporarily.)

cygwin-filenames Preference Default: 0

This variable makes Epsilon for Windows recognize file names in the various formats used by

Cygwin programs that simulate a Unix-style environment under Windows, when they appear as

output in the process buffer and in certain other contexts. Bits in the variable enable Epsilon to

translate the different formats. Add the bits together to have Epsilon recognize multiple

formats. A setting of 0x60 works well.

In this version, it recognizes the file names when they appear in directory-change messages

produced by Gnu Make, or in prompts produced by a Unix-style shell that include the current

directory name (so long as they’re in the format “dirname>”), in certain file names generated in

the search-man-pages command, and on Epsilon’s command line. Add these bits together to

select the rules you want:

282 Chapter 6. Variables

The value 0x1 makes Epsilon recognize the format //c/windows/file (instead of

c:\windows\file). This format conflicts with the format for Windows network file names, so

servers with one-letter names won’t be accessible if you enable this feature. This older format is

considered obsolete.

The value 0x2 makes Epsilon recognize the format /cygdrive/c/windows/file (instead of

c:\windows\file).

The value 0x4 makes Epsilon recognize the format ~/file. Epsilon substitutes the value of the

HOME environment variable for the ~.

The value 0x8 makes Epsilon modify directory names appearing at a prompt that start with / by

prepending the value of the cygwin-root variable. Under Windows 95/98/ME, Epsilon

doesn’t get directory information from prompts, so it ignores this setting.

The value 0x10 is just like the above one for 8, but applies only when Epsilon is parsing Make

output messages like “Entering /usr/src/prog”.

The value 0x20 makes Epsilon invoke the cygpath program on any names not handled by any

of the above rules you’ve enabled. The 0x20 bit is ignored under Windows 95/98/ME.

The value 0x40 makes Epsilon use / instead of \ when 〈Tab〉 performs file name completions

in the process buffer. It doesn’t make completion use Cygwin’s other file name format rules,

such as using /cygdrive/d instead of d:.

cygwin-root Preference Default: ""

Epsilon for Windows can use this variable to help convert pathnames from Cygwin format. See

the cygwin-filenames variable for details.

date-format Preference Default: "%D-%t-%y %h:%N:%E %am"

When the insert-date command inserts the current time and date, or Epsilon displays a time and

date in certain other contexts, it formats the date using this variable. It can include any of the

following sequences, and Epsilon will substitute the indicated value for that sequence:

%i Epsilon substitutes the current hour in the range 0 to 23.

%h Epsilon substitutes the current hour in the range 1 to 12.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “a” before noon, “p” otherwise.

%d Epsilon substitutes the day of the month in the range 1 to 31.

%m Epsilon substitutes the month number in the range 1 to 12.

%f Epsilon substitutes the English month name like January or February.

%t Epsilon substitutes a 3-letter month abbreviation like Jan or Feb.

%y Epsilon substitutes the four digit year.

%Y Epsilon substitutes the two digit year.

%w Epsilon substitutes the name of the day of the week, such as Friday.

%s Epsilon substitutes the name of the day of the week, abbreviated to 3 characters, such as

Fri.

%% Epsilon substitutes a literal “%” character.

283

Using an uppercase letter instead of a lowercase letter for the sequences %i, %h, %n, %e, %d, or

%m makes Epsilon always use two digits instead of one. For instance, at 3:07 pm, %h%N produces

3:07, while %H%n produces 03:7.

Using an uppercase letter instead of a lowercase letter for the sequences %a, %f, %w, %s, or %t

makes Epsilon insert an uppercase version of the specified month, weekday, or AM/PM

indicator.

default-add-final-newline Preference Default: 0

If this variable is nonzero, Epsilon will ensure that each non-empty non-binary file it saves ends

with a newline character, by inserting one at the end of the buffer, if necessary, just before

saving a file. Before checking this variable, Epsilon looks for a mode-specific variable with a

name of the form c-add-final-newline and uses that instead. (Because of line translation,

the newline character inserted in the buffer could become a return/linefeed sequence or

something else when saved on disk. See set-line-translate for details.)

default-character-set Preference Default: 0

Set this variable to 2 if you want Epsilon for Windows to translate character sets by default, in

the manner of the find-oem-file command. Set it to any other value to disable this behavior.

default-color-spell-word-pattern Preference Default: (omitted)

The Spell minor mode uses this regular expression pattern to find misspelled words in those

modes that use syntax highlighting and have no spell word pattern of their own. It finds words

based on their syntax highlighting, looking for those using a color class name that ends in

-text, -comment, or -string. Also see default-spell-word-pattern.

default-delete-trailing-spaces Preference Default: 0

If this variable is nonzero, Epsilon will delete any spaces or tabs at the end of each line just

before saving a file (except for binary files). Before checking this variable, Epsilon looks for a

mode-specific variable like c-delete-trailing-spaces.

default-read-encoding Preference Default: ""

When Epsilon reads a file, no particular encoding was selected for it, and auto-detecting (see the

detect-encodings variable) doesn’t select an encoding, it uses the encoding named by this

variable. If the variable doesn’t contain the name of a known encoding, Epsilon uses the Raw

encoding.

default-reindent-previous-line Preference Default: 0

This variable controls whether Epsilon reindents the previous line when you press 〈Enter〉, in

language modes that include automatic indentation. Before checking this variable, Epsilon

looks for a mode-specific variable like c-reindent-previous-line or

vbasic-reindent-previous-line.

284 Chapter 6. Variables

default-spell-options Preference Default: 0

This variable controls the Spell minor mode in those modes that don’t have a dedicated variable

for spelling.

Epsilon puts -spell-options after the major mode’s name and looks for a variable by that

name. If none, it uses this variable to see if it should highlight misspelled words. Use the

spell-mode command to set it to 1, and Epsilon will highlight misspelled words in all such

modes.

All -spell-options variables contain these bits, which you can set to customize how spell

checking works:

Bit Meaning

0x1 Highlight misspelled words.

0x2 Skip words containing an underscore.

0x4 Skip MixedCaseWords (those with internal capitalization).

0x8 Skip uppercase words (those with no lowercase letters).

0x10 Skip words following a digit, like 14th.

0x20 Skip words before a digit, like gr8.

0x200 Don’t remove 's when checking words.

0x1000 Provide faster but less accurate built-in suggestions.

0x2000 Don’t copy the case of the original in built-in suggestions.

0x4000 Add globally ignored words to spell helper’s list.

When the spell-helper-program variable is nonempty so that Epsilon gets its suggestions

by running an external program, it ignores the 0x10 and 0x20 bits.

default-spell-word-pattern Preference Default: (omitted)

The Spell minor mode uses this regular expression pattern to find misspelled words in those

modes that don’t use standard syntax highlighting and have no spell word pattern of their own.

It doesn’t exclude any words based on syntax rules. Also see the

default-color-spell-word-pattern variable.

default-state-file-name System Default: epsilon-v13.sta

Epsilon sets this variable to the name of the state file it will look for when it starts. This name

contains Epsilon’s major version number, so customized state files for different versions of

Epsilon can share the same customization directory.

default-translation-type Preference Default: 5

When you read an existing file, Epsilon consults this variable to determine what kind of line

translation to perform. If 5 (FILETYPE_AUTO), Epsilon examines the file’s contents and selects

one of the following translations, setting the buffer’s translation-type variable to the

selected translation. If this variable is set to any other value, Epsilon uses the specified

translation without examining the contents of the file.

A value of 0 (FILETYPE_BINARY) makes Epsilon do no line translation, 1 (FILETYPE_MSDOS)

makes Epsilon strip 〈Return〉 characters when reading and insert them when writing, 2

(FILETYPE_UNIX) makes Epsilon do no line translation, but indicates that the file contains text,

285

3 (FILETYPE_MAC) makes Epsilon replace 〈Return〉 characters with 〈Newline〉 characters when

reading, and replace 〈Newline〉 characters with 〈Return〉 characters when writing.

For remote files (those that use URL syntax), Epsilon uses the

force-remote-translation-type variable instead. Also see

new-buffer-translation-type to change the translation rules for newly-created files and

buffers.

default-word Preference Default: "<word>+"

The word commands use a regular expression to define the current notion of a word. While a

mode can provide its own regular expression for words, most modes use the regular expression

found in this variable in versions of Epsilon for Windows and Unix.

default-write-encoding Preference Default: "UTF-8-No-BOM"

When Epsilon saves a buffer that has some 16-bit Unicode characters, but no encoding is set for

the buffer, it normally prompts for the encoding to use. If it must save a file in a context where

prompting wouldn’t be appropriate (auto-saving, for example), it falls back to this encoding.

delete-hacking-tabs Preference Buffer-specific Default: 0

If 1, when 〈Backspace〉 deletes a tab, it first turns the tab into the number of spaces necessary to

keep the cursor in the same column, then deletes one of the spaces. If 2, when 〈Backspace〉
deletes a space, it deletes additional spaces and tabs until it reaches the previous tab column (set

by soft-tab-size or tab-size). The first setting makes 〈Backspace〉 treat tabs more like

spaces; the second makes it treats spaces more like tabs.

You can add these bit settings to get both behaviors. Other bits restrict when deleting a space

deletes additional spacing to reach a tab column. The bit 4 does this only within a line’s

indentation (in the run of whitespace at the start of a line).

The 8 bit deletes multiple spaces only when the deletion starts in a tab column. So if tabs are

every 4 columns and a line has 10 spaces, pressing 〈Backspace〉 three times starting in column

10 will delete one space, one space, then four spaces.

The 0x10 bit deletes multiple spaces only when in the middle of spacing; there must be spaces

or tabs both before and after point.

The 〈Backspace〉 key (or to be precise, the backward-delete-character command it runs by

default) never deletes multiple spaces due to delete-hacking-tabs when given a numeric

prefix argument.

Before backward-delete-character checks this variable, it looks for a mode-specific one, a

variable whose name consists of the current mode name followed by

-backward-delete-character. If found, it uses that variable’s value instead.

delete-options Preference Default: 0

Bits in this variable controls optional behavior in deleting and killing commands. Normally, if a

command that deletes single characters, like the one on 〈Backspace〉 or 〈Del〉, follows a

command that puts text on the kill ring, the additional characters will be added to the kill ring.

The 1 bit prevents that; the characters will simply be deleted. With a numeric argument, these

commands delete many characters at once; in that case they always put their text on the kill ring.

286 Chapter 6. Variables

detect-encodings Preference Default: 127

Bits in this variable control which Unicode encodings Epsilon tries to auto-detect when it reads

a file (when a file doesn’t start with a byte order mark that specifies a particular encoding).

A value of 1 makes Epsilon autodetect most valid UTF-8 files. A value of 2 or 4 makes Epsilon

autodetect some UTF-16LE and UTF-16BE files, respectively.

A value of 8 makes Epsilon scan the file’s first line (treating it as plain ASCII) for a file variable

named “coding” that specifies the correct encoding. It then interprets the entire file using the

specified encoding. The coding value specified must match a known encoding name or alias, or

it will be ignored.

By default, Epsilon tries to autodetect all of these.

diff-match-characters Preference Default: 5

When the visual-diff command highlights runs of modified characters within each group of

modified lines, it ignores short runs of matching characters. This variable specifies the size of

the smallest run of matching characters it will recognize.

diff-match-characters-limit Preference Default: 50000

The visual-diff command highlights runs of modified characters within each group of modified

lines. To avoid long delays, it does this only if both runs of modified lines are smaller than this

size in characters. If either run contains this many characters or more, visual-diff presents that

group of lines without character-based highlighting. Set this variable to zero to entirely disable

visual diff’s highlighting based on individual characters; highlighting will then always be

line-based.

diff-match-lines Preference Default: 1

When resynchronizing, diff believes it has found another match when diff-match-lines lines

in a row match.

diff-mismatch-lines Preference Default: 500

When resynchronizing, diff gives up if it cannot find a match within diff-mismatch-lines

lines.

diff-precise-limit Preference Default: 4,000,000

The diff command normally uses an algorithm that finds the minimum set of differences

between the lines of two buffers. But this algorithm becomes slow on very large buffers. So if

both buffers are larger (in bytes) than this setting, Epsilon uses a different algorithm that doesn’t

always find the absolute minimum set of differences (and may give up if the buffers are too

different, according to diff-mismatch-lines), but is much faster.

directory-flags Default: 0

When you specify the -w flag on the command line, Epsilon puts its numeric parameter in this

variable.

287

dired-24-hour-time Preference Default: 2

Set this variable to 1 if you want the dired command in non-Unix versions of Epsilon to display

times in 24-hour format. Set it to 0 if you want 12-hour format with AM and PM indicators.

The value 2 makes Epsilon for Windows use the system’s setting for this.

dired-buffer-pattern System Buffer-specific Default: none

When dired wants to rebuild the file list in the current dired buffer, it looks in this variable for

the directory name or file pattern to use. If this variable is null, it uses the name of the dired

buffer as the pattern.

dired-confirmation Preference Default: 127

Bits in this variable control when dired’s subcommands issue an additional prompt for

confirmation. The 1 bit makes dired prompt before deleting a read-only file. The 2 bit makes

dired warn before a copy operation overwrites a local file, and the 4 bit does the same for

renaming operations. The 8 bit makes dired prompt before deleting a directory hierarchy.

dired-format System Buffer-specific Default: 0

Running dired on a remote directory of files uses this variable to record the format of the

directory listing. The variable is zero for local directories in Epsilon’s standard format.

dired-groups-dirs System Default: 1

The dired-sort command uses the dired-groups-dirs variable to record whether or not to

group subdirectories. If nonzero, all subdirectories appear in a dired listing before any of the

files in that directory. If zero, the subdirectories are sorted in with the files, except for the . and

.. subdirectories, which always appear first regardless of this setting. Use the S key in a dired

buffer to set this variable.

dired-layout Preference Default: 1

Bits in this variable control which file attributes Epsilon for Windows displays in its directory

listings, as follows: 0x1: Read-only, 0x2: Hidden, 0x4: System, 0x8: Archive. Add the values

together to include columns for multiple attributes. A value of 0xf displays all attributes. The

0x10 bit makes Epsilon use the format 2005-12-31 for file dates instead of the usual one.

dired-live-link-limit Preference Default: 5,000,000

Dired’s live link feature shows the contents of files in a separate window as you move about in

the dired buffer. To prevent long delays, it skips automatically showing files bigger than this

many bytes.

dired-show-dotfiles Preference Default: 3

The dired command can hide files and directories whose names start with a period character.

The - subcommand toggles whether such items are hidden at all, while bits in this variable

select which items will still be shown even when hiding is enabled. The bit 1 means the . entry

for a directory will always be shown, and the bit 2 means the .. entry will always be shown.

The 4 bit means all other directory names will be shown, even if their names start with a period.

The 8 bit means non-directories (including ordinary files) will be shown, even if their names

start with a period.

For ftp:// files, see the ftp-compatible-dirs variable. For scp:// files, note that certain sftp

servers may not display hidden files under any circumstances.

288 Chapter 6. Variables

dired-sorts-files System Default: 'n'

The dired-sort command uses the dired-sorts-files variable to record how to sort dired

buffers. It contains a letter code to indicate the type of sorting: N, E, S, or D to sort by file

name, file extension, size, or time and date of modification, respectively, or the value 0 to leave

the listing unsorted. An upper case letter code indicates a descending (reverse) sort, a lower case

letter code indicates the normal ascending sort. Set this variable using dired’s S subcommand.

discardable-buffer Buffer-specific Default: 0

Epsilon warns you before exiting if any “valuable” unsaved buffers exist. It considers a buffer

valuable if it has a file name associated with it and contains at least one character. An EEL

program can set this buffer-specific variable to a nonzero value to indicate that the current

buffer doesn’t require any such warning.

display-c-options Preference Default: 1

When Epsilon displays the current function’s name on the mode line, it normally includes any

class and namespace for the function. Set this variable to zero to omit any namespace name if

there’s a class.

display-column Preference Window-specific Default: 0

This variable determines how Epsilon displays long lines. If negative, Epsilon displays buffer

lines too big to fit on one screen line on multiple screen lines, with a special character to

indicate that the line has been wrapped. If display-column is 0 or positive, Epsilon only

displays the part of a line that fits on the screen. Epsilon also skips over the initial

display-column columns of each line when displayed. Horizontal scrolling works by

adjusting the display column.

display-definition Preference Default: 1

In C/C++/Java/Perl buffers, among others, Epsilon can display the name of the current function,

subroutine, class, or structure on a buffer’s mode line, or in the title bar of Epsilon’s window.

Set this variable to 2 if you want Epsilon to use the title bar if possible. Versions of Epsilon that

can’t set the title bar will instead use the mode line. Set this variable to 1 if you want to use the

mode line regardless. Or set this variable to 0 to disable this feature. You can modify the

mode-format variable to position the name within the mode line.

display-func-name System Default: none

Epsilon uses this variable to help display the name of the current function on the mode line or

window title bar. It contains the most recent function name Epsilon found.

display-scroll-bar System Window-specific Default: 0

This variable controls whether the current window’s right border contains a scroll bar. Set it to

zero to turn off the scroll bar, or to any positive number to display the bar. If a window has no

right border, or has room for fewer than two lines of text, Epsilon won’t display a scroll bar.

Although the EEL functions that come with Epsilon don’t support clicking on a scroll bar on

the left border of a window, Epsilon will display one if the variable is negative. Any positive

value produces the usual right-border scroll bar. Run the toggle-scroll-bar command instead of

setting this internal variable directly.

289

double-click-time Preference Default: 40

This variable specifies how long a delay to allow for mouse double-clicks, in hundredths of a

second. If two consecutive mouse clicks occur within the allotted time, Epsilon considers the

second a double-click. Epsilon for Windows ignores this variable and uses standard Windows

settings to determine double-clicks.

draw-column-markers Preference Default: ""

This variable may contain a series of space-separated column numbers. Epsilon for Windows

draws a vertical line in the current window, at the left edge of each column number specified by

this variable, counting from zero. So a value of 1 specifies a line between the first and second

character positions on a line. This can be helpful when editing fixed-width files.

Set the screen-decoration color class to change the line’s color.

draw-focus-rectangle Preference Default: 0

If nonzero, Epsilon for Windows draws a focus box around the current line, to make it easier for

a user to locate the caret. A value of 1 produces a normal-sized focus rectangle.

You can customize its shape by setting this variable to a four-digit number. The four digits

represent the left, right, top and bottom sides of rectangle. The digit 5 represents the normal

position of that side; lower values constrict the box and higher values expand it. For instance,

5555 represents the usual box size, while 1199 represents a box that’s extra narrow at its sides

and extra tall.

Set the screen-decoration color class to change the box’s color.

draw-line-numbers Preference Buffer-specific Default: 0

This variable controls whether line numbers appear to the left of each line in the current buffer.

Bits in the variable control the formatting of the number. The line-number-width variable

controls the width of the field in which line numbers will be displayed.

The 1 bit enables displaying line numbers.

The 2 bit repeats the line number when a long line is continued onto an additional screen line.

Normally the line number field is blank on such continued lines.

The 4 bit positions line numbers at the left of their field. Normally they’re right-aligned, ending

one column before buffer text begins.

The 8 bit zero-fills the numbers, displaying 000123 instead of 123.

Epsilon omits line numbers in a pop-up or dialog window, even if the 1 bit is set, but adding the

16 bit forces line numbers there too.

echo-line Preference Default: 24 on a 25-line screen

This variable contains the number of the screen line on which to display the echo area, counting

from zero at the top. When the screen size changes, Epsilon automatically adjusts this variable

if necessary.

290 Chapter 6. Variables

eel-tab-override Preference Default: 4

If you want the width of a tab character in EEL buffers to be different than in other buffers, set

this variable to the desired value. C mode will change the buffer’s tab size to the specified

number of columns for EEL files (ending in .e).

eel-version Default: varies

This variable records the version number of the commands contained in the state file. Epsilon’s

-quickup flag sets this number. Epsilon compares this number to the version number stored in

its executable and warns of mismatches (indicating that the state file must be updated by

running -quickup).

einit-file-name Preference Default: "einit.ecm"

Epsilon loads customizations by searching for a file with this name. Commands such as

import-customizations and load-customizations also use the file name in this variable to store

customizations.

epsilon-help-format-unix-gui Preference Default: 0

This variable controls how Epsilon for Unix provides help when running as an X11 program.

The value 1 makes Epsilon display help in a popup window. The values 0 and 2 make Epsilon

display help in a web browser. (Epsilon for Unix always provides help in a popup window when

it runs as a console program, without X11.)

epsilon-help-format-win-console Preference Default: 0

This variable controls how Epsilon for Win32 Console provides help. The value 1 makes

Epsilon display help in a popup window. The value 2 makes Epsilon display help in a web

browser. The value 3 makes Epsilon display help in WinHelp. The value 0 makes Epsilon

choose WinHelp on versions of Windows that always include a WinHelp program, and HTML

on versions of Windows that do not (Vista and later).

epsilon-help-format-win-gui Preference Default: 0

This variable controls how Epsilon for Windows provides help. The value 1 makes Epsilon

display help in a popup window. The value 2 makes Epsilon display help in a web browser. The

value 3 makes Epsilon display help in WinHelp. The value 0 makes Epsilon choose WinHelp

on versions of Windows that always include a WinHelp program, and HTML on versions of

Windows that do not (Vista and later).

epsilon-manual-port Preference Default: 8888

When Epsilon displays its online manual in HTML format, it runs a documentation server

program, and constructs a URL that tells the web browser how to talk to the documentation

server. The URL includes a port number, specified by this variable. Set the variable to 0 and

Epsilon won’t run a local documentation server, but will instead connect to Lugaru’s web site.

Note that the manual pages on Lugaru’s web site may be for a later version of Epsilon than local

pages.

291

errno Default: 0

Many Epsilon primitive functions that access operating system features set this variable to the

operating system’s error code if an error occurs.

expand-wildcards Preference Default: 0

If nonzero, when you specify a file name with wild cards on Epsilon’s command line, Epsilon

reads each individual file that matches the pattern, as if you had listed them explicitly. If zero,

Epsilon displays a list of the files that matched the pattern, in a dired buffer.

expire-message System Default: -1

An EEL function sometimes needs to display some text in the echo area that is only valid until

the user performs some action. For instance, a command that displays the number of characters

in the buffer might wish to clear that count if the user inserts or deletes some characters. After

displaying text with primitives like say(), note(), or show_text(), an EEL function may set

this variable to 1 to tell Epsilon to clear that text on the next user key.

explicit-session-file System Default: none

If you use the read-session or write-session commands to use a particular session file, Epsilon

stores its name in this variable.

fallback-remote-translation-type Preference Default: 5

When you read a file that uses URL syntax, one that starts with scp:// or ftp://, and Epsilon can’t

autodetect its line ending type, it consults this variable to determine what kind of line

translation to perform. Zero indicates binary, 1 indicates DOS/Windows, 2 indicates Unix, 3

indicates Macintosh, and 5, the default, makes Epsilon for Windows assume Windows and

Epsilon for Unix assume Unix.

This variable determines the translation type for new files, or files too short to permit

autodetection. For most files, Epsilon will still use auto-detection. If you want to force a

particular translation type for all files, bypassing auto-detection, set the

force-remote-translation-type variable instead.

Before checking this variable, Epsilon looks for a host-specific variable. For instance, if you

read a file named ftp://example.com/filename, Epsilon will check to see if a variable

named fallback-remote-translation-type-example-com exists. If so, it will use that

variable instead of this one. (Epsilon makes the variable name from the host name by replacing

each character that isn’t alphanumeric with a hyphen, then putting

fallback-remote-translation-type- before it.)

far-pause Preference Default: 100

The find-delimiter and show-matching-delimiter commands pause this many hundredths of a

second, when they must reposition the screen to a different part of the buffer to show the

matching delimiter.

292 Chapter 6. Variables

file-date-skip-drives Preference Default: 0

Epsilon for Windows normally warns when any file has changed on disk. Bits in this variable

tell Epsilon to disable this warning for all files on certain types of devices. The value 8 disables

checking on CD-ROMs. The value 4 disables checking on other removable devices like floppy

disks. The value 2 disables checking files accessed over a network. The value 1 disables

checking files on local hard drives. Add these values together to exclude more than one class.

file-date-tolerance Preference Default: 2

Epsilon warns when a file has changed on disk. Sometimes files on a network will change their

recorded times shortly after Epsilon writes to them. So Epsilon ignores very small changes in a

file’s time. Set this variable to change the time difference in seconds that Epsilon will ignore.

file-pattern-ignore-directories Preference Default: ""

In a wildcard file pattern, a directory name ** stands for a hierarchy of directories. Epsilon

recursively matches every directory within that hierarchy. This variable may be used to keep

directories with certain names from being included. It contains a list of file name patterns,

separated by | characters. Each pattern uses basic file name pattern syntax: * matches any

number of characters, ? matches one, and [a-z] specifies a character range. If a directory in

the hierarchy matches this pattern, Epsilon will skip over it. For instance, .*|*old makes

Epsilon skip over any directory ending in “old” or starting with a . character.

file-pattern-rules Preference Default: 0

Bits in this variable make Epsilon skip over certain types of files when interpreting file wildcard

patterns. The value FPAT_SKIP_FILE_SYMLINKS (1) makes Epsilon ignore symbolic links to

files. The value FPAT_SKIP_DIR_SYMLINKS (2) makes Epsilon ignore symbolic links to

directories. The value FPAT_SKIP_RECUR_SYMLINKS (4) makes Epsilon ignore symbolic links

to directories only when expanding the ** syntax that searches entire hierarchies. Add the

values to ignore multiple types of symbolic links.

Under Windows, Epsilon treats junctions and mount points the same as symbolic links to

directories.

The value FPAT_PERMIT_NO_URLS (8) keeps file patterns that use URL syntax from matching

anything.

file-pattern-unc-domains Preference Default: ""

Under Windows, file pattern matching can operate on UNC file names like

\\server\share\filename to retrieve matching server names (when the file name pattern

looks like \\s*, for instance). On some large local networks, it may be desirable to restrict

matching to particular domains for faster completion.

If this variable is nonempty, it must contain a file name pattern, a |-separated list of domain

names that can use * to match any number characters, ? to match a single character, or [a-z]

to match a range of characters. Only server names from domains in this list will be retrieved.

For instance, if this variable is set to EAST*|MAIN, servers in the domains EASTROOM,

EASTANNEX, and MAIN would be listed, but not those in the domain WEST. (Server names

aren’t the same as domain names; this example setting would permit a server named \\room17,

for instance, if it happened to be the EASTANNEX domain.)

Set this variable to the special setting list-domains, and Epsilon will display a list of domains

on your network in a separate window the next time you complete on server names (by running

dired on the pattern \\, for instance).

293

file-pattern-wildcards Preference Default: 15

Epsilon normally treats all of the characters []{}, ; as wildcard characters in file patterns, except

when you surround a file name with "" characters. You can set this variable to force Epsilon to

treat each of these characters literally. The value 1 enables comma as a wildcard character, 2

enables semicolon, 4 enables square brackets, and 8 enables curly braces. Add the values

together to enable more than one group. The default of 15 enables all the above characters.

file-read-kibitz Preference Default: 1

The 1 bit in this variable tells Epsilon to display an explanatory message when it reads a file and

auto-detects its translation type, but it only determines the type when it’s a long way into the file.

It displays a message like “filename.txt: Read as binary due to bare CR on line

303, offset 28494”, which indicates the place in the file where it chose the translation type.

The 2 bit tells Epsilon to omit such messages when the grep command reads a file. The 4 bit

tells Epsilon to omit such messages when file-query-replace does.

filename Buffer-specific Default: none

This variable holds the file name associated with the current buffer.

EEL code must use assignment, not strcpy() or similar, to set it: filename = "name". It’s

not necessary to preserve the source character array; Epsilon will copy the value. Always set

filename to an absolute pathname.

fill-c-comment-plain Preference Default: 0

Set this variable nonzero if you want comment-filling commands to make C block comment

lines under an initial /* start with spaces, not the usual * aligned under the initial *. (Usually

this applies only to how Epsilon creates the second line of a block comment, since following

lines retain the previous line’s decoration.)

fill-mode Preference Buffer-specific Default: 0

This variable controls auto filling. If nonzero, Epsilon breaks text into lines as you type it, by

changing spaces into newline characters. See the variable c-auto-fill-mode for the

equivalent variable used in C mode buffers, and also html-auto-fill-mode,

xml-auto-fill-mode, and tex-auto-fill-mode.

final-macro-pause System Default: 0

Epsilon sets this variable to 1 when a keyboard macro ends with a pause-macro command, to

help it execute the macro correctly.

find-lines-visible Preference Default: 8

Epsilon uses the find-lines-visible variable to help determine where to position the

find/replace dialog box. It considers a possible location acceptable if the top

find-lines-visible lines of the current window can be seen behind the dialog. If fewer

lines are visible, Epsilon will move the dialog to another part of the screen.

If you don’t want Epsilon to ever reposition its find/replace dialog, set this variable to zero.

294 Chapter 6. Variables

find-linked-file-ignores-angles Preference Default: 0

If this variable is nonzero, the find-linked-file command treats the <> notation in a #include

directive found in a C/C++/Java buffer the same as the "" notation. That is, Epsilon searches in

the original file’s directory for the included file, before looking in other directories. If this

variable is zero, then only #include directives that use the "" notation will cause Epsilon to

search locally.

first-window-refresh Default: 1

Epsilon sets this variable prior to calling a when_displaying function to indicate if this is the

first window the current buffer is displayed in. If 0, Epsilon has already called the

when_displaying function for this buffer during the current screen update. Otherwise, this is

the first window displaying this buffer.

follow-mode-on System Buffer-specific Default: 0

The follow-mode command uses this variable to record whether the current buffer uses follow

mode. Only set it using that command.

follow-mode-overlap Preference Default: 0

In follow mode, set by the follow-mode command, a buffer displayed in multiple adjacent

windows will be set so the windows always display adjacent sections of the buffer. Scrolling in

one window will result in all the windows scrolling. To make it easier to see context, you may

want a few lines of text at the bottom of one window repeated at the top of the next. This

variable sets how many lines of overlap will be used.

font-dialog Preference Default:

"Courier New,8,0,400,0,1"

This variable controls what font Epsilon for Windows uses for its dialog windows. See

font-fixed for details on its format. Use the set-dialog-font command to set it.

font-fixed Preference Default:

"Courier New,10,0,400,0,1"

This variable controls what font Epsilon uses.

Under Windows, it contains the name of the font, followed by several numbers separated by

commas. The first number specifies a point size. The second specifies the width of the font in

pixels, or 0 if any width is acceptable. A small number of fonts, such as Terminal, have multiple

widths for each height. The third number specifies how bold the font is. A typical font uses a

value of 400, while a bold font is usually 700. The fourth number is nonzero to indicate an italic

font. The fifth number indicates a character set; 1 means use the default character set for the

font, 0 means use ANSI, 255 means use OEM.

Under X11, it contains a standard X11 font name, possibly with wildcards.

EEL code must use assignment, not strcpy() or similar, to set this and other font variables, as

in font_fixed = "Courier New,12,0,400,0,0". It’s not necessary to preserve the source

character array; Epsilon will copy the value. Epsilon automatically saves and restores font

variables using OS-specific methods (in the Windows registry, or in an X11 resource file), and

does not save these in its state file.

295

font-printer Preference Default:

"Courier New,10,0,400,0,1"

This variable controls what font Epsilon for Windows uses when printing. See font-fixed for

details on its format. Use the set-printer-font command to set it.

font-styles Preference Default: 7

Epsilon normally uses various styles of the selected font (italic, bold, underlined) for particular

text, such as comments. Bits in this variable say which of these styles it can use. The value 1

permits a bold style, 2 permits italic, and 4 permits underlined text. Set this variable to the sum

of the permitted styles; a value of 0 disables all font styles.

font-styles-tolerance Preference Default: 1

When Epsilon for Windows looks for matching styles of the selected font (italic, bold, or

underlined), it ignores any that are too different in size from the base font. This variable

determines how different such fonts may be. It must be a number from 0 to 999. The rightmost

digit (ones digit) sets the permitted variation in height, and the middle digit (tens) sets the

permitted variation in width: 0 requires an exact match. The leftmost digit (hundreds)

influences the permitted additional overhang/underhang of characters, rejecting fonts that are

much more slanted than the base font.

If Epsilon shows no bold, italic, or underlined text with your selected font, you can try setting

these values higher; higher values permit less attractive font combinations, though.

Epsilon for Unix requires font styles to match the original font exactly, always acting as if this

variable were zero.

force-remote-translation-type Preference Default: 5

When you read a file that uses URL syntax, one that starts with scp:// or ftp://, Epsilon consults

this variable to determine what kind of line translation to perform. Zero forces binary, 1 forces

DOS/Windows, 2 forces Unix, 3 forces Macintosh, and 5, the default, lets Epsilon autodetect

the file type.

Setting this variable to a specific translation code forces Epsilon to use that translation for all

files, instead of auto-detecting the right translation based on file content. To simply change the

default for new files, or those too short for auto-detection, set

fallback-remote-translation-type instead.

Before checking this variable, Epsilon looks for a host-specific variable. For instance, if you

read a file named ftp://example.com/filename, Epsilon will check to see if a variable

named force-remote-translation-type-example-com exists. If so, it will use that

variable instead of this one. (Epsilon makes the variable name from the host name by replacing

each character that isn’t alphanumeric with a hyphen, then putting

force-remote-translation-type- before it.)

force-save-as System Buffer-specific Default: 0

Setting this variable nonzero instructs the save-file command to ask for a file name before

writing the file. A setting of 1 (FSA_NEWFILE in EEL functions) indicates the buffer was

created by the new-file command. A setting of 2 (FSA_READONLY) indicates the file was marked

read-only on disk, or the user checked the ”Open as read-only” box in the Open File dialog.

296 Chapter 6. Variables

forward-word-to-start Preference Default: 0

Set the forward-word-to-start variable nonzero if you want the forward-word command to

leave point at the start of each word, instead of its end.

ftp-ascii-transfers Preference Default: 0

When Epsilon uses FTP to read a file on a host computer, it normally uses FTP’s binary transfer

mode, and examines the contents of the file to determine the appropriate line translation. On

some kinds of host computers (VMS systems, for example) this doesn’t work. If you use such

systems, set this variable nonzero. In that case, you’ll need to tell Epsilon whenever you

transfer a binary file. Epsilon will use FTP’s ASCII transfer mode for all files except those

where you explicitly set the line transfer mode to binary (for example, by typing Ctrl-U Ctrl-X

Ctrl-F, and then pressing B at the line translation prompt).

ftp-compatible-dirs Preference Default: 0x2

Bits in this variable make Epsilon’s FTP features compatible with certain less common FTP

servers.

When Epsilon uses FTP to access files on a host computer, it normally assumes that the

directory conventions of the host computer are similar to those for Unix, Windows, DOS, and

OS/2. Some computers (notably some VMS systems) use different rules for directories. A value

of 0x1 makes Epsilon access remote directories in a way that’s slower, but works on more

systems.

Recent FTP servers often omit hidden files (those that start with a . character) from file listings

unless Epsilon uses a special flag. But some older FTP servers don’t recognize the flag. Setting

the 0x2 bit in ftp-compatible-dirs makes Epsilon omit the flag, for greater compatibility

with older FTP servers. This is the default. Turn off this bit to include hidden files in file

listings, when permitted by the dired-show-dotfiles variable and dired’s - subcommand.

The 0x4 bit prevents Epsilon from automatically detecting when an ftp:// URL that doesn’t end

in a / character (and thus looks like a file name, not a directory) is actually the name of a

directory. This is useful when accessing files on certain mainframe systems where

auto-detection isn’t supported. It may also be useful when your connection to the host is very

slow. With this option, whenever you type a directory name, you must either end it with a /

character to indicate it’s a directory, or use the dired command instead of one of the other

file-reading commands.

ftp-passive-transfers Preference Default: 1

This variable controls how Epsilon’s FTP client transfers files. Epsilon knows three methods,

called “passive”, “active”, and “default port”. Firewalls or ancient FTP server software can

cause one or more of the methods to fail. Set this variable to zero to use only active transfers.

Set it to two to make Epsilon try active transfers first, then passive. Set it to three to make

Epsilon use the “default port” method. The default of one makes Epsilon try passive, then

active.

full-key Default: none

This variable holds the value of the last key pressed, or a special code indicating a mouse event.

For keys that have both a generic and specific interpretation, such as 〈Backspace〉 (which is

generically Ctrl-H), this variable holds the specific interpretation, while key has the generic

one. For other keys, these two variables are equal.

297

full-path-on-mode-line Preference Default: 0

Set this variable to 1 if you want Epsilon to display the full path of each file on the mode line.

The default value of 0 makes it use a path relative to the current directory (set by the cd

command) whenever it can. The value 2 makes it always display only the last component of the

file name (its base name).

full-redraw Default: 0

If nonzero, Epsilon rebuilds all mode lines, as well as any precomputed information Epsilon

may have on window borders, screen colors, and so forth, on the next redisplay. Epsilon then

resets the variable to zero.

fundamental-auto-show-delim-chars Default: ""

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Fundamental mode. Epsilon will search for and highlight the

match of each delimiter.

Delimiters in the left half of the list must be left-delimiters and those in the right half must be

right-delimiters, as in ([]).

fundamental-spell-options Preference Default: 0

This variable controls the Spell minor mode in Fundamental mode. Use the spell-mode

command to set it to 1, and Epsilon will highlight misspelled words in Fundamental mode. See

the default-spell-options variable for the other bits you can set to customize spell

checking in Fundamental mode.

fwd-search-key Preference Default: -1

Inside a search command, Epsilon recognizes a key with this key code as a synonym for Ctrl-S,

for pulling in a default search string or changing the search direction.

gams-auto-show-delim-chars Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in GAMS mode. Epsilon will search for and highlight the match

of each delimiter.

gams-files Preference Default: 0

The file extensions .inc, .map, and .dat are used in the GAMS language for mathematical

programming. But they’re also commonly used to represent other things. By default Epsilon

assumes such files are not GAMS files; set this variable nonzero if you want Epsilon to assume

they are GAMS files.

298 Chapter 6. Variables

global-spell-options Preference Default: 0xf

Bits in this variable control certain spell checking options:

0x01 (1): This bit makes Epsilon automatically save an ignore list file after adding an entry.

0x02 (2): This bit makes Epsilon delete a file-specific ignore list file when you delete its main

file.

0x10 (16): This bit makes Epsilon display an option for adding a misspelled word to an

extension-specific ignore list. You can enable this if you prefer to base ignore lists on file

extensions, not just modes. Epsilon looks for extension-specific ignore list files regardless of

this bit, but doesn’t offer to add to them without it.

goal-column Buffer-specific Default: -1

If the goal-column variable is non-negative, the up-line and down-line commands and

commands that move by pages always move to the goal column. If goal-column is negative,

the commands try to remain in the same column. When a region is highlighted, Epsilon ignores

the goal column.

got-bad-number System Default: 0

Several EEL functions that convert a character string into a number set this variable to indicate

whether the string held a valid number.

grep-default-directory Preference Default: 0

When you press 〈Enter〉 without entering a file pattern for grep, and this variable is zero (the

default), Epsilon tries to search the same set of files as last time, even if you’ve subsequently

changed directories.

Set this variable to 1 if you want grep to instead reinterpret the file pattern you typed according

to the current directory.

Set it to 2 if you want Epsilon to reinterpret the previous file pattern according to the directory

associated with the current buffer. Set it to 3 if you want Epsilon to interpret any relative pattern

you type according to the directory associated with the current buffer.

For settings 2 and 3 above to work properly, the grep-prompt-with-buffer-directory

variable must not be set to 0.

This variable affects only relative file patterns like *.cpp. If you typed an absolute path the first

time, pressing 〈Enter〉 will always search those files regardless of this setting.

grep-empties-buffer Preference Default: 0

By default, each invocation of grep appends its results to the grep buffer. If you set the variable

grep-empties-buffer to a nonzero value, grep will clear the grep buffer at the start of each

invocation.

grep-ignore-file-basename Preference Default: ""

This variable contains a regular expression pattern. The grep and file-query-replace commands

skip over file names whose base names (the part after the last / or \) start with text that matches

this pattern. If the variable is zero-length, the commands ignore it.

299

grep-ignore-file-extensions Preference Default:

"|.obj|.exe|.o|.b|.dll|...(omitted)|"

This variable contains a list of file name extensions for Epsilon to skip over during a grep or

file-query-replace command. Each extension must appear surrounded by ‘|’ characters.

grep-ignore-file-pattern Preference Default:

"((.*[\/])?(CVS|.svn)[\/]|/proc/"

This variable contains a regular expression pattern. The grep and file-query-replace commands

skip over file names whose absolute forms start with text that matches this pattern. If the

variable is zero-length, the commands ignore it.

grep-ignore-file-types Preference Default: 7

Bits in this variable tell the grep and file-query-replace commands to skip over files of certain

types. The value 1 makes the commands ignore file names that refer to devices. The value 2

ignores pipes, and the value 4 ignores any files that are neither ordinary files nor one of the

above types.

grep-include-timestamp Preference Default: 0

If nonzero, the grep command includes the file’s timestamp at the start of each result line in the

grep buffer. A value of 1 uses month names; a value of 2 results in an all-numeric

representation suitable for sorting.

grep-keeps-files Preference Default: 0

If nonzero, the grep command reads each file matching the supplied pattern using the find-file

command. If zero, Epsilon reads each file into a temporary buffer and discards the buffer after it

finishes listing the matches.

grep-on-changed-file Preference Default: 1

This variable sets what happens when the grep command notices a buffer’s file has been

changed on disk.

If 0, Epsilon prompts, asking if it should reread the file, replacing the version in memory, or

ignore the file and only search the version in memory.

If 1, Epsilon never prompts, and ignores the version on disk, adding a warning in the grep buffer

that only the version in memory was searched. (The locate-file on Ctrl-X Ctrl-L is a convenient

way to get from the grep buffer to the file’s buffer.)

If 2, Epsilon automatically reads the modified file from disk, as long as the version in memory

hasn’t been edited. If it’s been edited, Epsilon prompts.

If 3, Epsilon rereads the file if the buffer hasn’t been modified; otherwise it searches the version

in memory and adds a warning to the grep buffer. It doesn’t prompt in either case.

300 Chapter 6. Variables

grep-prompt-with-buffer-directory Preference Default: 1

The grep-prompt-with-buffer-directory variable controls how the grep and

file-query-replace commands use the current directory at file prompts.

When this variable is 1, the default, Epsilon temporarily changes to the current buffer’s

directory while prompting for a file name, and interprets file names relative to that directory. It

also arranges for each mode line to display the full path of its file while prompting, to make it

easier to see which directory will be used.

When this variable is 2, Epsilon inserts the current buffer’s directory at the prompt. You can

type a relative file pattern like *.cpp. Or you can begin typing a new absolute file pattern like

/etc/*.cf or c:\windows*.ini right after the inserted pathname. Epsilon will delete the

inserted pathname when it notices your absolute pathname.

A setting of 3 makes Epsilon insert the current buffer’s directory in the same way, but keeps

Epsilon from automatically deleting the inserted pathname if you type an absolute one.

When this variable is 0, relative file names will be interpreted based on the global current

directory set with the cd command, not any directory associated with the current buffer.

If you press 〈Enter〉 without typing anything, and a directory used in the above descriptions has

changed, the grep-default-directory variable controls whether Epsilon reinterprets the

previous file pattern according to the new directory, or searches the same set of files as before.

See that variable for more details.

grep-show-absolute-path Preference Default: 0

This variable controls how the grep command formats the file names it inserts into the grep

buffer for each match. If grep-show-absolute-path is 0, Epsilon uses a relative pathname

whenever it can. If 1, Epsilon uses an absolute pathname always. If 2, Epsilon for Windows

lists each file with its absolute DOS-style 8+3 file name. (This setting is the same as 1 in

environments without such a notion.)

gui-cursor-shape System Default: 100002

This variable holds the current cursor shape code under Windows and Unix’s X11 windowing

system. Epsilon copies values from overwrite-gui-cursor, normal-gui-cursor, or one

of the other cursor variables, as appropriate, into this variable whenever you switch windows or

buffers. Set those variables instead of this one. Epsilon only uses this variable under Windows

and X. See cursor-shape for the non-graphical equivalent.

The X11 version of Epsilon can only change the cursor shape if you’ve provided an

Epsilon.cursorstyle:1 resource (see page 7).

gui-menu-file Preference Default: "gui.mnu"

This variable contains the name of the file Epsilon loads its menu from at startup, in the

Windows version.

has-arg Default: 0

Epsilon indicates that a command has received a numeric argument by setting this variable

nonzero. The value of the numeric argument is in the iter variable.

301

has-feature Default: varies

Epsilon runs under various operating systems. Some OS versions of Epsilon have a few features

that others lack. An EEL function may test bits in this variable to check if certain features are

available.

hex-overtype-mode Preference Default: 0

Set this variable to one if you want hex mode to begin in its overtype submode. See hex-mode.

html-asp-coloring Preference Default: 1

This variable tells Epsilon how to syntax highlight scripts embedded in <% %> delimiters in

HTML documents, when the file doesn’t name any specific script language. Zero means use a

single color, 1 means color as Javascript, 2 means color as VBScript, 3 means color as PHP, 4

means Python, 5 means CSS, and 10 means <% doesn’t start an embedded script.

html-auto-fill-combine Preference Default: 10

When auto-filling breaks a line of HTML, it avoids breaking a line that contains just the start of

an element, except when the element name is longer than specified by this variable. For

example, it won’t split a line right after <a at its start, but it may after <customquote.

html-auto-fill-mode Preference Default: 31

This variable controls whether Epsilon automatically breaks long lines as you type in HTML

mode and the related PHP mode. The 1 bit toggles filling on and off entirely. It’s set by the

auto-fill-mode command. Other bits control where filling occurs.

The 2 bit lets it break text that isn’t part of an HTML tag. The 4 bit lets it break HTML tags.

The 8 bit lets it break HTML comments. The value 16 lets it break comments in any embedded

scripting. By default, Epsilon breaks in all these regions.

html-auto-indent Preference Default: 0xff

This variable controls automatic indentation when you press 〈Enter〉 in HTML mode. Bits in

the variable control whether Epsilon auto-indents in specific regions of the document. The 0x1

bit makes Epsilon auto-indent when you press 〈Enter〉 outside script blocks. Other bits, as

shown in the table below, make Epsilon auto-indent in that type of scripting.

Scripting Language Bit

JavaScript 0x2

VBScript 0x4

PHP 0x8

Python 0x10

CSS 0x20

When you disable smart auto-indenting in a certain type of scripting by setting one of these bits,

〈Enter〉 will instead indent to the previous line. Set the 0x4000 bit if you prefer no indenting at

all for regions where you’ve disabled smart indenting.

302 Chapter 6. Variables

html-auto-show-delim-chars Default: "<>"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in HTML mode. Epsilon will search for and highlight the match

of each delimiter.

html-display-definition Preference Default: 15

Bits in this variable control whether Epsilon displays the name of the current function within

HTML, XML, or PHP scripting, or HTML or XML nesting elements outside of scripting. The

value 1 enables displaying the current function name in scripting. The value 2 makes Epsilon

display the type of scripting, such as “JavaScript” or “VBScript”, on scripting lines that are

outside of any function. The 4 bit makes Epsilon show the innermost elements in effect at the

start of the current line in XML mode. The 8 bit is similar, but applies to HTML mode. The

html-display-nesting-width variable influences how many elements appear.

html-display-nesting-width Preference Default: 40

In HTML and XML modes, the mode line displays the names of the innermost tags in effect at

the start of the current line. This variable controls how much space is allocated for that display.

Smaller values let Epsilon use more of the mode line for tag names, so the buffer’s file name is

more likely to be abbreviated. You can use the html-list-element-nesting command to display all

the tags.

html-indent Preference Default: 3

Each level of indentation in HTML mode will occupy this many columns. If this variable is

zero, Epsilon uses the tab size instead.

html-indenting-rules Preference Default: 0xffffff

This variable controls whether Epsilon uses smart indenting for HTML or XML (or scripting

embedded within it), or just copies indentation from the previous line. Bits in the variable

enable smart indenting for various languages, as shown below.

Scripting Language Smart Indent

JavaScript 0x1

VBScript 0x2

PHP 0x4

Python 0x8

CSS 0x10

These bits enable indenting in certain contexts:

0x100 permits indenting inside tags.

0x200 permits indenting for text lines that don’t start with a tag.

0x400 permit indenting the first line of a script block, but only when its opening < is indented.

When the < is at the left margin, the script will start there too.

0x800 permit indenting the first line of a script block unconditionally, overriding 0x400.

303

Also see the html-auto-indent and xml-auto-indent variables, which control whether and

how Epsilon indents when you press 〈Enter〉 (not 〈Tab〉 or other keys that indent).

By default smart indenting is enabled in all cases.

When there are multiple start tags on a single line, Epsilon normally indents the next line by

one level no matter how many start tags appear. Turning off the 0x80 bit tells Epsilon to indent

more in such cases, as if the start tags had appeared on separate lines.

The 0x8000 bit controls how Epsilon indents when the attributes of a tag continue onto the next

line. This bit makes Epsilon align the equal signs following each attribute. Turn it off if you

want Epsilon to align the attribute names instead.

When you press certain keys like {, :, #, or a right delimiter, Epsilon normally reindents that

line when in scripting. These bits in html-indenting-rules enable such reindenting:

Scripting Language Enable Reindent

JavaScript 0x10000

VBScript 0x20000

PHP 0x40000

Python 0x80000

CSS 0x100000

Note that you can type expressions at the set-variable prompt, like varname | 0x100 to

set a bit in the variable varname you’re setting, or varname & ~ 0x100 to turn it off.

html-no-indent-elements Preference Default: "|html|body|"

This variable contains a list of HTML element names, surrounded by and separated by |

characters. These elements won’t receive additional indenting. Epsilon also assumes the end

tags of these elements are optional.

html-other-coloring Preference Default: 1

This variable tells Epsilon how to syntax highlight scripts marked with an unknown language

name embedded in HTML documents. Zero means use a single color, 1 means color as

Javascript, 2 means color as VBScript, 3 means color as PHP, 4 means Python, 5 means CSS,

and 10 means such tags don’t start an embedded script.

html-paragraph-elements Preference Default:

"|p|html|head|...(omitted)|"

When filling paragraphs in HTML mode, Epsilon treats tags matching element names on this

list as paragraph delimiters. The list uses the syntax of a regular expression pattern.

html-paragraph-is-container Preference Buffer-specific Default: 2

In modern HTML, the p element for paragraphs is used as a container, with <p> at the start of a

paragraph and </p> at its end. In old HTML, the p tag is used as a paragraph separator,

appearing between paragraphs, and </p> isn’t used. For correct indenting and similar purposes,

Epsilon needs to know which method the current file uses.

A value of 1 tells Epsilon the file uses the modern method where <p> begins a new indenting

level that </p> will close later. A value of 0 tells Epsilon the file uses the older method where

<p> is a mere separator and causes no additional indentation. A value of 2, the default, tells

Epsilon to examine the file, the first time it needs to decide this, and guess at which method it

uses.

304 Chapter 6. Variables

html-php-coloring Preference Default: 3

This variable tells Epsilon how to syntax highlight scripts embedded in <? ?> delimiters in

HTML documents, when the file doesn’t name any specific script language. Zero means use a

single color, 1 means color as Javascript, 2 means color as VBScript, 3 means color as PHP, 4

means Python, 5 means CSS, and 10 means <% doesn’t start an embedded script.

html-prevent-coloring Preference Default: 0

Bits in this variable prevent language-specific syntax highlighting of embedded scripting in

HTML or XML mode, by forcing Epsilon to ignore the sequence that begins that type of

scripting.

Each bit in the table below makes Epsilon ignore the corresponding scripting type (and certain

equivalent constructions as well).

Bit Scripting Tag

0x1 <script language=jscript>

0x1 or <script language=javascript>

0x1 or <script language=ecmascript>

0x2 <script language=vbscript>

0x4 <script language=php>

0x4 or <?php>

0x8 <script language=python>

0x8 or <?python>

0x10 <jsp:scriptlet>

0x20 <cfscript>

html-recognize-coldfusion-comments Preference Buffer-specific Default: 1

If nonzero, HTML mode interpret the sequence <!--- as the start of a ColdFusion comment,

terminated by a ---> and allowing nested comments. If zero, it follows normal HTML

comment syntax rules, with no nesting.

html-reindent-previous-line Preference Default: 0

This variable controls whether Epsilon reindents the previous line when you press 〈Enter〉 in

HTML mode.

html-empty-elements Default:

"|hr|isindex|col|...(omitted)|"

HTML mode treats elements named in this list as empty (having no end tag). Each element

name must be surrounded by ‘|’ characters.

html-spell-options Preference Default: 0

This variable controls the Spell minor mode in HTML mode. Use the spell-mode command to

set it to 1, and Epsilon will highlight misspelled words in HTML text, ignoring element names

and attributes. See the default-spell-options variable for the other bits you can set to

customize spell checking in HTML mode.

305

html-style-rules Preference Buffer-specific Default: 0

This variable contains bits that modify how Epsilon interprets HTML tags.

The 1 bit tells Epsilon that each start tag that has no matching end tag will be marked as such

using the /> syntax for self-terminating tags, as in XHTML. Epsilon will assume for indenting

and other purposes that a tag like <hr> begins a block that a later </hr> will end; the

self-terminating form <hr /> doesn’t begin such a block.

Without this bit, HTML mode uses the html-empty-elements,

coldfusion-empty-elements, and html-no-indent-elements variables, as well as

built-in logic for the elements li, option, p, dd, and dt, to decide which elements should have no

end tags.

html-tag-match-look-back Preference Default: 10,000,000

With some HTML start tags like <dt>, end tags are optional. Sometimes Epsilon must scan the

buffer looking for an end tag to determine correct indenting. It restricts its search to the number

of characters specified by this variable.

http-log-request Preference Default: 0

If nonzero, accessing an http URL includes the actual http request Epsilon sent in the “HTTP

Headers” buffer, just before the response.

http-proxy-exceptions Preference Default: "|localhost|127.0.0.1|"

When Epsilon uses a proxy server, it still directly connects to host names in this list. Each entry

must have a — character before and after.

http-proxy-port Preference Default: 0

If you want Epsilon to use a proxy server to retrieve web pages, set its port number here, and set

http-proxy-server to the proxy server’s name. Zero means no proxy.

http-proxy-server Preference Default: ""

If you want Epsilon to use a proxy server to retrieve web pages, set its name here, and set

http-proxy-port to the appropriate port setting.

http-user-agent Preference Default: ""

When Epsilon retrieves a web page in response to an http URL, it identifies itself to the web

server as “Epsilon versionnumber”. Set this variable to force Epsilon to use a different name.

idle-coloring-delay Preference Buffer-specific Default: 100

When Epsilon isn’t busy acting on your keystrokes, it looks through the current buffer and

assigns colors to the individual regions of text, so that Epsilon responds faster as you scroll

through the buffer. For smoother performance, Epsilon doesn’t begin to do this until it’s been

idle for a certain period of time, specified by this variable. Set it to the number of hundredths of

a second to wait before computing more coloring information. With its default value of 100,

Epsilon waits one second. Set it to -1 to disable background code coloring.

306 Chapter 6. Variables

idle-coloring-size System Buffer-specific Default: 1000

While waiting for the next keystroke, Epsilon syntax-highlights the rest of the current buffer to

improve performance. It highlights in small sections. This variable determines the size of each

section. Some language modes highlight faster when they can work with larger sections.

ignore-error Preference Default: none

This variable holds a regular expression that commands like next-error use to filter out any error

messages Epsilon should skip over, even if they match the error pattern. For example, if

ignore-error contains the pattern “.*warning”, Epsilon will skip over any error messages

that contain the word “warning”.

ignore-file-basename Preference Default: "%."

This variable contains a regular expression pattern. File name completion skips over file names

whose base names (the part after the last / or \) start with text that matches this pattern. If the

variable is zero-length, completion ignores it.

ignore-file-extensions Preference Default: "|.obj|.exe|.o|.b|"

This variable contains a list of file name extensions for Epsilon to ignore during file name

completion. Each extension must appear surrounded by ‘|’ characters. If no matches result

when using this variable, completion ignores it and tries again.

ignore-file-pattern Preference Default: ""

This variable contains a regular expression pattern. File name completion skips over file names

whose absolute forms start with text that matches this pattern. If the variable is zero-length, file

name completion ignores it.

ignore-kbd-macro Default: 0

When the ignore-kbd-macro variable is nonzero, Epsilon suspends any running keyboard

macros and doesn’t retrieve keys from them. When zero (the default), Epsilon retrieves keys

from a keyboard macro before handling keys from the keyboard.

ignoring-file-change System Buffer-specific Default: 0

Epsilon sets this variable nonzero when the user says to temporarily ignore file date warnings.

See want-warn.

in-echo-area Default: 0

The in-echo-area variable controls whether the cursor is positioned at point in the buffer, or

in the echo area at the bottom of the screen. The sayput() primitive sets this variable, say()

resets it, and it is reset after each command.

in-perl-buffer System Buffer-specific Default: 0

Epsilon’s C mode uses this to record if the current buffer is really in Perl mode (which is

implemented as a variant of C mode).

307

in-shell-buffer System Buffer-specific Default: 0

Epsilon’s Perl mode uses this to record if the current buffer is really in Shell mode (which is

implemented as a variant of Perl mode).

include-directories Preference Default: ""

The find-linked-file command, in C/C++/Java buffers, edits the file named by the #include

directive on the current line. Epsilon knows a few standard places to look for #include files,

but if Epsilon doesn’t find yours, set this variable to a list of directories where Epsilon should

look, in addition to the standard places. Separate the directory names with colons under Unix,

with semicolons elsewhere.

indent-comment-as-code Preference Default: 1

If nonzero, commenting commands indent lines containing only a comment to the same

indentation as other text.

indent-preprocessor-contin Preference Default: 4

Epsilon indents continued preprocessor lines based on the indentation established by the initial

line being continued. If that line doesn’t have enough code to establish an indentation, Epsilon

uses the indentation specified by this variable. If the variable is zero, Epsilon uses simplified

indenting rules for preprocessor continuation lines.

indent-with-tabs Preference Buffer-specific Default: 1

If zero, Epsilon indents using only space characters, not tab characters.

indents-separate-paragraphs Preference Buffer-specific Default: 0

Blank lines and ^L characters always separate paragraphs. If the variable

indents-separate-paragraphs has a nonzero value, then a paragraph also begins at a

nonblank line that starts with a tab or a space.

info-path-non-unix Preference Default: %x..\info;%x

Epsilon’s info mode looks for Info files in each of the directories named by this variable (but see

info-path-unix for the Unix equivalent). Separate the directory names with semicolons. The

sequence %x tells Epsilon to substitute the directory containing its executable.

info-path-unix Preference Default: (omitted)

Under Unix, Epsilon’s info mode looks for Info files in each of the directories named by this

variable. (See info-path-non-unix for the non-Unix equivalent). Separate the directory

names with colons. The sequence %x tells Epsilon to substitute the directory containing its

executable.

info-recovering System Default: 0

Epsilon’s info mode uses this variable internally to record whether it’s currently recovering

from failing to reach a missing node.

308 Chapter 6. Variables

initial-tag-file Preference Default: "default.tag"

This variable holds the name of the tag file Epsilon will search for. If it holds a relative

pathname, Epsilon will search for the file in the current directory tree. If initial-tag-file

holds an absolute pathname, Epsilon will always use that tag file.

insert-default-response Preference Default: 1

If this variable is 1, at many prompts Epsilon will insert a default response before you start

typing. The default response will be highlighted, so typing any text will remove it. If you turn

off typing-deletes-highlight, you may wish to set this variable to 0.

While prompting for text, Epsilon can temporarily set this variable to other values. A value of 2

makes Epsilon insert its default text without highlighting it. This means the text won’t

automatically be deleted when you begin typing. A value of 3 inserts the default text, doesn’t

highlight it, and prepares to modify your file name response as you type it. See the description

of prompt-with-buffer-directory.

insert-file-remembers-file Preference Default: 0

Set this nonzero and the insert-file and write-region commands will prompt with the name of the

last inserted or written file as the default. Set it to zero and they’ll offer the current buffer’s

directory as a default.

invisible-window System Window-specific Default: 0

If nonzero, Epsilon won’t display the text of the window (although it will display the border, if

the window has one). Epsilon won’t modify the part of the screen that would ordinarily display

the window’s text.

is-current-window System Default: none

An EEL program may set a highlighted region to be controlled by this variable to signal that the

region should only be displayed in the current window, not in other windows that display the

same buffer.

is-gui Default: varies

The is-gui variable indicates whether a graphical version of Epsilon is running. In pure-text

versions of Epsilon, this variable is zero. When the 32-bit Windows version of Epsilon runs

under Windows NT/2000/XP and later Windows versions, it sets this variable to 2. Under

Windows 95/98/ME, it sets this variable to 3. The variable is 1 when the 32-bit version runs

under Windows 3.1 using the Win32S package (though this is not supported). The 16-bit

version of Epsilon for Windows 3.1 always sets this variable to 4.

is-unix Default: varies

This variable is nonzero if Epsilon for Unix is running. It’s set to the constant IS_UNIX_XWIN if

Epsilon is running as an X11 program, or IS_UNIX_TERM if Epsilon is running as a curses

program.

309

is-unix-flavor Default: varies

This variable is nonzero if Epsilon for Unix is running. It’s set to the constant macro

IS_UNIX_LINUX in the Linux version, IS_UNIX_BSD in the FreeBSD version, and

IS_UNIX_MACOS in the Mac OS version.

is-win32 Default: varies

This variable is nonzero if a version of Epsilon for Windows is running, either the GUI version

or the Win32 console version. The constant IS_WIN32_GUI represents the former. The constant

IS_WIN32_CONSOLE represents the latter.

iter Default: 1

Epsilon indicates that a command has received a numeric argument by setting the has-arg

variable nonzero, and setting iter to the value of the numeric argument.

java-indent Preference Default: 4

C mode indents Java files by this many columns for each additional level of nesting. If the

variable is less than or equal to zero, Epsilon uses the value of tab-size instead. Set this

variable nonzero if you want Epsilon to use one number for displaying tab characters, and a

different number for indenting Java code. (Epsilon will indent using a combination of spaces

and tabs, as necessary.)

jump-to-dvi-command Default: ""

This variable contains the command line that the jump-to-dvi command should use. See that

command for more information. Epsilon expands these sequences in this variable to form the

command line:

%l Epsilon substitutes the TeX source file’s line number.

%f Epsilon substitutes the full path of the TeX source file.

%d Epsilon substitutes the full path of the DVI file.

%b Epsilon substitutes the base name of the TeX source file, not including any path or

extension.

jump-to-dvi-main-file Default: ""

This variable contains the name of the DVI file that jump-to-dvi command should use. See that

command for details. It’s empty if the command should look for a .dvi file matching the current

TeX file each time it’s run.

key Default: none

This holds the value of the last key pressed, or a special code indicating a mouse event. For keys

that have both a generic and specific interpretation, such as 〈Backspace〉 (which is generically

Ctrl-H), this variable holds the generic interpretation, while full-key has the specific one. For

other keys, these two variables are equal.

310 Chapter 6. Variables

key-code Default: none

This variable contains the sixteen-bit BIOS encoding for the last key that Epsilon received from

the operating system. Its ASCII code is in the low eight bits and its scan code is in the high

eight bits. This variable is always 0 when Epsilon can’t get this information, or under Unix.

key-from-macro Default: varies

This variable is nonzero whenever the most recent key (or mouse event) came from a keyboard

macro, not an actual keypress.

key-is-button System Default: varies

When you click on a button in a dialog, Epsilon returns a particular fixed keystroke: Ctrl-M, the

abort key specified by the abort-key variable, or the help key specified by the HELPKEY

macro. To distinguish actual keys from these buttons, Epsilon sets the key_is_button variable

to zero when returning normal keys, and to a nonzero value when returning one of these button

keys. It uses a specific value for each button in a dialog.

key-repeat-rate Preference Default: 40

Under Windows, this variable controls the rate at which keys repeat in Epsilon, in repeats per

second. Setting this variable to 0 lets the keyboard determine the repeat rate, as it does outside

of Epsilon. Setting this variable to -1 makes keys repeat as fast as possible. Epsilon never lets

repeated keys pile up; it automatically ignores repeated keys when necessary.

key-type Default: none

This variable has a special code that identifies the type of key pressed. Epsilon uses the key type

to implement its auto-quoting facility.

kill-buffers Preference Default: 10

This variable holds the maximum number of kill buffers, for holding killed text. Setting this

variable to a new value makes Epsilon throw away the contents of all the kill buffers the next

time you execute a command that uses kill buffers.

kill-rectangle-removes Preference Default: 0

This variable controls the default behavior of the kill-rectangle command. If zero, it replaces the

rectangular block with spaces. If nonzero, it removes the columns of the rectangular block

entirely, shifting text leftward, like the delete-rectangle command. No matter which behavior is

set by this variable, running kill-rectangle with a numeric prefix argument produces the other

behavior.

last-index Default: none

The do_command() primitive copies the name table index it receives as a parameter into this

variable, just before it executes the indicated command, so the help system can find the name of

the current command (among other uses).

311

last-show-spaces System Buffer-specific Default: 0

Epsilon records the previous value of the show-spaces variable here, to detect changes to it.

last-window-color-scheme System Default: 0

When Epsilon has been set to display its tiled windows without borders (via the toggle-borders

command), it uses this variable to help assign separate color schemes to the individual windows.

latex-2e-or-3 Preference Default: 1

Set this variable to 0 if you want LaTeX mode commands like tex-italic on Alt-i to insert a

LaTeX 2.09 command, instead of a LaTeX 2e/3 command. (For example, tex-italic inserts

\textit in LaTeX 2e/3 mode, and \it otherwise.)

latex-display-math-env-pat Preference Default:

"equation|displaymath|eqnarray%*?"

This variable holds a regular expression pattern that matches environment names whose

contents Epsilon should color using the tex-display-math color class.

latex-math-env-pat Preference Default: "math"

This variable holds a regular expression pattern that matches environment names whose

contents Epsilon should color using the tex-math color class.

latex-non-text-argument Preference Default:

"|begin|end|label|...(omitted)|"

Epsilon uses the tex-keyword color class (instead of tex-text) for the argument of these

LaTeX commands. This keeps the spell checker from checking these environment names,

labels, and cite tags. Surround each command name with | characters. You can modify the list

if you want spell checking to check such tags.

latex-spell-ignore-pattern-prefix Preference Default: (omitted)

Spell mode ignores a word in LaTeX mode when the text just before it matches this pattern. The

default pattern makes it ignore environment names, labels, and cite tags, even in contexts like

comments where they aren’t colored as keywords.

latex-spell-options Preference Default: 0

This variable controls the Spell minor mode in LaTeX mode. Use the spell-mode command to

set it to 1, and Epsilon will highlight misspelled words in LaTeX text. See the

default-spell-options variable for the other bits you can set to customize spell checking in

LaTeX mode.

Also see the latex-non-text-argument variable.

latex-tag-keywords Preference Default: "label"

This variable contains a list of LaTeX keywords, separated by | characters. Tagging commands

like tag-files and list-definitions treat the argument of any command in this list as a tag.

312 Chapter 6. Variables

leave-blank Default: 0

When Epsilon is about to exit, it normally redisplays each mode line one last time just before

exiting, but only if this variable is zero.

line-in-window Default: none

On each screen refresh, Epsilon sets this variable to the line of point within the current window,

counting from zero. If you switch windows or move point, Epsilon will not update this variable

until the next refresh.

line-number-width Preference Buffer-specific Default: 6

Set the draw-line-numbers variable to have Epsilon display a line number to the left of each

line. It fits the line number into the number of columns specified by this variable. When a

number won’t fit, Epsilon displays a * in the first column and shows part of the number.

list-definitions-live-update Preference Default: 1

Bits in this variable control how the list-definitions dialog displays its results. The value 1 makes

it reposition in the original window as you move from one definition to the next, showing each

definition line in context. The value 2 makes it include the source file line number of each

definition it displays in the window’s title.

list-which-definitions Preference Default: 0xff

Bits in this variable determine which items are included in the list of definitions produced by

the list-definitions command. The value 0x1 includes functions, 0x2 includes variables, 0x4

includes macros, 0x8 includes the values of enums, 0x10 includes the names of classes,

structures, unions, and similar items, and 0x20 includes the names of enums. Also see

tag-which-items. Some modes may not distinguish all these types of items.

load-customizations Preference Default: 1

This variable sets whether Epsilon reads its einit.ecm customization file when it starts. A value

of 1 makes Epsilon search for an einit.ecm file and load its definitions. Set it to 0 to disable

reading this file. Also see the record-customizations variable.

load-fail-ok System Default: 0

If Epsilon cannot autoload a called EEL function, it will report an error. An EEL subroutine

may set this variable nonzero to make Epsilon silently ignore such a function call.

load-from-state Default: varies

Epsilon sets this variable to 1 if it loaded its functions from a state file at startup, or 0 if it

loaded only from bytecode files.

313

locate-path-unix Preference Default:

"/{*bin*,etc,home*,lib,opt,root,usr*,var*}/**/"

Under Unix, the locate-file command uses this variable to decide where to look for a file. It

contains part of an extended file pattern that should match those directories where Epsilon

should look. The specified file name will be appended to this value. It’s a good idea to make

sure special file systems like /proc are not matched by the pattern.

mac-framework-dirs Default: (omitted)

On Macintosh systems, the find-linked-file command uses this variable in C mode to help locate

header files stored in frameworks. It contains a list of framework directories to search, separated

by colons. They may contain wildcard characters.

macro-runs-immediately Default: 1

When an EEL function says to run a keyboard macro, Epsilon can do it two ways. Normally

Epsilon enters a recursive edit loop, and executes keys from the macro. When the macro ends,

Epsilon exits the recursive edit loop, and returns to the EEL function that said to run the macro.

This makes keyboard macros behave like functions.

Epsilon can instead simply queue the macro’s keys, without employing any loop. Then when an

EEL function says to run a keyboard macro, Epsilon just records the fact that it’s running a

macro and immediately returns to the EEL function. Later when Epsilon is ready for more input

(perhaps long after the original macro-queuing function has returned), it begins to use the

macro’s keys. An EEL function can get this behavior by temporarily setting the

macro-runs-immediately variable to zero prior to executing a keyboard macro.

mail-quote-pattern Preference Default: "^[>#]"

This variable contains a regular expression that matches the start of a line of text quoted

email-style. Lines matching this pattern signal the commands mail-fill-paragraph and

mail-unquote that a line is quoted.

mail-quote-skip Preference Default: "^[>#]+"

This variable contains a regular expression that matches the portion of a line that

mail-fill-paragraph should preserve when filling.

mail-quote-text Preference Default: "> "

This variable contains the text the mail-quote-region command inserts at the start of each line to

quote it email-style.

major-mode System Buffer-specific Default: "Fundamental"

This variable holds the name of the current major mode for this buffer.

margin-right Preference Buffer-specific Default: 70

This variable holds the current fill column, or right margin. (Also see c-fill-column for the

C mode equivalent.)

314 Chapter 6. Variables

mark Buffer-specific Default: none

This variable holds the buffer position of the mark. Several commands operate on the current

region. The text between the mark and point specifies the region.

mark-rectangle-expands Preference Default: 0

Normally the mark-rectangle command begins defining a zero-width rectangle, setting point

and mark the same. If this variable is nonzero, that command makes the new rectangle have a

width of 1 at the start, by adjusting the current position.

mark-to-column Window-specific Default: -1

The window-specific mark-to-column variable lets you position the mark in a part of a

window where there are no characters. Epsilon uses this variable when it displays a region that

runs to the mark’s position. It’s normally -1, so Epsilon highlights up to the actual buffer

position of the mark. If it’s non-negative in the current window, Epsilon highlights up to the

specified column instead. Epsilon resets mark-to-column to -1 whenever the buffer changes,

or the mark moves from where it was when you last set mark-to-column. (Epsilon only checks

these conditions when it redisplays the window, so you can safely move the mark temporarily.)

mark-unhighlights Preference Default: 0

When Epsilon is already displaying a highlighted region, region-marking commands like

mark-rectangle normally change the type of the region. For example, mark-rectangle will

change a highlighted line region into a rectangular region. If this variable is nonzero, such

commands will instead remove the highlighting when Epsilon is already displaying a

highlighted region of the desired type. For example, mark-line-region will turn off highlighting

if Epsilon is displaying a line region. If this variable is zero, Epsilon does nothing when the

correct type of highlighted region is already being displayed.

matchdelim Preference Default: 1

If nonzero, typing),], or } in C mode displays the corresponding (, [, or { using the

show-matching-delimiter command.

matchend Default: none

Most of Epsilon’s searching primitives set this variable to the far end of the match from the

original buffer position.

matchstart Default: none

Most of Epsilon’s searching primitives set this variable to the near end of the match from the

original buffer position.

max-initial-windows Preference Default: 3

When you name several files on Epsilon’s command line, Epsilon reads all the named files. But

it only displays up to this many in separate windows.

315

mem-in-use Default: varies

This variable holds the amount of space Epsilon is now using for miscellaneous storage (not

including buffer text).

mention-delay Preference Default: 0

The mention() primitive displays its message only after Epsilon has paused waiting for user

input for mention-delay tenths of a second. When Epsilon prompts for another key, it often

displays its prompt in this way.

menu-bar-flashes Preference Default: 2

When you select an item on the menu bar, Epsilon flashes the selected item. This variable holds

the number of flashes. (Console versions only.)

menu-bindings Preference Default: 1

If nonzero, Epsilon puts the key bindings of commands into its menu bar. (Console versions

only.)

menu-command System Default: varies

When the user selects an item from a menu or the tool bar, Epsilon for Windows returns a

special key code, WIN_MENU_SELECT, and sets the menu_command variable to the name of the

selected command. Use assignment, not strcpy() or similar, to set this variable.

menu-file Preference Default: "epsilon.mnu"

Epsilon stores the name of the file it is using to display the menu bar in this variable, in all

environments except Windows. Also see gui-menu-file.

menu-stays-after-click Preference Default: 1

By default, when you click on the menu bar but release the mouse without selecting a

command, Epsilon leaves the menu displayed until you click again. Set the

menu-stays-after-click variable to zero if you want Epsilon to remove the menu when this

happens. (Console versions only.)

menu-width Preference Default: 35

This variable contains the width of the pop-up window of matches that Epsilon creates when

you press ‘?’ during completion. (Console versions only.)

menu-window System Default: none

This variable stores the window handle of the current menu bar, or zero if there is none.

(Console versions only.)

merge-diff-var Preference Default: "DIFFVAR"

The merge-diff command stores the name of the #ifdef variable you select here.

316 Chapter 6. Variables

message-history-size Preference Default: 20000

Epsilon keeps a history of prior messages displayed in the echo area in the buffer #messages#.

The oldest messages are deleted from the top of the buffer whenever it exceeds this size in bytes.

If this variable is zero, most commands avoid writing their messages to a #messages# buffer.

minimal-coloring Preference Default: 0

Set the minimal-coloring variable to 1 to tell Epsilon to limit the amount of coloring it does

in order to make code coloring faster. For C files, Epsilon will color all identifiers, keywords,

numbers, function calls and punctuation the same, using the c-ident color class for all. Epsilon

will still uniquely color comments, preprocessor lines, and strings.

misc-language-fill-mode Preference Default: 0xfffffff

Bits in this variable control whether Epsilon will break long comment lines in various language

modes. Epsilon will break long comment lines in a language if its corresponding bit is on. The

languages and their bits: PostScript 0x1, Conf 0x2, Batch 0x4, Makefile 0x8, Python 0x10,

Visual Basic 0x20, VHDL 0x40, Tcl 0x80, and Ini files 0x100.

mode-extra System Buffer-specific Default: none

Epsilon normally includes this text in each mode line of a window displaying this buffer.

Internet commands use this to display transfer status via the set_mode_message() subroutine.

The mode-more-extra variable is a non-buffer-specific equivalent.

mode-format Preference Default:

" %b%E%M %l,%c %d%p %s%f"

This variable specifies what information Epsilon puts on the mode line. Epsilon substitutes

values for certain %-sequences in the mode line.

Here are the available sequences:

%b The buffer’s file name, or if none, the buffer name. If Epsilon displays the

buffer name, it usually appears in parentheses. The name may be abbreviated if

there’s not enough room. The file name will normally be relative to the current

directory, but see the full-path-on-mode-line variable.

%B The buffer’s file name as an absolute pathname, or if none, the buffer name.

%c The current column number, counting columns from 0.

%C The current column number, counting columns from 1.

%d The current display column, with a < before it, and a space after. However, if

the display column has a value of 0 (meaning horizontal scrolling is enabled,

but the window has not been scrolled), or -1 (meaning the window wraps long

lines), Epsilon substitutes nothing.

%D The current display column, but if the display column is -1, Epsilon substitutes

nothing.

%E Any “extra text” recorded for this buffer by a command, specified by the

mode-extra variable, plus any text specified by the mode-more-extra

variable. These may indicate pending transfer status or similar.

317

%f The name of the current function (in buffers where Epsilon can determine this),

or in some modes, other similar information. See the variables

display-definition and html-display-definition.

%l The current line number. (Also see the draw-line-numbers variable to display

line numbers to the left of text.)

%L The last component of the buffer’s file name (the part after the last / or \), or if

none, the last component of the buffer name.

%m Epsilon substitutes the text “ More ”, but only if characters exist past the end

of the window. If the last character in the buffer appears in the window, Epsilon

substitutes nothing.

%M The buffer’s mode, inside square brackets.

%P Epsilon substitutes the percentage of point through the buffer, followed by a

percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a

percent sign. However, if the bottom of the buffer appears in the window,

Epsilon displays Bot instead (or End if point is at the very end of the buffer).

Epsilon displays Top if the top of the buffer appears, and All if the entire buffer

is visible.

%s Epsilon substitutes “* ” if the buffer’s modified flag has a nonzero value,

otherwise nothing.

%S Epsilon substitutes “*” if the buffer’s modified flag has a nonzero value,

otherwise nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like %2h:%02n%a for “3:45 pm” or

%02H:%02n:%02e for “15:45:21”.

%% Epsilon substitutes a literal “%” character.

%< Indicates that redisplay may omit text to the left, if all of the information will

not fit.

%> Puts any following text as far to the right as possible.

For any numeric substitution, you may include a number between the % and the letter code,

giving the field width: the minimum number of characters to print. You can use the same kinds

of field width specifiers as C’s printf() function. The sequence %4c expands to

“〈Space〉〈Space〉〈Space〉9”, %04c expands to “0009”, and %-4c expands to

“9〈Space〉〈Space〉〈Space〉”.

Also see the variable show-when-idle.

mode-line-at-top Preference Default: 0

If nonzero, Epsilon puts each window’s mode line above the corresponding buffer text.

mode-line-position Preference Default: 3

318 Chapter 6. Variables

The mode-line-position variable specifies how to position the title text in a tiled window.

To set it in an EEL function, use one of the following macros defined in codes.h. (These are the

same as those used by the window_title() primitive.) The TITLELEFT(n) macro, which is

defined as (1 + (n)), positions the title n characters from the left edge of the window. The

TITLERIGHT(n) macro, defined as (-(1 + (n))), positions the title n characters from the

right edge of the window. The TITLECENTER macro, defined as 0, centers the title in the

window.

mode-more-extra System Default: none

Epsilon normally includes this text in each mode line. Some compilation commands use it to

display their status. The mode-extra variable is a buffer-specific equivalent.

modified Buffer-specific Default: 0

If nonzero, the buffer has been modified since it was last read or written.

monochrome Default: varies

This variable is nonzero if Epsilon believes it is running on a monochrome display.

mouse-auto-off Preference Default: 1

If nonzero, Epsilon automatically stops displaying the mouse cursor when you start to type on

the keyboard.

mouse-auto-on Preference Default: 1

If nonzero, Epsilon automatically displays the mouse cursor when it detects mouse motion.

mouse-center-yanks Preference Default: 0

This variable controls the action of the center mouse button, when that button is bound to the

mouse-center command as it usually is. A value of 0, the default, means the button pans, by

calling the mouse-pan command. A value of 1 means the button yanks text from a kill buffer or

clipboard by calling mouse-yank. A value of 2 makes Epsilon yank under Unix, and pan in

other environments. For the preceding values, holding down Shift when clicking always

produces yanking instead of panning. A value of 3 makes Epsilon ignore pressing the center

button.

mouse-dbl-selects System Buffer-specific Default: 0

This variable controls what double-clicking with a mouse button does in a particular buffer. If

zero, double-clicking selects words. If nonzero, Epsilon instead runs the command bound to the

〈Newline〉 key.

mouse-display Default: none

If nonzero, Epsilon is now displaying a mouse cursor. When Epsilon turns on the mouse cursor

automatically due to mouse movement, it sets this variable to 2.

319

mouse-goes-to-tag Buffer-specific Default: 0

If nonzero, double-clicking with the right mouse button on a subroutine name in this buffer

makes Epsilon go to the definition of that subroutine using the pluck-tag command. (In Epsilon

for Windows, use the right mouse button’s context menu to jump to a definition.)

mouse-mask Default: 0x2B (43)

Epsilon will only notice and return mouse events that match bits in this variable.

0x01 (1) MASK_MOVE

0x02 (2) MASK_LEFT_DN

0x04 (4) MASK_LEFT_UP

0x08 (8) MASK_RIGHT_DN

0x10 (16) MASK_RIGHT_UP

0x20 (32) MASK_CENTER_DN

0x40 (64) MASK_CENTER_UP

mouse-panning System Default: 0

Epsilon uses this variable to help it autoscroll when you click the middle mouse button (on

three-button or wheeled mice).

mouse-pixel-x Default: none

This variable contains the horizontal mouse position, in the most accurate form Epsilon

provides.

mouse-pixel-y Default: none

This variable contains the vertical mouse position, in the most accurate form Epsilon provides.

mouse-screen System Default: varies

All keys that represent mouse movements or button activity set the mouse_screen variable to

indicate which screen their coordinates refer to. All tiled windows are on the main screen,

screen 0. When Epsilon for Windows creates a dialog box containing one or more Epsilon

windows, each Epsilon window has its own screen number.

mouse-selection-copies Preference Default: 0

Set this variable to make selecting text with the mouse automatically copy it to a kill buffer, like

copy-region does. A value of 0 means selecting text doesn’t copy it. A value of 1 means

selecting text copies it too. A value of 2 makes Epsilon copy under Unix, but not in other

environments. When Epsilon copies mouse-selected text to a kill buffer under X11, it also sets

the text as X11’s primary selection.

mouse-shift Default: none

Bits in this variable indicate which shift keys were depressed at the time the current mouse

event was enqueued.

320 Chapter 6. Variables

mouse-x Default: none

This variable contains the vertical mouse position as a line number on the screen (counting from

line zero at the top).

mouse-y Default: none

This variable contains the horizontal mouse position as a column number on the screen

(counting from column zero on the left).

mshelp2-collection Preference Default: ""

Under Windows, the context-help command can use the MS-Help2 help engine to display help,

if it’s installed. That help engine uses various help file sources, called collections. By default,

Epsilon tries to select the best collection; set this variable to force it to use a specific collection.

The collection name appears in the URL the help engine displays for each topic.

must-build-mode Buffer-specific Default: 0

Epsilon “precomputes” most of the text of each mode line, so it doesn’t have to figure out what

to write each time it updates the screen. Setting this variable nonzero warns Epsilon that mode

lines must be rebuilt for all windows displaying this buffer. Epsilon resets the variable to zero

after every screen update.

narrow-end Buffer-specific Default: 0

Epsilon ignores the last narrow-end characters of the buffer, neither displaying them nor

allowing any other access to them. But Epsilon does include them when it writes the buffer to a

file, and counts them in the total size of the buffer.

narrow-start Buffer-specific Default: 0

Epsilon ignores the first narrow-start characters of the buffer, neither displaying them nor

allowing any other access to them. But Epsilon does include them when it writes the buffer to a

file, and counts them in the total size of the buffer.

national-keys-not-alt Preference Default: 2

When Epsilon for Unix runs as a curses-style terminal program (not an X11 program), it can

interpret key codes in the range 128–255 either as national characters (accented characters) or

as Alt versions of other characters. Set this variable to 1 for the former interpretation or 0 for

the latter one. Any other value makes Epsilon for Linux provide national characters, and

Epsilon for FreeBSD provide Alt keys. (This is intended to accommodate the different console

settings on the two systems.) If you need to type accented characters in Epsilon for FreeBSD

when it runs outside X, set this variable to 1.

near-pause Preference Default: 50

The find-delimiter and show-matching-delimiter commands pause this many hundredths of a

second, when they don’t have to reposition the screen to a different part of the buffer in order to

show the matching delimiter.

321

need-rebuild-menu System Default: 0

Epsilon sets this nonzero to indicate that it must rebuild the contents of its menu bar.

new-buffer-translation-type Preference Default: 5

When you create a new buffer or file, Epsilon sets its translation-type variable to this

variable’s value. The translation type determines how Epsilon writes or reads a buffer.

A value of 0 (FILETYPE_BINARY) makes Epsilon do no line translation, 1 (FILETYPE_MSDOS)

makes Epsilon strip 〈Return〉 characters when reading and insert them when writing, 2

(FILETYPE_UNIX) makes Epsilon do no line translation, but indicates that the file contains text,

3 (FILETYPE_MAC) makes Epsilon replace 〈Return〉 characters with 〈Newline〉 characters when

reading, and replace 〈Newline〉 characters with 〈Return〉 characters when writing.

The default, 5 (FILETYPE_AUTO), makes Epsilon use the usual type for this operating system:

Unix files under Unix, MS-DOS files elsewhere.

For remote files, those that use a URL syntax, Epsilon uses the

fallback-remote-translation-type variable instead. Also see the

default-translation-type variable.

new-c-comments Preference Default: 1

If nonzero, Epsilon creates a comment in C mode using the // syntax, rather than the /* */

syntax. Changing this setting won’t affect buffers already in C mode; restarting Epsilon is one

way to make the change take effect.

new-file-ext Preference Default: ".c"

The new-file command creates new buffers with an associated file name that uses this extension.

Some modes look at the extension of a buffer’s file name to determine how to behave; for

example, C mode’s syntax highlighting sets its list of keywords differently for C++ buffers than

for C buffers.

new-file-mode Preference Default: "c-mode"

The new-file command creates new buffers set to use this mode. The specified mode-setting

command will be run to initialize the buffer.

new-search-delay Preference Default: 250

In commands that present a list of choices and automatically search through the list when you

type text, Epsilon uses this variable to determine how long a delay must transpire between

keystrokes to signal the start of new search text. The delay is in .01 second units. For example,

if you type “c”, then immediately “o”, Epsilon will move to the first entry in the list that starts

with “co”. But if you pause for more than new-search-delay before typing “o”, Epsilon

begins a new search string and goes to the first entry that starts with “o”.

Currently only the edit-variables command does this kind of searching.

322 Chapter 6. Variables

normal-cursor Preference Default: 98099

This variable holds the shape of the cursor in insert mode (as opposed to overwrite mode). It

contains a code that specifies the top and bottom edges of the cursor, such as 3006, which

specifies a cursor that begins on scan line 3 and extends to scan line 6 on a character box. The

topmost scan line is scan line 0.

Scan lines above 50 in a cursor shape code are interpreted differently. A scan line number of 99

indicates the highest-numbered valid scan line (just below the character), 98 indicates the line

above that, and so forth. For example, a cursor shape like 1098 produces a cursor that extends

from scan line 1 to the next-to-last scan line, one scan line smaller at top and bottom than a full

block cursor.

See normal-gui-cursor for the Windows or X11 equivalent.

normal-gui-cursor Preference Default: 100002

This variable holds the shape of the caret (the text cursor) in insert mode (as opposed to

overwrite mode) in the Windows and X11 versions of Epsilon. It contains a code that specifies

the height and width of the caret and a vertical offset, each expressed as a percentage of the size

of a character in pixels. For example, a width of 100 indicates a caret just as wide as a character.

Values close to 0 or 100 are absolute pixel counts, so a width of 98 is two pixels smaller than a

character. A width of exactly zero means use the default width.

All measurements are from the top left corner of the character cell. A nonzero vertical offset

moves the caret down from its usual starting point at the top left corner.

In EEL programs, you can use the GUI_CURSOR_SHAPE() macro to combine the three values

into the appropriate code; it simply multiplies the height by 1000 and the offset by 1,000,000,

and adds both to the width. So the default Windows caret shape of GUI_CURSOR_SHAPE(100,

2, 0), which specifies a height of 100% of the character size and a width of 2 pixels, is

encoded as the value 100,002. The value 100100 provides a block cursor, while 99,002,100

makes a good underline cursor. (It specifies a width of 100%, a height of 2 pixels, and an offset

of 99 putting the caret down near the bottom of the character cell.) The CURSOR_SHAPE()

macro serves a similar purpose for console versions of Epsilon.

The X11 version of Epsilon can only change the cursor shape if you’ve provided an

Epsilon.cursorstyle:1 resource (see page 7).

only-file-extensions System Default: none

If non-null, file name completion only finds files with extensions from this list. Each extension

must include the . character and be surrounded by | characters.

opsys Default: varies

The opsys variable tells which operating system version of Epsilon is running, using the

following macros defined in codes.h. OS_WINDOWS (or synonym OS_DOS), defined as 1,

indicates one of the Windows versions (or else the DOS version) is running. (See the is-gui

variable to distinguish these.) OS_OS2, defined as 2, indicates the OS/2 version is running.

OS_UNIX, defined as 3, indicates Epsilon is running on a platform with UNIX-derived internals:

Mac OS X, Linux, or FreeBSD. (See the is-unix variable to distinguish these.)

323

over-mode Preference Buffer-specific Default: 0

If nonzero, typing ordinary characters doesn’t insert them between existing characters, but

overwrites the existing characters on the line.

overwrite-cursor Preference Default: 0099

This variable holds the shape of the cursor in overwrite mode (as opposed to insert mode). See

the description of normal-cursor for details. See overwrite-gui-cursor for the Windows

or X11 equivalent.

overwrite-gui-cursor Preference Default: 100100

This variable holds the shape of the caret (the text cursor) in overwrite mode (as opposed to

insert mode) in the Windows or X11 versions of Epsilon. See the description of

normal-gui-cursor for details.

paging-centers-window Preference Default: 1

If the paging-centers-window variable is nonzero, the next-page and previous-page

commands will leave point on the center line of the window when you move from one page to

the next. Set this variable to zero if you want Epsilon to try to keep point on the same screen

line as it pages. When paging-centers-window is zero, these commands won’t position

point at the start (end) of the buffer when you page up (down) from the first (last) screenful of

the buffer, as they normally do.

paging-retains-view Default: 0

If the paging-retains-view variable is nonzero when Epsilon displays a buffer in a pop-up

window, scrolling up or down past the end of the buffer won’t remove the pop-up window.

Epsilon will ignore attempts to scroll too far.

path-list-char Preference Default: ’;’, or ’:’ in Unix

This variable contains the character separating the directory names in a configuration variable

like EPSPATH.

path-sep Preference Default: ’\’, or ‘/’ in Unix

This variable contains the character for separating directory names. It is set to ‘\’ under

Windows, ‘/’ under Unix.

perl-align-contin-lines Preference Default: 48

By default, the Perl indenter tries to align continuation lines under parentheses and other

syntactic items on prior lines. If Epsilon can’t find anything on prior lines to align with, or if

aligning the continuation line would make it start past column perl-align-contin-lines,

Epsilon uses a fixed indentation: two levels more than the original line, plus the value of the

variable perl-contin-offset (normally zero).

Set this variable to zero if you don’t want Epsilon to ever try to align continuation lines under

syntactic features in previous lines. If zero, Epsilon indents continuation lines by one level

(normally one tab stop), plus the value of the variable perl-contin-offset (which may be

negative).

324 Chapter 6. Variables

perl-auto-show-delim-chars Preference Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Perl mode. Epsilon will search for and highlight the match of

each delimiter.

perl-brace-offset Preference Default: 0

In Perl mode, Epsilon offsets the indentation of a left brace on its own line by the value of this

variable. The perl-closeback variable also helps to control this placement.

perl-closeback Preference Default: 1

If nonzero, Perl mode aligns a right brace character that ends a block with the line containing

the matching left brace character. If zero, Perl mode aligns the right brace character with the

first statement inside the block. Additionally, the value 2 makes Epsilon indent lines starting

with a right parenthesis so they match the start of the line with its matching left parenthesis, not

the left parenthesis itself.

perl-contin-offset Preference Default: 0

In Perl mode, Epsilon offsets its usual indentation of continuation lines by the value of this

variable. The variable only affects lines that Epsilon can’t line up under the text of previous

lines.

perl-detect-expression-pattern Preference Default: (omitted)

Perl mode coloring uses the regular expression pattern in this variable to help it resolve certain

syntax issues with the / operator. It matches keywords that typically precede patterns. Perl

mode assumes an undecorated identifier not in this list is a subroutine returning a number, not a

subroutine taking a pattern expression as an argument.

perl-indent Preference Buffer-specific Default: 0

Perl mode indents each additional level of nesting by this many columns. If the variable is less

than or equal to zero, Epsilon uses the value of tab-size instead. Set this variable if you want

Epsilon to use one number for displaying tab characters, and a different number for indenting

Perl code. (Epsilon will indent using a combination of spaces and tabs, as necessary.)

perl-label-indent Preference Default: 0

This variable provides the indentation of lines starting with labels in Perl mode. Normally,

Epsilon moves labels to the left margin.

perl-tab-override Preference Default: 8

If you want the width of a tab character in Perl mode buffers to be different than in other

buffers, set this variable to the desired value. Perl mode will change the buffer’s tab size to the

specified number of columns. Setting this variable doesn’t change existing buffers; set the

tab-size variable for that.

325

perl-top-braces Preference Default: 0

Epsilon indents the braces of the top-level block of a function by the number of characters

specified by this variable. By default, Epsilon puts such braces at the left margin.

perl-top-contin Preference Default: 3

Epsilon indents continuation lines outside of any function body by the number of characters

specified by this variable, whenever it cannot find any text on previous lines to align the

continuation line beneath.

perl-top-struct Preference Default: 8

When a top-level definition appears over several lines, Epsilon indents the later lines by the

number of characters specified in this variable, rather than the value of perl-top-contin.

perl-topindent Preference Default: 1

If nonzero, Epsilon indents top-level statements in a function. If zero, Epsilon keeps such

statements at the left margin.

perldoc-command Preference Default: "perldoc"

Epsilon’s perldoc command runs this external program to retrieve Perl documentation.

permanent-menu System Default: 0

This variable records whether you want a permanent menu bar. Set it only with the

toggle-menu-bar command. (GUI versions of Epsilon don’t use this variable.)

permit-window-keys System Default: 0

Epsilon only recognizes user attempts to scroll by clicking on the scroll bar, or to resize the

window, when it waits for the first key in a recursive edit level. Within an EEL command, when

an EEL command requests a key, Epsilon normally ignores attempts to scroll, and postpones

acting on resize attempts. An EEL command can set the permit_window_keys variable to

allow these things to happen immediately, and possibly redraw the screen. Bits in the variable

control these activities: set the PERMIT_SCROLL_KEY bit to permit immediate scrolling, and set

PERMIT_RESIZE_KEY to permit resizing. Setting the PERMIT_WHEEL_KEY bit tells Epsilon to

generate a WIN_WHEEL_KEY key event after scrolling due to a wheel roll on a Microsoft

IntelliMouse.

php-align-contin-lines Preference Default: 48

By default, the PHP indenter tries to align continuation lines under parentheses and other

syntactic items on prior lines. If Epsilon can’t find anything on prior lines to align with, or if

aligning the continuation line would make it start past column php-align-contin-lines,

Epsilon uses a fixed indentation: two levels more than the original line, plus the value of the

variable php-contin-offset (normally zero).

Set this variable to zero if you don’t want Epsilon to ever try to align continuation lines under

syntactic features in previous lines. If zero, Epsilon indents continuation lines by one level

(normally one tab stop), plus the value of the variable php-contin-offset (which may be

negative).

326 Chapter 6. Variables

php-auto-show-delim-chars Preference Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in PHP mode. Epsilon will search for and highlight the match of

each delimiter.

php-brace-offset Preference Default: 0

In PHP mode, Epsilon offsets the indentation of a left brace on its own line by the value of this

variable. The php-closeback variable also helps to control this placement.

php-closeback Preference Default: 1

If nonzero, PHP mode aligns a right brace character that ends a block with the line containing

the matching left brace character. If zero, PHP mode aligns the right brace character with the

first statement inside the block. Additionally, the value 2 makes Epsilon indent lines starting

with a right parenthesis so they match the start of the line with its matching left parenthesis, not

the left parenthesis itself.

php-comment-style Preference Default: 1

When you use the indent-for-comment command to insert a comment in PHP code, this variable

controls which type of comment Epsilon inserts. The value 1 inserts #, the value 2 inserts //,

and any other value inserts /*.

php-contin-offset Preference Default: 0

In PHP mode, Epsilon offsets its usual indentation of continuation lines by the value of this

variable. The variable only affects lines that Epsilon can’t line up under the text of previous

lines.

php-indent Preference Buffer-specific Default: 0

PHP mode indents each additional level of nesting by this many columns. If the variable is less

than or equal to zero, Epsilon uses the value of tab-size instead. Set this variable if you want

Epsilon to use one number for displaying tab characters, and a different number for indenting

PHP code. (Epsilon will indent using a combination of spaces and tabs, as necessary.)

php-label-indent Preference Default: 0

This variable provides the indentation of lines starting with labels in PHP mode. Normally,

Epsilon moves labels to the left margin.

php-tab-override Preference Default: 8

If you want the width of a tab character in PHP mode buffers to be different than in other

buffers, set this variable to the desired value. PHP mode will change the buffer’s tab size to the

specified number of columns. Setting this variable doesn’t change existing buffers; set the

tab-size variable for that.

327

php-top-braces Preference Default: 0

Epsilon indents the braces of the top-level block of a function by the number of characters

specified by this variable. By default, Epsilon puts such braces at the left margin.

php-top-contin Preference Default: 3

Epsilon indents continuation lines outside of any function body by the number of characters

specified by this variable, whenever it cannot find any text on previous lines to align the

continuation line beneath.

php-top-level-indent Preference Default: 0

Top-level PHP code will be indented to this column.

php-top-struct Preference Default: 8

When a top-level definition appears over several lines, Epsilon indents the later lines by the

number of characters specified in this variable, rather than the value of php-top-contin.

php-topindent Preference Default: 1

If nonzero, Epsilon indents top-level statements in a function. If zero, Epsilon keeps such

statements at the left margin.

point Buffer-specific Default: none

This variable stores the current editing position. Its value denotes the number of characters from

the beginning of the buffer to the spot at which insertions happen.

position-window-on-screen-line System Buffer-specific Default: 50

When Epsilon displays a window and discovers that some command has moved point to a part

of the buffer outside the window, it centers the window around point’s new position. Set this

variable to change this positioning. It represents the approximate percentage of window lines

that should appear above point. For instance, a setting of 25 on a 40 line window positions point

near the window’s tenth line.

postscript-auto-show-delim-chars Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in PostScript mode. Epsilon will search for and highlight the

match of each delimiter.

preserve-filename-case Preference Default: 0

Bits in this variable control whether Epsilon displays certain uppercase file names as lowercase,

whether uppercase letters in file names are carried over to their corresponding buffer names, and

various related settings.

Set the 1 bit to tell Epsilon to use the case of file names exactly as retrieved from the operating

system. By default, on case-insensitive file systems like VFAT or NTFS, Epsilon changes

328 Chapter 6. Variables

all-uppercase file names like WIN.INI to lowercase like win.ini. It never alters the case of a file

name that contains any lowercase letters. (Epsilon never changes the case of filenames under

Unix regardless of this bit.)

By default, the buffer name Epsilon chooses when you read a file uses only lowercase letters,

even if the corresponding file name uses uppercase. Set the 2 bit if you want buffer names to

match the case of their file names. (Setting this variable doesn’t rename existing buffers.)

Set the 4 bit if you want Epsilon to fold case when comparing buffer names during completion

and grep. This and the following flag are most useful when combined with the previous flag.

Set the 8 bit if you want sorting by buffer or file name in a bufed listing to fold case.

preserve-session Preference Default: 6

When this variable is 6, Epsilon writes a session file when it exits, and reads one when it starts.

Set it to 2 to save the session every time you exit, but not to restore the session by default. Set it

to 4 to restore the session normally (see the session-always-restore variable) but not to

save the session. The value 0 does neither. (The value 1 does both, like 6, for compatibility with

previous versions.)

preserve-session-flags System Default: 0

Epsilon uses this variable internally to help decide whether or not to write a session file when

you exit. It records whether it read a session file at startup, or later due to the read-session

command, or both.

prev-cmd Default: none

Some commands behave differently depending on what command preceded them. To get this

behavior, the command acts differently if prev-cmd is set to a certain value and sets this-cmd

to that value itself. Epsilon copies the value in this-cmd to prev-cmd and then clears

this-cmd each time through the main loop.

print-color-scheme Preference Default: "standard-gui"

When Epsilon for Windows prints on color printers, you can tell it to use a different color

scheme than it uses for on-screen display. Put the name of the color scheme in this variable. If

"", Epsilon uses the same color scheme as for on-screen display.

print-destination Preference Default: "lpt1"

Whenever Epsilon for Windows doesn’t use a standard printing dialog but prompts for a device

name or command, it records the name here.

If the print-destination variable begins with the ! character, Epsilon interprets the

remainder of the value as a command line to execute in order to print a file. Epsilon substitutes

the file to be printed for any %f sequence in the command line. For example, if your system

requires you to type “netprint filename” to print a file, set print-destination to !netprint

%f and Epsilon will run that command, passing it the file name of the temporary file it generates

holding the text to print. The print-destination can include any of the file name template

sequences, such as %p for the path to the file to print. It can also include %t, which substitutes

the name of the buffer or file being printed (which will be different from the name of temporary

file with the text to print). It may be used as a title or heading.

329

print-destination-unix Preference Default: !lpr "%f"

Under Unix, this variable tells Epsilon how to print. If it names a file, Epsilon will print by

simply writing text to that file. But if it starts with a ! character (as is usual), Epsilon will

interpret the text after the ! as a command line to execute in order to print a file.

Epsilon substitutes the file to be printed for any %f sequence in the command line. For example,

if your system requires you to type “netprint filename” to print a file, set print-destination

to !netprint %f and Epsilon will run that command, passing it the file name of the temporary

file it generates holding the text to print. The print-destination can include any of the file

name template sequences, such as %p for the path to the file to print.

print-doublespaced Preference Default: 0

Set this variable nonzero if you want Epsilon for Windows to leave alternate lines blank when

printing.

print-heading Preference Default: 15

Epsilon for Windows prints a heading at the top of each page. Set this variable to control what it

includes. The value 1 makes Epsilon include the file name, 2 makes Epsilon include a page

number, and 4 makes Epsilon include the current date. Combine 1 with 8 and Epsilon will

display the file’s full path instead of just its base name, abbreviating if needed to fit on one line.

You can add these values together; the default value includes all the above bit values.

print-in-color Preference Default: 1

By default, Epsilon for Windows will print in color on color printers, and in black & white on

non-color printers. You can set the print-in-color variable to 0, if you don’t want Epsilon to ever

print in color, or to 2 if you want Epsilon to attempt to use colors even if the printer doesn’t

appear to be a color printer. (Some printers will substitute shades of grey.) The value 1

produces color printing only on color printers.

print-line-numbers Preference Default: 0

Epsilon for Windows will include line numbers in printed output if this variable is nonzero. (To

display line numbers on the screen, see the draw-line-numbers variable.)

print-long-lines-wrap Preference Default: 1

Epsilon for Windows will truncate long lines in printed output if this variable is zero. Otherwise

they will be wrapped to the next line.

print-tabs Preference Default: 0

If the print-tabs variable is zero, Epsilon will make a copy of any text to be printed and

convert tab characters within it to spaces, prior to sending it to the printer. If you want Epsilon

to send the text to be printed without converting tabs first, set this variable to one.

330 Chapter 6. Variables

process-coloring-rules Preference Default: 0x7F

This variable controls how Epsilon applies colors to certain elements in concurrent process

buffers. The value 0x1 lets Epsilon apply colors to prompts and user input. The value 0x2 lets

Epsilon interpret certain ANSI escape sequences that switch output colors. The value 0x4 lets

Epsilon adjust the requested background color from such escape sequences for better

readability. The value 0x8 makes Epsilon interpret backspaces to make some progress

messages and similar look better. The value 0x10 makes Epsilon remove any remaining ANSI

escape sequences. The value 0x20 makes Epsilon remove certain xterm-specific escape

sequences. The value 0x40 makes Epsilon interpret Unicode UTF-8 encoding in the output.

Add these bit values together to enable multiple rules.

process-completion-dircmds Preference Default:

"</word>(cd|chdir|pushd) +"

When you press 〈Tab〉 in a process buffer to perform file name completion, Epsilon looks at the

word just before the partial file name. If it matches this pattern, Epsilon only offers directory

names as completions.

process-completion-style Preference Default: 2

You can press 〈Tab〉 in the process buffer to have Epsilon finish typing the name of a command

or file. Bits in this variable control how Epsilon provides that completion when there are

multiple matches.

A value of 1 makes Epsilon use Windows-style completion, as in cmd.exe; press 〈Tab〉 to show

the first match; press it again to show the next match, or press Shift-〈Tab〉 to show the previous

match. Without this bit, Epsilon uses Unix-style completion: if 〈Tab〉 can’t add any characters,

it tells how many matches there are, and a second press shows all the matches.

A value of 2 makes Epsilon skip the directory entries . and .. and any other entries starting

with a . when listing matches. This is the default.

A value of 4 modifies how Epsilon does Unix-style completion. By default, if there are a small

number of matches, Epsilon displays them in the echo area. If there are many matches, Epsilon

lists them in the buffer. With this bit flag, Epsilon always lists the matches in the buffer.

A value of 8 makes Epsilon display the full path of the completed file name when there is only

one match.

process-completion-windows-programs Preference Default: "exe,bat,cmd,com"

Under Windows, Epsilon looks for executable programs on the path to provide completion in a

process buffer. It uses this list of extensions to determine which programs are executable. If

your command processor is configured to directly run additional types of files, you can modify

this list.

process-current-directory System Default: varies

When you use a concurrent process, Epsilon stores its current directory in this variable. Setting

this variable switches the concurrent process to a different current directory.

To set the variable from EEL, use the syntax process_current_directory = new value;.

Don’t use strcpy(), for example, to modify it.

331

Under Windows 95/98/ME, Epsilon only transmits current directory information to or from the

process when the process prompts for input. Under Windows NT/2000/XP and later Windows

versions, EEL code scans prompts to detect the process’s current directory and sets this

variable; setting has no effect. Under Unix, Epsilon tries to retrieve the process’s current

directory whenever you access this variable, but setting it has no effect. See the variable

use-process-current-directory for more details.

process-echo Preference Buffer-specific Default: 2

This variable controls how Epsilon handles character echoing in process buffers. Sometimes

changing this setting produces better results with particular replacement command processors

(shells). A value of 0 makes Epsilon suppress echoing, assuming the subprocess will do it. A

value of 1 forces it on, 2 makes Epsilon select an appropriate behavior in a static fashion, and 3

makes Epsilon select an appropriate behavior dynamically, each time it sends input to a process.

(Under Unix, 2 and 3 act the same as 1.)

Adding 4 to one of the above values changes which line termination character Epsilon sends,

from its usual choice of 〈Return〉 or 〈Newline〉 (depending on the platform) to the other one.

Adding 8 makes the filter-region command run the process synchronously; by default it runs

synchronously only when replacing text in a buffer, not when sending output to a new buffer.

process-enter-whole-line Preference Default: 1

Bits in this variable control what happens when you press 〈Enter〉 in a process or ssh buffer.

The 1 bit makes pressing 〈Enter〉 in the concurrent process buffer move to the end of the current

line before sending it to the process, but only when in a line that has not yet been sent to the

process. When you press 〈Enter〉 from some earlier line in the buffer, the 2 bit makes Epsilon

copy the entire current line (except for the prompt) to the end of the buffer (making it easier to

repeat a command), instead of inserting a new line. The 4 bit makes Epsilon position the cursor

at the start of a line retrieved from command history with Alt-n or Alt-p, not at its end. (This

last bit also affects telnet buffers.)

process-exit-status System Buffer-specific Default: varies

Epsilon sets this variable when a concurrent process exits, to indicate its exit code. Before the

process exits, it contains the value PROC_STATUS_RUNNING.

process-max-size Preference Buffer-specific Default: -1

If this variable contains a positive number, Epsilon will delete lines from the start of a process

buffer whose size exceeds this value.

process-next-error-options Preference Default: 7

Commands like next-error parse compiler error messages and load the file they indicate. They

try to determine the directory of the file based on the output of the compiler, plus

directory-switching output from building tools like Make, but sometimes they may not be able

to determine the right directory. Bits in this variable say what to do when that happens.

Bit 1 enables finding an already-loaded file with the same basename, regardless of its directory.

Bit 2 makes Epsilon display a message whenever this happens. If Epsilon still can’t find the file,

bit 4 makes it display a message instead of creating a new buffer for the file.

332 Chapter 6. Variables

process-output-to-window-bottom Preference Default: 1

When output arrives from the concurrent process, Epsilon scrolls the text so the end of the

output appears on the last line of the window, if possible, like a traditional console window. Set

this variable to zero to disable this feature.

process-pass-drive-directories Preference Default: 0

When Epsilon for Windows starts a process, it passes its own current directory settings to the

process. Each drive has its own current directory setting. By default, Epsilon doesn’t pass its

current directory setting for any network or removable drives, because passing current directory

information for these types of drives can be slow. Set this variable to 1 if you want Epsilon to

pass its current directory setting for each network drive, 2 for each removable drive, or 3 for

both.

process-prompt-pattern Preference Default: ""

Under Windows NT/2000/XP and later Windows versions, certain process buffer functions like

completion, or interpreting compiler error messages, require Epsilon to determine the current

directory of the command processor running there. Epsilon does this by examining each prompt

from cmd.exe, such as C:\WINNT>. If you’ve set a different format for the prompt, set this

variable to tell Epsilon how to retrieve the directory name from it.

If this variable is nonempty, it must be a regular expression pattern that matches a prompt. The

first pair of parentheses (not counting any using the syntax “(?:)”) must match the directory

portion of the prompt. Epsilon will try to parse the buffer using this pattern starting from the

beginning of the last line of the prompt. The pattern may either match from that position

forward, or from that position backward (to handle multi-line prompts).

As an example, say you use Cygwin’s bash shell and set the PS1 prompt variable to

'\u@\h\w\n$', producing a two-line prompt, with a user name, an at sign, a machine name,

and the current directory on the first line. Set process-prompt-pattern to “@<^wspace>+

(.+)<newline>”. This uses the machine name to locate the start of the current directory on the

previous line. The default cmd.exe prompt of PG could use a pattern of “(.*)%>”, which

selects all the text on a line before a final > as the directory name.

In non-Windows environments, Epsilon uses a different method to determine the command

processor’s current directory, so setting this variable is unnecessary.

process-spell-word-pattern Preference Default: (omitted)

The Spell minor mode uses this regular expression pattern to find misspelled words in Process

mode. It doesn’t exclude any words based on syntax rules.

process-tab-size Preference Default: 8

Epsilon sets the displayed width of 〈Tab〉 characters in the process buffer to this value.

process-view-error-lines Preference Default: 0

If this variable is nonzero, it tells the next-error and previous-error commands to not only show

the source line in error, but the process buffer containing the error message. It shows the latter

in a window at the bottom of the screen whose height is determined by this variable.

You can force Epsilon to wrap or scroll long lines in such a window by setting the

wrap-view-error-lines variable.

333

process-warn-on-exit Preference Default: 0

If this variable is set to 1, whenever you try to exit Epsilon and a concurrent process is running

(or there’s a connected telnet or ssh buffer), Epsilon will use the exit-process command to try to

make it exit. If the process refuses to exit, Epsilon will display an error message, and won’t exit.

If this variable is set to 2 and there’s a running process or a connected telnet or ssh buffer,

Epsilon will prompt for permission to exit, but it won’t use exit-process.

process-warn-on-killing Preference Default: 0

By default, when you kill a buffer with an active concurrent process (or a telnet or ssh buffer

with an active connection), Epsilon asks it to exit using the exit-process command, which types

“exit” to it. If that doesn’t cause it to exit, Epsilon asks if you want to kill the buffer anyway,

disconnecting it from the process (which it tries to kill in stronger ways). (With telnet buffers,

Epsilon simply disconnects, and doesn’t send an “exit” command.)

Set this variable to 1 if you want Epsilon to prompt before doing anything, when a buffer you’ve

said to kill contains an active process. If you confirm that it’s OK to try to exit the process,

Epsilon will then proceed as above.

Set this variable to 2 if you want Epsilon to simply display an error message when you try to

kill a buffer with an active process.

process-yank-confirm Preference Default: 2

If you yank this number of lines or more at a process buffer prompt, Epsilon will ask if you

really mean to have them immediately executed. Set this variable to zero to disable this warning.

prompt-with-buffer-directory Preference Default: 2

The prompt-with-buffer-directory variable controls how Epsilon uses the current

directory at file prompts. When this variable is 2, the default, Epsilon inserts the current buffer’s

directory at many file prompts. This makes it easy to select another file in the same directory.

You can edit the directory name, or you can begin typing a new absolute pathname right after

the inserted pathname. Epsilon will delete the inserted pathname when it notices your absolute

pathname. This behavior is similar to Gnu Emacs’s.

A setting of 3 makes Epsilon insert the current buffer’s directory in the same way, but keeps

Epsilon from automatically deleting the inserted pathname if you type an absolute one.

When prompt-with-buffer-directory is 1, Epsilon temporarily changes to the current

buffer’s directory while prompting for a file name, and interprets file names relative to the

current directory. This behavior is similar to the “pathname.e” extension available for previous

versions of Epsilon.

When prompt-with-buffer-directory is 0, Epsilon doesn’t do anything special at file

prompts. Relative file names will be interpreted based on the global current directory set with

the cd command, not any directory associated with the current buffer.

pull-word-from-tags Preference Default: 2

This variable determines whether the pull-word command will look for possible completions in

the current tag file. If 0, it won’t. If 1, it will, but only if a tag file is already loaded. If 2, it will

load and tag file if necessary and then look.

334 Chapter 6. Variables

push-cmd Preference Default: "make"

This variable holds the default command line for running another program. The variable is a

template based on the current file name, so you can set it to automatically operate on the current

file. Epsilon substitutes pieces of the current file name for codes in the template, as follows

(examples are for the file c:\dos\read.me):

%p The current file’s path (c:\dos\).

%b The base part of the current file name (read).

%e The extension of the current file name (.me).

%f The full name of the current file (c:\dos\read.me).

%r The name of the file relative to the current directory. (read.me if the current

directory is c:\dos, dos\read.me if the current directory is c:\, otherwise

c:\dos\read.me).

%x The full pathname of the directory containing the Epsilon executable.

%X The full pathname of the directory containing the Epsilon executable, after

converting all Windows long file names to their equivalent short name aliases.

push-cmd-unix-interactive Preference Default: "xterm &"

When Epsilon for Unix runs as an X11 program, the push command executes this command

when it needs to start an interactive shell. (See push-cmd-unix-macos-interactive for the

Mac OS X version.)

push-cmd-unix-macos-interactive Preference Default:

"xterm || /opt/X11/bin/xterm &"

When Epsilon for Unix runs as an X11 program under Mac OS X, the push command executes

this command when it needs to start an interactive shell.

python-auto-show-delim-chars Preference Default: "([])"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Python mode. Epsilon will search for and highlight the match

of each delimiter.

python-delete-hacking-tabs Preference Default: 10

This variable controls the behavior of the 〈Backspace〉 key in Python mode. It can be set to

change tabs to spaces, or to delete multiple spaces at once under certain conditions.

See the delete-hacking-tabs variable for details on the meaning of the various bits.

python-indent Preference Default: 4

Each level of indentation in Python mode will occupy this many columns.

python-indent-to-comment Preference Default: 1

If nonzero, Python mode typically indents each line to match the previous nonblank line. If

zero, Python mode typically indents each line to match the previous nonblank, noncomment

line.

335

python-indent-with-tabs Preference Default: 0

If nonzero, Python mode indents using tabs. This variable applies to newly-created buffers only,

and serves to initialize the indent-with-tabs variable in Python mode. Set the latter to

change this setting for the current buffer only.

python-tab-override Preference Default: 8

If you want the width of a tab character in Python buffers to be different than in other buffers,

set this variable to the desired value. Python mode will change the buffer’s tab size to the

specified number of columns. Setting this variable doesn’t change existing buffers; set the

tab-size variable for that.

python-language-level Preference Default: 3

Set this variable to 2 if you want syntax highlighting to color only Python 2 keyword names, not

those only in Python 3.

quiet-write-state System Default: 0

If this variable is nonzero, the write-state command won’t prompt, but simply write the state to

the file it would offer as a default.

readonly-pages Preference Default: 1

In a read-only buffer you can use the 〈Space〉 and 〈Backspace〉 keys to page forward and back

more conveniently. Other inserting keys display an error message. Set this variable to zero if

you want these keys to display an error message, not page.

readonly-warning Preference Default: 3

Bits in this variable control Epsilon’s action when it reads a read-only file:

ROWARN_MSG (1) Epsilon displays a warning message.

ROWARN_BUF_RO (2) Epsilon sets the buffer read-only.

ROWARN_BELL (4) Epsilon beeps.

ROWARN_GREP (8) Postpone the above actions during multi-file search.

ROWARN_REFRESH (16) Postpone the above actions during refresh-files.

Add these together to get multiple actions. Epsilon uses the ROWARN_GREP and

ROWARN_REFRESH bits internally, to alter its own behavior during the execution of particular

commands. They’re not intended for use in other contexts.

recall-id System Default: none

Epsilon’s line input subroutines let you recall previous responses to each prompt. Epsilon

normally keeps track of which responses go with which prompts by recording the type of

response (file name, buffer name, etc.) and the name of the command that prompted for the text.

A command can tell Epsilon to use a different “handle” for a prompt by setting the recall-id

variable to a string containing the handle. For example, if you wrote three new EEL commands

and wanted them to share previous responses, you could include the line save_var

recall_id = "my_responses"; in each command prior to calling the input function.

336 Chapter 6. Variables

recall-longest-response Preference Default: 10,000

Epsilon saves your responses to each prompt, except those longer than specified by this variable.

recall-maximum-session Preference Default: 500,000

Epsilon saves previous responses to all prompts in its session file, so you don’t have to type

them in again. It uses up to recall-maximum-session characters in a session file for previous

responses, discarding the oldest unrecalled responses when necessary.

recall-maximum-size Preference Default: 500,000

Epsilon saves previous responses to all prompts, so you don’t have to type them in again. It

retains up to recall-maximum-size bytes of previous responses, discarding the oldest

unrecalled responses when necessary.

recall-prior-response-options Preference Default: 0

Epsilon remembers your previous responses at virtually all prompts, and can recall them. The

recall-prior-response-options variable controls how Epsilon does this. Bits in the

variable control particular aspects of Epsilon’s behavior. Add them together to customize the

behavior you want.

By default, keys like 〈Up〉 at a prompt display a list of all previous responses to that prompt.

You can then select one, maneuvering in the list using normal Epsilon commands. Set the 1 bit

to make 〈Up〉 and 〈Down〉 instead substitute prior responses in place, without displaying a list.

You can still use Alt-〈Up〉 to display the list.

Set the 2 bit to do the same for search prompts. (This doesn’t change Epsilon’s behavior during

incremental search, only in non-incremental mode, grep, replace commands, and so forth.)

If you’ve set Epsilon to substitute prior responses in place, pressing 〈Up〉 or 〈Down〉 repeatedly

eventually reaches the oldest or youngest response to that prompt. Set the 4 bit if you want

these keys to wrap around to the other end of the list when that happens, so selecting older and

older responses will eventually reach the youngest again.

If you’ve set Epsilon to substitute prior responses in place, set the 8 bit to make Epsilon include

a blank response at the very end of the list of responses.

At any prompt, Ctrl-P, Ctrl-N and Ctrl-Alt-P are equivalent to 〈Up〉, 〈Down〉, and Alt-〈Up〉,
respectively.

recall-response-selected Preference Default: 0

When you use a key like Alt-e or Ctrl-Alt-P that inserts a prior response at a prompt, it will be

highlighted as a selection if this variable is nonzero, so you can replace it by typing any text, or

retain it by using some other editing key like 〈Right〉.

recognize-password-pattern Preference Default: (omitted)

In telnet, ssh and concurrent process buffers, Epsilon looks for a Password: prompt and

intercepts it to help hide your password. Epsilon uses this regular expression pattern to

recognize when text is a password prompt. Also see the recognize-password-prompt

variable.

337

recognize-password-prompt Preference Default: 3

In telnet, ssh and concurrent process buffers, Epsilon looks for a Password: prompt and

intercepts it to help hide your password. Set this variable to zero if you don’t want this feature.

Set it to 1 if you want it only in telnet buffers, 2 if you want it only in concurrent process

buffers, or 3 if you want both. If you disable this feature (or it doesn’t recognize an unusual

password prompt), you can use the send-invisible command to manually send a password

without letting it appear in the buffer. Also see the recognize-password-pattern variable.

record-customizations Preference Default: 0

When you set a variable, change color settings, define a macro, or similar, Epsilon can record

the setting in a customizations file named einit.ecm so it will be available in future sessions.

The customizations file normally resides in a buffer named “-customizations”, and Epsilon

automatically saves it without prompting before you exit Epsilon, and at other times.

Set this variable to 1 if you want Epsilon to record customization settings in the

“-customizations” buffer but not save them automatically; you can save them like any other

file, and Epsilon will remind you to do so before exiting if there are unsaved customizations.

Set it to 2 and Epsilon will automatically save your customizations without prompting before

you exit Epsilon, and at other times.

With a setting of 0, Epsilon won’t automatically record customization settings in this way. You

can use the list-customizations command at any time to prepare a list of current customizations,

ready to save.

Also see the load-customizations variable.

recording-suspended System Default: 0

The pause-macro command sets this variable nonzero to indicate that it has suspended

recording of a keyboard macro.

regex-first-end Preference Default: 0

If nonzero, Epsilon’s standard regular expression searching commands find the match of the

pattern that ends first, rather than the one that begins first.

regex-shortest Preference Default: 0

If nonzero, Epsilon’s standard regular expression searching commands find the shortest match

of the pattern, rather than the longest match.

reindent-after-c-yank Preference Default: 10000

When you yank text into a buffer in C mode, Epsilon automatically reindents it. This is similar

to the “smart paste” feature in some other editors. Epsilon won’t automatically reindent very

large blocks of text. This variable specifies the size in characters of the largest block that should

automatically be reindented. Set it to 0 to disable automatic reindent in C mode, or -1 to

reindent all text yanked in C mode.

Also see the variables reindent-c-comments and reindent-one-line-c-comments.

338 Chapter 6. Variables

reindent-after-perl-yank Preference Default: 0

When you yank text into a buffer in Perl mode, Epsilon automatically reindents it. This is

similar to the “smart paste” feature in some other editors. Epsilon won’t automatically reindent

very large blocks of text. This variable specifies the size in characters of the largest block that

should automatically be reindented. Set it to 0 to disable automatic reindent in Perl mode, or -1

to reindent all text yanked in Perl mode.

reindent-after-vbasic-yank Preference Default: 0

When you yank text into a buffer in Visual Basic mode, Epsilon automatically reindents it. This

is similar to the “smart paste” feature in some other editors. Epsilon won’t automatically

reindent very large blocks of text. This variable specifies the size in characters of the largest

block that should automatically be reindented. Set it to 0 to disable automatic reindent in Visual

Basic mode, or -1 to reindent all text yanked in Visual Basic mode.

reindent-after-yank Preference Default: 0

This variable controls whether Epsilon automatically reindents blocks of text you yank into the

current buffer. This is similar to the “smart paste” feature in some other editors. This variable

specifies the size in characters of the largest block that should automatically be reindented. A

value of 0 disables automatic reindent in this buffer, and -1 removes any size limitation.

Mode-specific variables like reindent-after-c-yank take precedence over this variable.

reindent-c-comments Preference Default: 17

Bits in this variable control how C mode indents lines inside a comment. For block comments,

this includes the line that starts the block comment only if its ‘/*’ occurs at the beginning of the

line.

The 2 bit makes Epsilon reindent block comment lines when yanking a block of text and

automatically reindenting it.

The 4 bit makes Epsilon reindent a block comment line when you press 〈Enter〉 at the end of

one, and c-reindent-previous-line would ordinarily permit Epsilon to reindent it. (If

auto-fill is on, its rules will prevent such reindenting regardless of this bit.)

The 8 bit makes Epsilon reindent a one-line comment (a line beginning with //) when you

press 〈Enter〉 at the end of one and c-reindent-previous-line would ordinarily permit

Epsilon to reindent it.

The 16 bit lets the indent-region reindent block comment lines.

Finally, the 1 bit permits reindenting block comment lines during any other commands that

cause reindenting.

reindent-c-preprocessor-lines Preference Default: 1

Set this variable to zero if you don’t want Epsilon to change the indentation of preprocessor

lines when indenting code in C mode. Set it to 2 to indent preprocessor lines to the same indent

level that any other line would receive. The default value 1 forces preprocessor lines to the left

margin.

339

reindent-one-line-c-comments Preference Default: 1

This variable controls how Epsilon indents comment lines that start with ‘//’. If 0, Epsilon never

changes the indentation of these lines in commands like indent-region. If 1, Epsilon reindents

these lines, except when yanking a block of text and automatically reindenting it. If 2, Epsilon

reindents in all cases.

reindent-perl-comments Preference Default: 1

Set this variable to zero to keep commands like indent-region from reindenting Perl comment

lines.

replace-by-case Preference Default: 1

This variable controls how commands like query-replace and regex-replace modify the case of

the replacement text to match the case of individual matches.

If 0, the replacement text is inserted as-is.

If 1, the search is case-insensitive, and neither the search nor the replace text contain capital

letters, Epsilon makes the replacement text upper case or capitalized whenever a match is

entirely upper case or capitalized, respectively.

If 2, the Ctrl-C to toggle case-folding in searches includes a third option, CaseRepl. When this

option is toggled on and searching is case-insensitive, Epsilon modifies the case of the

replacement text based on the case of the match, according to these rules:

If the match contains both uppercase and lowercase characters, the first character of the

replacement text will be given the case of the first character of the match. Otherwise, if the

match contains only lowercase or only uppercase characters, the replacement text will be made

all lowercase or uppercase, respectively. Otherwise, the case of the replacement text will not be

altered.

replace-in-region Preference Default: 0

If nonzero, whenever a region is highlighted when you invoke a replacing command like

query-replace and regex-replace, its effect will be limited to that region. After replacing, the

region will remain highlighted if this variable is set to 2, but not if it’s set to 1.

replace-num-changed System Default: 0

The string_replace() subroutine sets the replace-num-changed variable to the number of

matches it changed.

replace-num-found System Default: 0

The string_replace() subroutine sets the replace-num-found variable to the number of

matches it found.

resize-menu-list System Default: 0

An EEL completion function can set this variable nonzero to indicate that if the user tries to list

possible completion choices, the window displaying the choices should be widened if necessary

to fit the widest choice. This variable has no effect on Epsilon windows within GUI dialogs.

340 Chapter 6. Variables

resize-rectangle-on-tab Preference Default: 0

By default, pressing 〈Tab〉 or Shift-〈Tab〉 while defining a rectangular region shifts the region

right or left. Set this variable to 1 if you want these keys to resize the region without changing

the text, by positioning to the next or previous tab stop.

restart-concurrent Preference Default: 1

When the push, make, or compile-buffer commands exit from a concurrent process to run a

command non-concurrently, they will restart the concurrent process once the command finishes.

Set restart-concurrent to zero if you don’t want Epsilon to restart the concurrent process in

this case.

restore-color-on-exit Preference Default: 1

If nonzero, the Win32 console version of Epsilon tries to restore the screen color when you exit.

If zero, Epsilon tries to set the color to the after-exiting color class, as specified with the

set-color command. (Sometimes the operating system environment overrides this and forces a

particular color.)

resynch-match-chars Preference Default: 15

If you invoke compare-windows again immediately after it has found a difference, the command

will try to resynchronize the windows by moving forward in each window until it finds a match

of at least resynch-match-chars characters.

return-raw-buttons System Default: 0

If you click a button in a dialog under Epsilon for Windows, Epsilon represents the input with

an ordinary key value, such as 〈Enter〉 when you click an Ok button. An EEL program can

temporarily set this variable to a nonzero value to retrieve button presses as distinct keys. All

buttons will then appear with the key code WIN_BUTTON. Use the key-is-button variable to

distinguish one button from another.

rev-search-key Preference Default: -1

Inside a search command, Epsilon recognizes a key with this key code as a synonym for Ctrl-R,

for pulling in a default search string or changing the search direction.

run-by-mouse System Default: 0

If nonzero, this command was run by the mouse, via the menu bar or tool bar.

save-all-without-asking Preference Default: 0

Set this variable nonzero if you want the save-all-buffers command to skip over those buffers

created with the File/New menu item or new-file command that still lack associated file names.

Instead of prompting for a file name, it will report which buffers it didn’t save.

341

save-when-making Preference Default: 2

If zero, the make command doesn’t warn about unsaved buffers before running another

program. If one, the command automatically saves all unsaved buffers without asking. If two,

Epsilon asks if you want to save the unsaved buffers.

scp-client-style Preference Default: 0

By default, Epsilon runs the sftp program to perform all scp operations. To access very old ssh

servers, it can instead use the provided epsilon-xfer-helper program over a secure link, if

you first set things up. Set this variable to 0x1 to make Epsilon issue commands for the helper

program, not sftp. With this setting, Epsilon will run a separate scp program each it has to copy

a file.

If you have trouble viewing dired listings, you may have an older version of the sftp program;

set this variable to 0x2 to have Epsilon use old-style sftp commands.

When you type an scp:// URL that doesn’t end in a / character, Epsilon first checks to see if it’s

a directory. You can have Epsilon skip this check by setting the 0x8 bit. With this option,

whenever you type a directory name, you must either end it with a / character to indicate it’s a

directory, or use the dired command instead of one of the other file-reading commands.

See the main SCP topic for details.

scp-list-flags Preference Default: "-la"

When you use an scp:// URL and Epsilon runs an sftp client to list files in a directory, it

provides these flags to sftp’s ls command. If you connect to an old sftp server, it may not

understand these flags. Use “-l” instead, though listings may then omit hidden files.

scp-read-file-no-user-template Preference Default: "scp -q %h:%f %l"

Normally Epsilon copies files using an sftp program, but you can set it to use a separate

program instead, if you must use an old ssh system that lacks sftp support. When Epsilon tries

to access an scp URL, it uses this template to build a command that copies a file from a remote

host to a local file, in cases where it can’t use an sftp program to do this. (See the

scp-client-style variable.)

Epsilon substitutes the host name for %h, the file name part for %f, and the name of the local

destination file for %l. The local file will be a relative pathname to a file in the current directory

of the scp command. The resulting command line should transfer the file quietly, without

progress messages.

If the scp URL contains a user name, Epsilon uses the scp-read-file-template variable

instead. Epsilon checks for host-specific variables before checking this variable.

scp-read-file-template Preference Default: "scp -q %u@%h:%f %l"

Normally Epsilon copies files using an sftp program, but you can set it to use a separate

program instead, if you must use an old ssh system that lacks sftp support. When Epsilon tries

to access an scp URL, it uses this template to build a command that copies a file from a remote

host to a local file, in cases where it can’t use an sftp program to do this. (See the

scp-client-style variable.)

Epsilon substitutes the host name for %h, the user name for %u, the file name part for %f, and the

name of the local destination file for %l. The local file will be a relative pathname to a file in the

342 Chapter 6. Variables

current directory of the scp command. The resulting command line should transfer the file

quietly, without progress messages.

If the scp URL doesn’t include a user name, Epsilon uses the

scp-read-file-no-user-template variable instead. Epsilon checks for host-specific

variables before checking this variable.

scp-run-helper-no-user-template Preference Default: "%c %h"

When Epsilon tries to perform an operation on an scp URL, such as listing the contents of the

directory to which the scp URL refers, file name completion, or similar, it uses this template to

build a command to execute. With default settings, it runs the sftp program, which must

already be installed. See the main SCP topic for details.

Epsilon substitutes the host name for %h. It substitutes the contents of either the

scp-unix-sftp-command or scp-windows-sftp-command variable for the %c, depending

on the OS where Epsilon is running.

If the scp URL contains a user name, Epsilon uses the scp-run-helper-template variable

instead. Epsilon checks for host-specific variables before checking this variable.

scp-run-helper-template Preference Default: "%c %u@%h"

When Epsilon tries to perform an operation on an scp URL, such as listing the contents of the

directory to which the scp URL refers, file name completion, or similar, it uses this template to

build a command to execute. With default settings, it runs the sftp program, which must

already be installed. See the main SCP topic for details.

Epsilon substitutes the host name for %h and the user name for %u. It substitutes the contents of

either the scp-unix-sftp-command or scp-windows-sftp-command variable for the %c,

depending on the OS where Epsilon is running.

If the scp URL doesn’t include a user name, Epsilon uses the

scp-run-helper-no-user-template variable instead. Epsilon checks for host-specific

variables before checking this variable.

scp-unix-sftp-command Preference Default: "sftp"

When Epsilon for Unix constructs a command line to perform some scp operation, it substitutes

the value of this variable for any %c sequence in the command line template. Any %x in the

setting will be replaced with the name of the directory containing Epsilon’s executable; any %X

will be replaced by the 8.3 version of that directory name. Also see the

scp-windows-sftp-command variable.

scp-windows-sftp-command Preference Default: "%w sftp"

When Epsilon for Windows constructs a command line to perform some scp operation, it

substitutes the value of this variable for any %c sequence in the command line template.

Any %w in the setting will be replaced by an invocation of an appropriate helper program when

running on a system with Cygwin installed (or with nothing if Cygwin is not installed). (The

helper program instructs any programs that follow on the command line to behave as if running

interactively, when sending output or prompting for user input. In particular, this makes it

prompt for a password or passphrase.)

Any %x in the setting will be replaced with the name of the directory containing Epsilon’s

executable; any %X will be replaced by the 8.3 version of that directory name. The default

343

setting runs Cygwin’s sftp program using a small helper program that makes it prompt for a

passphrase or password in a way that Epsilon can intercept. Also see the

scp-unix-sftp-command variable.

scp-write-file-no-user-template Preference Default: "scp -q %l %h:%f"

Normally Epsilon copies files using an sftp program, but you can set it to use a separate

program instead, if you must use an old ssh system that lacks sftp support. Epsilon uses this

template to build a command that copies a local file to a remote host using scp, in cases where it

can’t use an sftp program to do this. (See the scp-client-style variable.)

Epsilon substitutes the host name for %h, the destination file name part for %f, and the name of

the local file for %l. The local file will be a relative pathname to a file in the current directory of

the scp command. The resulting command line should transfer the file quietly, without progress

messages.

If the scp URL contains a user name, Epsilon uses the scp-write-file-template variable

instead. Epsilon checks for host-specific variables before checking this variable.

scp-write-file-template Preference Default: "scp -q %l %u@%h:%f"

Normally Epsilon copies files using an sftp program, but you can set it to use a separate

program instead, if you must use an old ssh system that lacks sftp support. Epsilon uses this

template to build a command that copies a local file to a remote host using scp, in cases where it

can’t use an sftp program to do this. (See the scp-client-style variable.)

Epsilon substitutes the host name for %h, the user name for %u, the destination file name part for

%f, and the name of the local file for %l. The local file will be a relative pathname to a file in the

current directory of the scp command. The resulting command line should transfer the file

quietly, without progress messages.

If the scp URL doesn’t include a user name, Epsilon uses the

scp-write-file-no-user-template variable instead. Epsilon checks for host-specific

variables before checking this variable.

screen-cols System Default: varies

This variable holds the number of columns on the screen.

screen-lines System Default: varies

This variable holds the number of lines on the screen.

scroll-at-end Preference Default: 1

When you move past the top or bottom edge of the window via the up-line or down-line

commands, Epsilon scrolls the screen by this many lines. If scroll-at-end is zero, Epsilon

instead centers the new line in the window.

scroll-bar-type Preference Default: 1

Epsilon for Windows can display two types of scroll bars. By default scroll-bar-type is 1,

and Epsilon uses a line-based approach, with a “thumb” size that varies to reflect the number of

lines visible in the window relative to the number of lines in the buffer. On extremely large

buffers, this could be slow, so you can set the variable to 0 and Epsilon will use a fixed-size

thumb as in previous versions.

344 Chapter 6. Variables

scroll-init-delay Preference Default: 35

Epsilon delays scroll-init-delay hundredths of a second after its first scroll due to a mouse

click on the scroll bar, before it begins repeatedly scrolling at scroll-rate lines per second.

scroll-rate Preference Default: 45

Epsilon scrolls by this many lines per second when scrolling due to mouse movements.

search-defaults-from Preference Default: 1

This variable controls what initial search string appears when you use a searching command

like incremental-search or query-replace.

If 0, Epsilon never provides an initial search string.

If 1, whenever there’s a region highlighted when you invoke the search command, that becomes

the initial search string; in other cases there’s no initial search string. The highlighted region is

ignored when it’s very long, a macro is running, the typing-deletes-highlight variable is

zero, or Epsilon has been set to restrict searching to a highlighted region with

search-in-region or replace-in-region.

If 2, the search string from the previous searching command is always the initial search string.

search-delete-match Preference Default: 1

If nonzero, then during incremental searching, keys bound to the delete-character

command, like Del or Ctrl-D, will delete the highlighted match and exit the search. If zero, they

will exit the search and then run, deleting a single character.

search-in-menu Preference Default: 0

This variable controls what Epsilon does when you press ‘?’ during completion and then

continue typing a response. If zero, Epsilon moves from the pop-up list of responses back to the

prompt area, and editing keys like 〈Left〉 navigate in the response. If nonzero, Epsilon moves in

the pop-up menu of names to the first name that matches what you’ve typed, and stays in the

pop-up window. (If it can’t find a match, Epsilon moves back to the prompt as before.)

search-in-region Preference Default: 0

This variable contains bit flags that alter how searching behaves. If the 0x1 bit is set, whenever

a region is highlighted when you invoke a searching command, searching will be restricted to

that region, as if you had used the search-region command. If the 0x2 bit is set, a grep of a

single buffer with a highlighted region will restrict itself to that region.

search-man-pages-shows-all Preference Default: 0

By default, the search-man-pages command only shows the first match in each man page. If

this variable is nonzero, it shows all matches in each man page.

search-positions-at-start Preference Default: 0

If nonzero, nonincremental forward searching goes to the start of the match it finds, not its end.

345

search-wraps Preference Default: 1

Bits in this variable control whether searching wraps to the other end of the buffer when no

more matches are found.

By default, when an incremental search fails, pressing Ctrl-S or Ctrl-R to continue the search in

the same direction makes Epsilon wrap to the other end of the buffer and continue searching

from there. The 1 bit enables this wrapping behavior.

The 2 bit controls whether Epsilon wraps during non-incremental searching, such as in the

commands string-search or search-again. If set, Epsilon prompts when there are no more

matches in the current direction and offers to wrap and search again. If not set, it simply reports

no more matches.

see-delay Preference Default: 100

Epsilon displays most messages in the echo area for at least see-delay hundredths of a second

before replacing them with new messages.

selectable-colors Default: varies

This variable contains the maximum number of color combinations the set-color command lets

you select from.

selected-color-scheme Default: index of standard-color

Epsilon keeps the name table index of the current color scheme in this variable.

sentence-end Preference Default: [Omitted]

Epsilon uses this regular expression pattern to find the end of a sentence.

sentence-end-double-space Preference Default: 1

Set this variable to zero if you want filling commands and sentence commands to use a single

space at the ends of sentences instead of two.

server-raises-window Preference Default: 1

Under X11, the -add and -wait flags cause the server instance of Epsilon to try to raise itself in

the window order and set the input focus to itself, as Epsilon does under MS-Windows, if this

variable is nonzero. Some window managers for X will keep programs from altering the

window order in this way.

session-always-restore Preference Default: 1

If nonzero, Epsilon reads a session file when starting even if its command line contains file

names. If zero, Epsilon only restores the previous session when no files are specified. Whenever

its command line contain a file name, it doesn’t read or write a session file.

346 Chapter 6. Variables

session-default-directory Preference Default: none

If Epsilon finds no session file by searching the current directory tree, it uses a session file in

this directory. But if session-default-directory is empty, Epsilon uses the EPSPATH

configuration variable, if there is one, or the customization directory.

session-file-name Preference Default: none

If this variable is nonempty, it provides the name of the session file Epsilon should use. If the

name isn’t an absolute pathname, Epsilon can search for files by that name in the current

directory hierarchy.

session-restore-biggest-file Preference Default: 20,000,000

To prevent excessive delays when starting, Epsilon won’t automatically restore any files bigger

than this size in bytes when it restores a previous session. This variable applies to local or

network files only, not files accessed with a URL, see

session-restore-biggest-remote-file for those. If this value is negative, Epsilon

ignores it and restores files of any size.

session-restore-biggest-remote-file Preference Default: 0

To prevent excessive delays when starting, Epsilon won’t automatically restore any files bigger

than this size in bytes when it restores a previous session. This variable applies to files accessed

with URL, see session-restore-biggest-file for files that don’t use a URL. If this value

is negative, Epsilon ignores it and restores files of any size.

session-restore-directory Preference Default: 2

When Epsilon reads a session file, it can restore the current directory named in that file. If

session-restore-directory is 1, it always does this. If 0, it never restores the current

directory. If 2, the default, it restores the current directory only if the -w1 flag was specified.

session-restore-directory-buffers Preference Default: 1

Bits in this variable control whether Epsilon records various types of dired buffers in a session.

If 0, it doesn’t record any.

The value 1 makes it records only dired buffers that don’t involve URLs or use the ** syntax to

search an entire hierarchy. The value 2 makes it records dired buffers that use a URL. The value

4 makes it records dired buffers that use the ** syntax to search an entire hierarchy. (Restoring

such dired buffers can make Epsilon slow to start up.)

Add these bit values together to record dired buffers in more than one category. Also see the

session-restore-max-directories variable.

session-restore-files Preference Default: 1

If 0, when Epsilon restores a session, it won’t load any files (or directories) named in the

session, only settings like previous search strings and command history. If 1, Epsilon will

restore previous files as well as other settings. If 2, Epsilon will restore previous files only if

there were no files specified on Epsilon’s command line.

347

session-restore-max-directories Preference Default: 4

When Epsilon records a session, it will only remember up to this number of dired buffers,

starting with the most recently accessed ones. If this value is negative, Epsilon ignores it and

records any number of dired buffers.

session-restore-max-files Preference Default: 15

When Epsilon records a session, it will only remember up to this number of files to be reloaded

the next time you start Epsilon. Files are prioritized by time of access in Epsilon, so Epsilon by

default restores the 15 files you’ve most recently edited. If this value is negative, Epsilon

ignores it and restores any number of files.

session-tree-root Preference Default: "NONE"

If nonempty, when Epsilon searches for a session file in the current directory tree, it only

examines directories that are children of this directory. For example, if session-tree-root

holds \joe\proj, and the current directory is \joe\proj\src, Epsilon will search in \joe\proj\src,

then \joe\proj, for a session file. If the current directory is \joe\misc, on the other hand,

Epsilon won’t search at all (since \joe\misc isn’t a child of \joe\proj), but will use the rules in

the previous paragraph. By default, session-tree-root is set to an impossible absolute

pathname, so searching is disabled.

session-warn-when-saving Preference Default: 1

On exit, Epsilon tries to save the current session. If an error occurs when saving the session, it

asks for confirmation before exiting. Set this variable to zero to disable that prompt.

shell-auto-show-delim-chars Preference Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Shell mode. Epsilon will search for and highlight the match of

each delimiter.

shell-tab-override Preference Default: 8

If you want the width of a tab character in Shell script buffers to be different than in other

buffers, set this variable to the desired value. Shell mode will change the buffer’s tab size to the

specified number of columns. Setting this variable doesn’t change existing buffers; set the

tab-size variable for that.

shift-selecting System Default: 0

Epsilon uses this variable to keep track of whether the currently highlighted selection was

begun by pressing an arrow key while holding down the Shift key. If so, pressing an arrow key

without holding down the Shift key will turn off highlighting.

shift-selects Preference Default: 1

If this variable is nonzero, you can select text by using the arrow keys, 〈Home〉, 〈End〉,
〈PageUp〉, or 〈PageDown〉 while holding down the Shift key.

348 Chapter 6. Variables

show-all-variables System Default: 0

If zero, commands that offer completion on variable names will only recognize user variables,

those marked with the user keyword. If nonzero, such commands also list system variables.

show-mouse-choices System Default: 0

If nonzero, commands that provide completion immediately display a list of possible choices,

when run via the mouse.

show-spaces Preference Buffer-specific Default: 0

Bits in this variable control whether Epsilon displays special symbols on the screen for each

〈Space〉, 〈Tab〉, or 〈Newline〉 character in the buffer, to make them easily visible. The value 1

enables this use of special symbols.

Other bits may be used to disable this feature for individual characters. The values 2, 4, and 8

keep Epsilon from using its special symbols for 〈Space〉, 〈Tab〉, and 〈Newline〉, respectively.

Epsilon uses a special symbol only if the 1 bit is present and that particular character’s disabling

bit is not.

show-status Default: 1

If nonzero, Epsilon displays progress messages during certain lengthy operations like sorting.

Otherwise, no status messages appear.

show-tag-line Preference Default: 2

When Epsilon jumps to a tag, it positions the window so the first line of the definition appears

this many lines from the top of the window.

show-when-idle Preference Default: none

You can set Epsilon to display text in the echo area whenever it’s idle. The show-when-idle

variable holds the text to display. It can include any of the following sequences, and Epsilon

will substitute the indicated value for that sequence:

%c Epsilon substitutes the current column number, counting columns from 0.

%C Epsilon substitutes the current column number, counting columns from 1.

%d Epsilon substitutes the current display column, with a < before it, and a space after.

However, if the display column has a value of 0 (meaning horizontal scrolling is enabled,

but the window has not been scrolled), or -1 (meaning the window wraps long lines),

Epsilon substitutes nothing.

%D Epsilon substitutes the current display column, but if the display column is -1, Epsilon

substitutes nothing.

%f Epsilon substitutes the name of the current function, class, or similar (in buffers where

Epsilon can determine this).

%l Epsilon substitutes the current line number. (Also see the draw-line-numbers variable to

display line numbers to the left of text.)

349

%m Epsilon substitutes the text “ More ”, but only if characters exist past the end of the

window. If the last character in the buffer appears in the window, Epsilon substitutes

nothing.

%P Epsilon substitutes the percentage of point through the buffer, followed by a percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a percent sign.

However, if the bottom of the buffer appears in the window, Epsilon displays Bot instead

(or End if point is at the very end of the buffer). Epsilon displays Top if the top of the

buffer appears, and All if the entire buffer is visible.

%s Epsilon substitutes “* ” if the buffer’s modified flag has a nonzero value, otherwise

nothing.

%S Epsilon substitutes “*” if the buffer’s modified flag has a nonzero value, otherwise

nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like %2h:%02n %a for “3:45 pm” or

%02H:%02n:%02e for “15:45:21”.

%% Epsilon substitutes a literal “%” character.

For any numeric substitution, you may include a number between the % and the letter code,

giving the field width: the minimum number of characters to print. You can use the same kinds

of field width specifiers as C’s printf() function. The sequence %4c expands to

“〈Space〉〈Space〉〈Space〉9”, %04c expands to “0009”, and %-4c expands to

“9〈Space〉〈Space〉〈Space〉”.

Also see the mode-format variable.

show-when-idle-column Preference Default: 48

You can set Epsilon to display text in the echo area whenever it’s idle. Epsilon positions the text

show-when-idle-column columns from the left edge of the screen. Set this variable to a

negative number to make Epsilon count columns from the right edge of the screen instead. For

example, set show-when-idle-column to -10 to make Epsilon position the text 10 columns

from the right edge.

soft-tab-size Preference Buffer-specific Default: 0

If nonzero, indenting commands like indent-rigidly and back-to-tab-stop will indent by this

amount instead of the setting of the tab-size variable.

If this variable is zero in a buffer, and there’s a variable named thismode-soft-tab-size,

where thismode is the current mode’s name, Epsilon uses that instead of the default value of

soft-tab-size.

sort-case-fold Preference Buffer-specific Default: 2

When comparing lines of text during sorting, Epsilon folds lower case letters to upper case

before comparison, if the sort-case-fold variable is 1. If the sort-case-fold variable is 0,

Epsilon compares characters as-is. If sort-case-fold is 2, Epsilon instead folds characters

only if the case-fold variable is nonzero.

350 Chapter 6. Variables

spell-helper-program Preference Default: ""

The spell-correct command uses this variable when it generates a list of suggestions. If it’s

empty, Epsilon uses its own internal logic for guessing the correct word. If it’s nonempty, it

must be a command line, which Epsilon will execute. The program that runs should engage in a

dialog following the “ispell -a” model, in which Epsilon sends it words and it replies with

suggestions. Use the spell-configure command to set this variable.

Any %x in the variable will be replaced with the name of the directory containing Epsilon’s

executable; any %X will be replaced by the 8.3 version of that directory name.

ssh-command-windows Preference Default: %w ssh

When Epsilon evaluates the ssh-template and ssh-no-user-template variables, it

substitutes “ssh” for any %c sequence it finds. But an OS-specific variable like this one can

override this. Under Windows, Epsilon uses this variable as the name of the ssh command.

Any %w in the setting will be replaced by an invocation of an appropriate helper program when

running on a system with Cygwin installed (or with nothing if Cygwin is not installed). (The

helper program instructs any programs that follow on the command line to behave as if running

interactively, when sending output or prompting for user input. In particular, this makes it

prompt for a password or passphrase.)

Any %x in the setting will be replaced with the name of the directory containing Epsilon’s

executable; any %X will be replaced by the 8.3 version of that directory name.

ssh-interpret-output Preference Default: 0xfef

In an ssh buffer, Epsilon can look for certain escape sequences and cursor positioning, and

interpret them, translating them into coloring for instance. Bits in this variable say which sorts

of sequences to look for; add them to select the rules you want.

The value 0x1 makes Epsilon look for underlining that uses backspacing, such as _ Ctrl-H K to

produce an underlined K; this is common in man pages and similar.

The value 0x2 makes Epsilon look for bare Ctrl-M characters used to indicate overtyping and

remove the text to be overwritten. Some progress messages use this technique.

The value 0x4 makes Epsilon look for ANSI escape sequences that generate colors. Epsilon

only recognizes certain patterns of escape sequences that color specific sections of output.

The value 0x8 makes Epsilon look for some uses of backspacing to produce bold characters.

If you’ve scrolled back in the buffer, Epsilon can jump to the end of the buffer whenever new

output from the remote system arrives to show you the new output. Set the 0x10 bit to enable

this.

The value 0x20 makes Epsilon delete any NUL characters or characters with ASCII code 1

from ssh output.

The value 0x40 makes Epsilon delete certain sequences defined for the xterm terminal emulator.

The value 0x80 makes Epsilon look for certain uses of backspacing to overwrite text with new

text.

The value 0x100 makes Epsilon interpret Unicode UTF-8 encoding in the output.

351

ssh-no-user-template Preference Default: "%c %h"

When the ssh command tries to run an external ssh program to connect securely to another

computer, it uses this template to build the command line to run. Epsilon substitutes the host

name for %h. For %c, Epsilon substitutes the contents of the variable ssh-command-windows

under Windows, and “ssh” elsewhere. Any %x in the setting will be replaced with the name of

the directory containing Epsilon’s executable; any %X will be replaced by the 8.3 version of that

directory name.

If the ssh command contains a user name, Epsilon uses the ssh-template variable instead.

Epsilon checks for host-specific variables before checking this variable.

ssh-template Preference Default: "%c -l %u %h"

When the ssh command tries to run an external ssh program to connect securely to another

computer, it uses this template to build the command line to run. Epsilon substitutes the host

name for %h and the user name for %u. For %c, Epsilon substitutes the contents of the variable

ssh-command-windows under Windows, and “ssh” elsewhere. Any %x in the setting will be

replaced with the name of the directory containing Epsilon’s executable; any %X will be

replaced by the 8.3 version of that directory name.

If the ssh command contains no user name, Epsilon uses the ssh-no-user-template variable

instead. Epsilon checks for host-specific variables before checking this variable.

start-make-in-buffer-directory Preference Default: 2

The start-make-in-buffer-directory variable controls which directory becomes current

when you run the make command. Set the variable to 0 if you want each subprocess to begin

with its current directory set to match Epsilon’s. Set the variable to 2 if you want each

subprocess to begin in the current buffer’s directory. Set the variable to 1 if you want each

subprocess to begin in the current buffer’s directory, and you also want Epsilon to change its

own current directory to match, whenever you start a process. Also see the

start-process-in-buffer-directory variable.

start-process-in-buffer-directory Preference Default: 2

The start-process-in-buffer-directory variable controls which directory becomes

current when you start a process. Set the variable to 0 if you want each subprocess to begin with

its current directory set to match Epsilon’s. Set the variable to 2 if you want each subprocess to

begin in the current buffer’s directory. Set the variable to 1 if you want each subprocess to begin

in the current buffer’s directory, and you also want Epsilon to change its own current directory

to match, whenever you start a process. Also see the start-make-in-buffer-directory

variable.

state-extension System Default: ".sta"

This variable holds the correct extension of state files in this version of Epsilon.

state-file-backup-name Preference Default: "%pebackup%e"

When you write a new state file, Epsilon makes a copy of the old one if the variable

want-state-file-backups is nonzero. Epsilon constructs the backup file name from the

original using the file name template in this variable.

352 Chapter 6. Variables

switch-buffers-options Preference Default: 0

The switch-buffers command on Ctrl-Tab normally displays buffers by order of last access, with

the current buffer at the top. Bits in this variable change that.

The 1 bit makes switch-buffers use the ordering set for the bufed command. Change it by

pressing A, B, F, I, or U in a bufed listing.

Set the 2 bit to make switch-buffers use the bufed-grouping variable to control buffer order,

listing modified buffers separately from unmodified buffers, and buffers with files separately

from those without one. Without this bit, switch-buffers sorts all these types of buffers together,

regardless of bufed-grouping.

system-window System Window-specific Default: 0

If nonzero in a window, user commands that switch windows will skip over this window.

tab-size Preference Buffer-specific Default: 8

This variable holds the number of columns from one tab stop to the next. Epsilon expands tab

characters in the buffer to reach the next tab stop. By default, Epsilon also indents in units of

the tab size. Set the soft-tab-size variable if you want independent settings for the width of

a tab character and the amount to indent.

table-count System Default: 0

This variable counts the number of prefix keys like Ctrl-X you’ve typed so far in the current

command.

tag-ask-before-retagging Preference Default: 0

If zero, when a tag’s line has changed within a file, Epsilon retags the file automatically and

then searches again. Similarly, when Epsilon can’t find a tag at all, it tries tagging the current

file. If nonzero, Epsilon asks before doing either of these things.

tag-batch-mode System Default: 0

Epsilon’s tag facility uses this variable to decide if it should report an error immediately, or just

log it to a buffer.

tag-by-text Preference Default: 1

If nonzero, Epsilon includes the entire line that defined a tag in the tag file, so it can search for

the line when the buffer has been modified since tagging. If zero, Epsilon only includes the

offset, saving space in the tag file for files that rarely change.

tag-c-preprocessor-skip-pat Preference Default: "0"

When tagging in C mode, Epsilon skips over #if 0 blocks. It can skip other conditionals too.

This variable should contain a regular expression, like (0|DEBUG); if what follows #if matches

it, that block will be skipped.

353

tag-case-sensitive Preference Default: 0

Set this variable nonzero if you want tagging to consider MAIN, Main and main to be distinct

tags. By default, typing main will find any of these.

tag-declarations Preference Default: 0

The tag-declarations variable lets you set whether the tagger will tag function or variable

declarations (as opposed to definitions, which Epsilon always tags). If zero (the default),

Epsilon only tags definitions. If one, Epsilon tags function declarations as well. If two, Epsilon

tags variable declarations (which use the extern keyword). If three, Epsilon tags both types of

declarations. You may wish to use this setting to tag the .h header files of library functions.

tag-display-width Preference Default: 40

When Epsilon lists tags during tag completion, it shows the tag name followed by its file name.

This variable controls the width available for the tag name. It should be bigger than the longest

expected tag name.

tag-extern-decl System Default: 0

The C tagger uses this variable to decide if it’s found a variable definition, or just a declaration.

tag-list-exact-only System Default: 0

Epsilon’s tag facility uses this variable internally to decide if tag matching should include prefix

matches or only exact matches.

tag-options Preference Default: 0

Set this variable to 1 to make the tag-files command delete all current tags before finding new

tags.

tag-pattern-c System Default: [Omitted]

The pluck-tag command searches using this regular expression to locate the current tag in

C/C++/Java buffers.

tag-pattern-default System Default: [a-zA-Z0-9_]+

The pluck-tag command searches using this regular expression to locate the current tag in

buffers without a mode-specific tag pattern.

tag-pattern-perl System Default: [Omitted]

The pluck-tag command searches using this regular expression to locate the current tag in Perl

buffers.

tag-relative Preference Default: 1

If nonzero, Epsilon stores relative pathnames in the tag file whenever it can. If zero, Epsilon

uses only absolute pathnames.

354 Chapter 6. Variables

tag-show-percent System Default: 0

If nonzero, Epsilon displays a percentage status report while tagging instead of mentioning each

tag it finds. Commands that use tagging to parse a buffer without really generating tags can set

this.

tag-which-items Preference Default: 0xff

Bits in this variable determine which types of items are tagged. The value 0x1 includes

functions, 0x2 includes variables, 0x4 includes macros, 0x8 includes the values of enums, 0x10

includes the names of classes, structures, unions, and similar items, and 0x20 includes the

names of enums. Also see list-which-definitions. Some modes may not distinguish all

these types of items.

tcl-auto-show-delim-chars Preference Default: "[()]"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Tcl mode. Epsilon will search for and highlight the match of

each delimiter.

tcl-indent Preference Default: 4

Tcl mode indents by this many columns for each additional level of nesting.

telnet-interpret-output Preference Default: 0xfef

In a Telnet buffer, Epsilon can look for certain escape sequences and cursor positioning, and

interpret them, translating them into coloring for instance. Bits in this variable say which sorts

of sequences to look for; add them to select the rules you want.

The value 0x1 makes Epsilon look for underlining that uses backspacing, such as _ Ctrl-H K to

produce an underlined K; this is common in man pages and similar.

The value 0x2 makes Epsilon look for bare Ctrl-M characters used to indicate overtyping and

remove the text to be overwritten. Some progress messages use this technique.

The value 0x4 makes Epsilon look for ANSI escape sequences that generate colors. Epsilon

only recognizes certain patterns of escape sequences that color specific sections of output.

The value 0x8 makes Epsilon look for some uses of backspacing to produce bold characters.

If you’ve scrolled back in the buffer, Epsilon can jump to the end of the buffer whenever new

output from the remote system arrives to show you the new output. Set the 0x10 bit to enable

this.

The value 0x20 makes Epsilon delete any NUL characters or characters with ASCII code 1

from telnet output.

The value 0x40 makes Epsilon delete certain sequences defined for the xterm terminal emulator.

The value 0x80 makes Epsilon look for certain uses of backspacing to overwrite text with new

text.

The value 0x100 makes Epsilon interpret Unicode UTF-8 encoding in the output.

tex-auto-fill-mode Default: 1

If nonzero, Epsilon breaks long lines in TeX/LaTeX files using auto-fill mode. If zero, it doesn’t.

355

tex-auto-show-delim-chars Default: "{[]}"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in TeX mode. Epsilon will search for and highlight the match of

each delimiter.

tex-environment-name Default: "document"

The tex-environment command uses this variable to hold the name of the last environment you

inserted in TeX mode.

tex-force-latex Preference Buffer-specific Default: 1

Some TeX mode commands are slightly different in LaTeX than in pure TeX. Set

tex-force-latex to 1 if all your documents are LaTeX, 0 if all your documents are TeX, or 2

if Epsilon should determine this on a document-by-document basis. In that case, Epsilon will

assume a document is LaTeX if it contains a \begin{document} statement or if it’s in a file with

an .ltx extension.

tex-look-back Preference Default: 20000

TeX syntax highlighting sometimes needs to look back in the buffer to locate the start of a

paragraph. Long stretches of text without paragraph breaks can make it slow. Set this variable

lower if you want Epsilon to give up sooner and incorrectly color some rare cases.

tex-paragraphs Preference Buffer-specific Default: 0

If nonzero, then Epsilon will not consider as part of a paragraph any sequence of lines that each

start with at sign or period, if that sequence appears next to a blank line. And lines starting with

\begin or \end, or with %, \[, \], or $$, or ending with \\, will also delimit paragraphs.

tex-save-new-environments Preference Default: 0

The tex-environment command lets you easily create a new environment, inserting begin/end

pairs. When it prompts for an environment name, you can type the name of a new environment,

and Epsilon will remember it for the rest of the editing session, offering it for completion. Set

this variable nonzero and Epsilon will also save the new environment name for future sessions.

tex-spell-options Preference Default: 0

This variable controls the Spell minor mode in TeX mode. Use the spell-mode command to set

it to 1, and Epsilon will highlight misspelled words in TeX text. See the

default-spell-options variable for the other bits you can set to customize spell checking in

TeX mode.

text-color Window-specific Default: 0

This variable contains the color class of normal text in the current window.

356 Chapter 6. Variables

this-cmd Default: none

Some commands behave differently depending on what command preceded them. To get this

behavior, the command acts differently if prev-cmd is set to a certain value and sets this-cmd

to that value itself. Epsilon copies the value in this-cmd to prev-cmd and then clears

this-cmd each time through the main loop.

tiled-border Preference Default: 0xAA

This variable holds the border codes Epsilon uses for putting borders at the edges of a tiled

window.

tiled-scroll-bar System Default: 0

If nonzero, Epsilon constantly displays a scroll bar on tiled windows. Set this with the

toggle-scroll-bar command.

topindent Preference Default: 1

If nonzero, Epsilon indents top-level statements in a function. If zero, Epsilon keeps such

statements at the left margin.

translation-type Buffer-specific Default: 5

Epsilon uses this variable to record the type of line translation and Unicode encoding used by

the current buffer. The set-line-translate and set-encoding commands set this variable. To read a

new file in a mode other than the default, type Ctrl-U Ctrl-X Ctrl-F to run the find-file command

with a numeric argument.

type-point Buffer-specific Default: none

This variable holds the position within the process buffer where Epsilon inserts new text from

the process. Epsilon retrieves any text after the type point and sends it as input to the process.

Other functions that run in the background and insert retrieved text in a buffer, such as Epsilon’s

internet features, also use this variable.

typing-deletes-highlight Preference Default: 1

If this variable is 1, pressing a self-inserting key like “j” while text is highlighted deletes the

highlighted selection, replacing it with the key. Pressing 〈Backspace〉 simply deletes the text. If

this variable is 0, a highlighted region isn’t deleted. If this variable is 2, deleting highlighted

regions happens only at prompts.

If you set this variable to zero, you may wish to set the insert-default-response variable

to zero also. Then Epsilon won’t automatically insert and highlight your previous response at

various prompts.

typing-hides-highlight Preference Default: 1

If this variable is nonzero, pressing a self-inserting key like “j” while text is highlighted turns

off the highlighting. Setting this variable to zero has little effect when

typing-deletes-highlight is set to delete highlighted regions.

357

uncompress-files Preference Default: 3

If this variable is 1, reading a file with a .gz extension will uncompress it and display the

uncompressed version. If this variable is 2, Epsilon will do the same for files with a .bz2

extension. A value of 3 does both, and 0 does neither.

This feature runs the standard utility programs gzip (for .gz) and bzip2 (for .bz2); you’ll need

to install them if they’re not already installed. For Windows, the programs provided by the

Cygwin environment will work fine.

undo-flag Buffer-specific Default: none

In addition to buffer changes and movements, Epsilon can record other information in its list of

undoable operations. Each time you set this variable, Epsilon inserts a “flag” in its undo list

with the particular value you specify. When Epsilon is undoing or redoing and encounters a

flag, it immediately ends the current group of undo operations, returns a special code, and puts

the value of the flag it encountered back into the undo_flag variable.

undo-keeps-narrowing System Buffer-specific Default: 0

If you use the narrow-to-region command to hide part of the buffer, and then use the undo

command to undo a change in a hidden part of the buffer, undo removes the narrowing. Some

modes set this variable nonzero to prevent that behavior.

undo-size Preference Buffer-specific Default: 500000

Epsilon retains at most this many characters of deleted or changed text in this buffer’s undo

information.

ungot-key Default: -1

If this variable is set to some value other than its usual value of -1, Epsilon uses that value

when it next tries to read a key and sets ungot-key to -1 again.

use-c-macro-rules Preference Default: 2

This variable controls whether C mode indenting recognizes certain macro names used by

various Microsoft development environments. Epsilon provides special indenting rules for

them. The value 0 disables such special rules; 1 enables them unconditionally, and 2 enables

them only in source file types that typically use such macros, and then only under Windows.

The indenting rules use the variables c-block-macro-close-pat,

c-block-macro-inner-pat, and c-block-macro-open-pat.

use-compile-command-file-variable Preference Default: 2

A file can use a file variable named “compile-command” to indicate that the compile-buffer

command should run a specific command line to compile that file. Set this variable to 1 if you

want compile-buffer to use such settings without any further prompting. Set it to 0 to have

compile-buffer ignore any such file variable. Set it to 2 to have the command prompt, showing

you the suggested compilation command and letting you edit it, before running it.

358 Chapter 6. Variables

use-default System Default: 0

If nonzero, every time Epsilon refers to a buffer- or window-specific variable, it uses the default

value instead of the current value.

use-file-variables Preference Default: 7

When Epsilon reads a file, it looks for special lines that can customize certain buffer-specific

settings like the tab size or fill column appropriately for that file, or specify the correct mode for

the file. These settings are called file variables. Bits in the use-file-variables variable

control this. See page 120 for details.

The 1 bit lets Epsilon scan each file it reads for file variables in its native Emacs-style format.

The 2 bit lets Epsilon first look for file variables in a special file named .epsilon_vars that

applies to all files in a directory.

The 4 bit lets Epsilon scan each file for file variables in the format used by the vi/vim family of

editors. Vi documentation uses the name “modelines” for what Epsilon calls file variables.

The 8 bit lets Epsilon look for an .epsilon_vars file even during grep. By default it doesn’t,

for speed reasons.

use-grep-ignore-file-variables Preference Default: 1

Set use-grep-ignore-file-variables to zero if you want Epsilon to ignore the various

grep-ignore- variables, and search all files.

use-process-current-directory Preference Default: 1

If the use-process-current-directory variable is 1, the default, Epsilon for Windows

95/98/ME and its concurrent process will share a common current directory. Changing the

current directory in Epsilon will change the current directory for the process, and vice versa. If

the variable is 0, Epsilon and its concurrent process will use independent current directories.

Under Windows NT/2000/XP and later Windows versions, Epsilon tries to retrieve the process’s

current directory and use it as the default directory for the process buffer, but it only affects

Epsilon’s current directory (set with Alt-x cd) if this variable is set to 2. Epsilon never tries to

set the process’s current directory.

Under Unix, Epsilon tries to retrieve the process’s current directory and use it as the default

directory for the process buffer, but it doesn’t affect Epsilon’s current directory (set with Alt-x

cd), and Epsilon never tries to set the process’s current directory.

user-abort Default: 0

Epsilon sets this nonzero when you press the abort key. Commands check this variable and

abort if it’s nonzero.

version Default: varies

This variable holds the current version number of Epsilon in text form, as recorded in the

executable file.

359

vbasic-auto-show-delim-chars Preference Default: "([])"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in Visual Basic mode. Epsilon will search for and highlight the

match of each delimiter.

vbasic-indent Preference Default: 3

Each level of indentation in Visual Basic mode will occupy this many columns.

vbasic-indent-case Preference Default: 1

If this variable is nonzero, Case statements in Select blocks in Visual Basic will receive extra

indentation. If zero, Case statements will be indented to the same level as their Select blocks.

vbasic-indent-subroutines Preference Default: 1

If nonzero, the bodies of subroutines will be indented more than the subroutine declaration line

at the top, in Visual Basic mode. Otherwise they will start with the same indentation.

vbasic-indent-with-tabs Preference Default: 0

If zero, Epsilon indents using only space characters, not tab characters, in Visual Basic mode.

The vbasic-mode command initializes the indent-with-tabs variable from this one.

vbasic-language-level Preference Default: 0xffff

When Epsilon colors Visual Basic files, it uses bits in this variable to control which set of

keywords to color.

The 0x2 bit makes it color keywords added in VB.NET 2005.

The 0x4 bit makes it color keywords added in VB.NET 2008.

The 0x40 bit makes it color unreserved VB.NET keywords like isfalse and until.

The 0x80 bit makes it color obsolete VB.NET keywords like gosub and variant.

Reload each Visual Basic file or toggle its want-code-coloring variable after setting this

variable so the new rule takes effect.

vbasic-reindent-previous-line Preference Default: 1

This variable controls whether Epsilon reindents the previous line when you press 〈Enter〉 in

Visual Basic mode.

versioned-file-string System Default: varies

This variable holds Epsilon’s version number, formatted so that it can be part of a directory

name. Epsilon for Unix looks for its configuration files in a directory whose name is built from

this string; it also checks this against the variable eel-version to detect version mismatches

between an Epsilon executable and its state file commands.

360 Chapter 6. Variables

vhdl-auto-show-delim-chars Default: "()"

This variable holds the set of delimiter characters that should trigger Epsilon’s

auto-show-delimiters feature in VHDL mode. Epsilon will search for and highlight the match of

each delimiter.

vhdl-indent Preference Default: 4

Each level of indentation in VHDL mode will occupy this many columns.

virtual-insert-cursor Preference Default: 93099

Epsilon uses the cursor shape code specified by this variable whenever the cursor is in virtual

space (between characters) and Epsilon’s overwrite mode is off. See the description of

normal-cursor for details. See virtual-insert-gui-cursor for the Windows or X11

equivalent.

virtual-insert-gui-cursor Preference Default: 50002

Epsilon for Windows or X11 uses the cursor shape code specified by this variable whenever the

cursor is in virtual space (between characters) and Epsilon’s overwrite mode is off. See the

description of normal-gui-cursor for details.

virtual-overwrite-cursor Preference Default: 0005

Epsilon uses the cursor shape code specified by this variable whenever the cursor is in virtual

space (between characters) and Epsilon’s overwrite mode is on. See the description of

normal-cursor for details. See virtual-overwrite-gui-cursor for the Windows or X11

equivalent.

virtual-overwrite-gui-cursor Preference Default: 50100

Epsilon for Windows or X11 uses the cursor shape code specified by this variable whenever the

cursor is in virtual space (between characters) and Epsilon’s overwrite mode is off. See the

description of normal-gui-cursor for details.

virtual-space Preference Buffer-specific Default: 0

If zero, Epsilon commands only position to places on the screen where there is actual buffer

text. If one, the 〈Up〉 and 〈Down〉 keys will stay in the same column, even if no text exists there.

If two, in addition to 〈Up〉 and 〈Down〉, the 〈Right〉 and 〈Left〉 keys will move into places

where no text exists, always remaining on the same line of the buffer.

w-bottom System Default: none

Mouse commands store the bottom edge of the selected window here.

w-left System Default: none

Mouse commands store the left edge of the selected window here.

361

w-right System Default: none

Mouse commands store the right edge of the selected window here.

w-top System Default: none

Mouse commands store the top edge of the selected window here.

want-auto-save Preference Default: 0

If nonzero, Epsilon periodically saves a copy of each unsaved file. Bits in this variable control

various aspects of auto-saving. The 2 bit makes auto-saving more verbose, with a message

every time Epsilon auto-saves a file. The 4 bit prevents Epsilon from deleting the auto-save file

once the corresponding file has been saved. When Epsilon exits normally, if auto-saving is on, it

deletes any auto-saved file associated with every file you’re editing, even if it wasn’t created by

the current session. The 8 bit prevents this.

want-backups Preference Buffer-specific Default: 0

If 2, Epsilon makes a backup whenever it saves a file. If 1, Epsilon makes a backup the first

time it saves a file in a session.

want-bell Preference Default: 1

If nonzero, Epsilon beeps to warn you of certain conditions. Variables starting with bell-on-

permit finer control over just when Epsilon beeps.

want-code-coloring Preference Buffer-specific Default: 1

If this buffer-specific variable is non-zero, Epsilon tries to do code coloring (syntax

highlighting) in the current buffer.

want-cols System Default: varies

This variable holds the value the user specified through the -vc switch, or 0 if the user did not

explicitly specify the number of columns to display via this flag.

want-common-file-dialog Preference Default: 1

In Epsilon for Windows, some commands that prompt for files can use the Windows Common

File Dialog. By default, these commands use the dialog if you invoke them from the menu or

tool bar, but not if you invoke them from the keyboard using their bindings. Set this variable to

2 if you want Epsilon to use the Common File Dialog whenever it can. Set the variable to 0 to

prevent Epsilon from ever using this dialog. The default value of 1 produces the behavior

described above.

want-display-host-name Preference Default: 1

Set this variable to 0 to keep Epsilon for Unix from displaying the computer’s network node

host name in the window title. Set this variable to 2 to have Epsilon use the computer’s fully

qualified domain name instead of the configured host name.

362 Chapter 6. Variables

want-gui-menu System Default: 1

Epsilon for Windows sets this variable to indicate whether it should display a menu bar.

want-gui-printing Preference Default: 1

If this variable is zero, printing commands in Epsilon for Windows won’t use standard

Windows printing features, but instead will print via the print-destination variable. If you

want Epsilon to run an external command to print a file, set this variable to zero.

want-gui-prompts Preference Default: 1

If this variable is zero, Epsilon for Windows will avoid using Windows dialogs in many

commands, and will draw text boxes instead, similar to the non-Windows versions of Epsilon.

want-lines System Default: varies

This variable holds the value the user specified through the -vl switch, or 0 if the user did not

explicitly specify the number of lines to display via this flag.

want-sorted-tags Preference Default: 1

If nonzero, Epsilon displays its list of tags alphabetically. If zero, the order depends on the order

in which you tagged the files.

want-state-file-backups Preference Default: 1

If nonzero, Epsilon makes a backup whenever you write a new state file.

want-toolbar Preference Default: 1

Epsilon uses this variable to remember if the user wants a tool bar displayed, in versions of

Epsilon which support this. Use the toggle-toolbar command to change this setting.

want-warn Preference Buffer-specific Default: 1

If nonzero, before Epsilon saves a file, it checks the time and date of the copy of the file already

on disk (to see if anyone has modified it since you read it into Epsilon), and warns you if the file

has been modified. Epsilon also checks the file each time you switch to a buffer or window

displaying that file, and before you read or write the file.

want-window-borders Preference Default: 1

The toggle-borders command uses this variable to record whether or not you want borders

between tiled windows. Without borders, Epsilon assigns separate color schemes to each

window.

warn-before-overwrite Preference Default: 1

Commands like write-region that write to a user-specified file ask for confirmation if the file

already exists. To make Epsilon write over such files without asking, set this variable to 0.

363

was-quoted System Default: 0

Epsilon makes this variable nonzero if the last file name you typed included the " character.

Epsilon treats some files patterns differently in this case.

wheel-click-lines Preference Default: -1

Rolling the wheel on a mouse scrolls by this many lines at once. A value of 0 means scroll by

pages. Under Windows, a value of -1 means use the value set in the Mouse control panel; for

Unix, it’s the same as 3.

window-bufnum System Window-specific Default: none

This variable holds the buffer number of the buffer Epsilon should display in the current

window.

window-caption Preference Default: "Epsilon"

Epsilon for Windows or X11 sets its caption to this text when the current buffer is not

associated with a file and the window-caption-buffer variable is empty.

window-caption-buffer Preference Default: "(%s) - Epsilon"

Epsilon for Windows or X11 sets its caption to this text when the current buffer is not

associated with a file. The %s in the text is replaced by the buffer name. If this variable is

empty, Epsilon uses the window-caption variable instead.

window-caption-file Preference Default: "%s - Epsilon"

Epsilon for Windows or X11 sets its caption to this text when the current buffer is associated

with a file. The %s in the text is replaced by the file name.

window-color-scheme System Window-specific Default: 0

If the window-specific variable window_color_scheme is non-zero in a window, Epsilon uses

its value in place of the selected_color_scheme variable when displaying that window. But

the similar buffer_color_scheme variable takes precedence over this one.

window-end Window-specific Default: none

On each screen refresh, Epsilon sets this variable to the last buffer position displayed in the

window.

window-handle Default: none

This variable holds the current window’s window handle, a code that uniquely identifies the

window. Setting it switches windows.

window-height Window-specific Default: none

This variable contains the height of the current window in lines, including any mode line or

borders. Setting it changes the size of the window.

364 Chapter 6. Variables

window-left Window-specific Default: none

This variable holds the screen coordinate of the left edge of the current window. If the current

window is a pop-window, you can set this variable to move the window around.

window-number Default: none

This variable holds a number that denotes the current window’s position in the window order.

Tiled windows are numbered from the upper-left window, which is numbered zero, to the

lower-right window. Pop-up windows always come after tiled windows in this order, with the

most recently created pop-up window last.

window-overlap Preference Default: 2

When scrolling by pages, Epsilon leaves this many lines of overlap between one window of text

and the next (or previous). A negative value for window-overlap represents a percentage of

overlap, instead of the number of screen lines.

window-start Window-specific Default: none

This variable holds the buffer position of the first character displayed in the current window.

window-top Window-specific Default: none

This variable holds the screen coordinate of the top edge of the current window. If the current

window is a pop-window, you can set this variable to move the window around.

window-width Window-specific Default: none

This variable contains the width of the current window in characters, including any borders.

Setting it changes the size of the window.

winhelp-display-contents Preference Default: 0

If winhelp-display-contents is nonzero, help file menu items created by the

select-help-files command will display the contents page of their help file if you select one

without first highlighting a keyword. If zero, Epsilon will display the keyword index of the help

file.

word-pattern Buffer-specific Default: points to

default_word

This variable points to the regular-expression pattern Epsilon uses to move forward or backward

by a word in the current buffer. Set the variable default-word instead to change the pattern

for all buffers, or to change it permanently.

wrap-dired-live-link Preference Default: 1

When you press lowercase L in a dired buffer to create a live link window, Epsilon normally

sets its window to wrap long lines. This is useful because displaying files with extremely long

lines (such as binary files) can be slow when the window is set to horizontally scroll, producing

a delay before Epsilon responds to keystrokes.

But you can set this variable to 0 to have Epsilon horizontally scroll long lines in such windows

instead of wrapping them. Set it to 2 to maintain the current window’s setting for wrapping

versus horizontally scrolling, or 1 to force wrapping (the default).

365

wrap-grep Preference Default: 3

When you use the grep command to list matches in files, Epsilon normally sets the current

window to horizontally scroll long lines, so that long lines in the grep listing each occupy a

single screen line. Set this variable to 1 to have it set the current window to wrap long lines

instead of scrolling them. Set it to 2 to maintain the current window’s setting for wrapping

versus horizontally scrolling, or 0 always to force scrolling.

The default setting 3 makes Epsilon force horizontal scrolling except when the default behavior

for windows has been set to wrap, in which case it maintains the current window’s setting.

wrap-info-mode Preference Default: 1

When Epsilon displays documentation in Info format, it normally sets the current window to

wrap long lines. Set this variable to 0 to have it horizontally scroll long lines instead of

wrapping them. Set it to 2 to maintain the current window’s setting for wrapping versus

horizontally scrolling, or 1 to force wrapping (the default).

wrap-split-vertically Preference Default: 0

When you use the split-window-vertically command to create side-by-side windows, Epsilon

normally sets them both to horizontally scroll long lines. Set this variable to 1 to have it wrap

long lines instead of scrolling them. Set it to 2 to maintain the current window’s setting for

wrapping versus horizontally scrolling, or 0 to force scrolling (the default).

wrap-view-error-lines Preference Default: 2

When you set the process-view-error-lines variable so that compiling commands display

compiler error messages in a separate window, you can tell Epsilon to force that window to

horizontally scroll its long lines, or to wrap them, by setting this variable to 0 or to 1,

respectively. The default value 2 makes the new window inherit this setting from the adjacent

window when it’s created.

xml-asp-coloring Preference Default: 10

This variable tells Epsilon how to syntax highlight scripts embedded in <% %> delimiters in

XML documents, when the file doesn’t name any specific script language. Zero means use a

single color, 1 means color as Javascript, 2 means color as VBScript, 3 means color as PHP, 4

means Python, 5 means CSS, and 10 means <% doesn’t start an embedded script.

xml-auto-fill-combine Preference Default: 10

When auto-filling breaks a line of XML, it avoids breaking a line that contains just the start of

an element, except when the element name is longer than specified by this variable. For

example, it won’t split a line right after <type at its start, but it may after <newdef:address.

xml-auto-fill-mode Preference Default: 25

This variable controls whether Epsilon automatically breaks long lines as you type in XML

mode. The 1 bit toggles filling on and off entirely. It’s set by the auto-fill-mode command. Other

bits control where filling occurs.

The 2 bit lets it break text that isn’t part of an XML tag. The 4 bit lets it break XML tags. The 8

bit lets it break XML comments. The value 16 lets it break comments in any embedded

scripting. By default, Epsilon breaks only in comments (both types).

366 Chapter 6. Variables

xml-auto-indent Preference Default: 0xff

This variable controls automatic indentation when you press 〈Enter〉 in XML mode. Bits in the

variable control whether Epsilon auto-indents in specific regions of the document. The 0x1 bit

makes Epsilon auto-indent when you press 〈Enter〉 outside script blocks. Other bits, as shown

in the table below, make Epsilon auto-indent in that type of scripting.

Scripting Language Bit

JavaScript 0x2

VBScript 0x4

PHP 0x8

Python 0x10

CSS 0x20

When you disable smart auto-indenting in a certain type of scripting by setting one of these bits,

〈Enter〉 will instead indent to the previous line. Set the 0x4000 bit if you prefer no indenting at

all for regions where you’ve disabled smart indenting.

xml-indent Preference Default: 3

Each level of indentation in XML mode will occupy this many columns. If this variable is zero,

Epsilon uses the tab size instead.

xml-paragraph-elements Preference Buffer-specific Default:

"<alphanum|.|_|hyphen>+"

When filling paragraphs in XML mode, Epsilon treats tags matching element names on this list

as paragraph delimiters. The list uses the syntax of a regular expression pattern, so by default it

matches all tags and only fills text between tags.

xml-php-coloring Preference Default: 10

This variable tells Epsilon how to syntax highlight scripts embedded in <? ?> delimiters in

XML documents, when the file doesn’t name any specific script language. Zero means use a

single color, 1 means color as Javascript, 2 means color as VBScript, 3 means color as PHP, 4

means Python, 5 means CSS, and 10 means <% doesn’t start an embedded script.

xml-reindent-previous-line Preference Default: 0

This variable controls whether Epsilon reindents the previous line when you press 〈Enter〉 in

XML mode.

xml-spell-options Preference Default: 0

This variable controls the Spell minor mode in XML mode. Use the spell-mode command to set

it to 1, and Epsilon will highlight misspelled words in XML text, ignoring element names and

attributes. See the default-spell-options variable for the other bits you can set to

customize spell checking in XML mode.

367

yank-line-retains-position Preference Default: 0

This variable determines how Epsilon positions point after you yank a line region when point is

in the middle of a line. If nonzero, point remains where it is in the middle of the previous line.

If zero, point moves to after the yanked line.

yank-options Preference Default: 0

Bits in this variable can be used to customize aspects of the yank command. The 1 bit alters

what happens when you yank a path name starting with a path separator character / or \ at a file

name prompt, after a directory name itself ending in / or \. By default, Epsilon deletes the

existing directory name, treating the yanked name as an absolute path. Set the 1 bit if you want

Epsilon to delete merely the path separator at the end of the existing directory name, treating the

yanked path name as a relative name.

yank-rectangle-to-corner Preference Default: 1

This variable determines how Epsilon positions point and mark after you yank a rectangular

region. If 1, it puts point at the bottom right corner of the region, and mark at the upper left. If

2, it puts point at the upper left and mark at the lower right. If 3, it puts mark at the upper left

corner, and positions point one line below the bottom left corner (Brief-style). Note that with

this last style, the yank-pop command will not function after yanking a rectangular region.

Chapter 7

Changing Epsilon

369

Epsilon provides several ways for you to change its behavior. Some commands enable you to make simple

changes. For example, set-fill-column can change the width of filled lines of text. Commands like bind-to-key

and create-prefix-command can move commands around on the keyboard, and using keyboard macros, you

can build simple new commands. The remaining chapters of the manual describe how to use the Epsilon

Extension Language, EEL, to make more sophisticated commands and to modify existing commands.

Unless you save them, all these types of changes go away when you exit, and you must reload them the

next time you run Epsilon. (But see the record-customizations variable.)

There are many ways to save such changes. The easiest way to save them is with the list-customizations

command. That’s the best method, unless you have a very large number of customizations. It works by

adding lines to your einit.ecm customization file, which Epsilon reads every time it starts. Or you can

customize Epsilon by manually editing that file. See page 154 for details on both techniques.

But you can also save changes by storing them in a state file. This method lets Epsilon start up faster

when you have hundreds of customizations, or have made many customizations using the EEL extension

language. This chapter describes various ways to customize Epsilon using a modified state file.

When it starts, Epsilon reads a state file named epsilon-v13.sta containing all of Epsilon’s initial

commands, variables, and bindings. (You can use Epsilon’s -s flag to make Epsilon load its state from some

other file. For example, “epsilon -sfilename” loads its commands from the file filename.sta. The

default name includes Epsilon’s major version number.)

You can change Epsilon’s set of commands and settings by generating a new state file with the Epsilon

command write-state on Ctrl-F3. So one way to customize Epsilon is to make your changes (bind some keys,

set a variable, define some macros) and use the write-state command to put the changes in epsilon-v13.sta.

Your customizations will take effect each time you run Epsilon. See page 152 for more on write-state.

Instead of manually setting variables, then saving them in a (binary) state file, you may want to preserve

your changes in a human-readable format. Commands like list-customizations provide one way to do that,

preserving variable settings and the like in Epsilon’s command file format. You can also do this using EEL.

In that case, you may find it handy to have a file that loads your changes into a fresh Epsilon, then

writes the new state file automatically. The following simple EEL file, which we’ll call changes.e, uses

features described in later chapters to do just that:

#include "eel.h" /* Load standard definitions. */

when_loading() /* Execute this file when loaded. */

{

want_bell = 0; /* Turn off the bell. */

kill_buffers = 6; /* Use only 6 kill buffers. */

load_commands("mycmds"); /* Load my new commands. */

do_save_state("epsilon"); /* Save these changes. */

}

Each time you get an update of Epsilon, you can compile this program (type eel changes outside of

Epsilon) and start Epsilon with its new state file (type epsilon). Then when you load this file (type F3

changes 〈Enter〉 to Epsilon), Epsilon will make all your changes in the updated version and automatically

save them for next time.

You can change most variables as in the example above. Some variables, however, have a separate value

for each buffer. Consider, for example, the tab size (which corresponds to the value of the tab-size

variable). This variable’s value can potentially change from buffer to buffer. We call this a buffer-specific

variable. Buffer-specific variables have one value for each buffer plus a special value called the default

370 Chapter 7. Changing Epsilon

value. The default value specifies the value for the variable in a newly created buffer. A state file stores only

the default value of a buffer-specific variable.

Thus, to change the tab size permanently, you must change tab_size’s default value. You can use the

set-variable command to make the change, or an EEL program. The following version of changes.e sets the

default tab size to 5.

#include "eel.h" /* load standard definitions */

when_loading() /* execute this file when loaded */

{

tab_size.default = 5; /* set default value */

load_commands("mycmds"); /* load my new cmnds */

do_save_state("epsilon"); /* save these changes */

}

For comparison, here are the lines you could add to your einit.ecm file instead, to make similar

customizations without using EEL:

(set-variable tab-size 5)

(load-eel-from-path "mycmds.e" 2)

This technique, using an einit.ecm file as shown on page 154, is simpler than using a changes.e file, and

doesn’t require running the EEL compiler explicitly, so it’s better for all but the most complex

customizations.

Once you’ve learned a little EEL, you may want to modify some of Epsilon’s built-in commands. We

recommend that you keep your modifications to Epsilon in files other than the standard distributed source

files. That way, when you get an update of Epsilon, you will find it easy to recompile your changes without

accidentally loading in old versions of some of the standard functions.

You cannot redefine a function during that function’s execution. Thus, changing the load-bytes

command, for example, would seem to require writing a different command with the same functionality, and

using each to load a new version of the other. You don’t have to do this, however. Using the -b flag, you can

load an entire system into Epsilon from bytecode files, not reading a state file at all. Epsilon does not

execute any EEL functions while loading commands with the -b flag, so you can redefine any function using

this technique.

To use this technique, first compile all the files that make up Epsilon. If you have a “make” utility

program, you can use the makefile included with Epsilon to do this. Then start Epsilon with the -b flag. This

loads the single bytecode file epsilon.b, which automatically loads all the others. The makefile then has

Epsilon write a new state file using these definitions. If you have made extensive changes to Epsilon’s

commands, this method may be most convenient.

371

Chapter 8

Introduction to EEL

373

8.1 Epsilon Extension Language

The Epsilon Extension Language (EEL) allows you to write your own commands and greatly modify and

customize the editor to suit your style. EEL provides a great deal of power. We used it to write all of

Epsilon’s commands. You can use it to write new commands, or to modify the ones that we provide.

We call EEL an extension language because you use it to extend the editor. Some people call such

things macro languages. We use the term “macro” to refer to the keyboard macros you can create in

Epsilon, or to EEL’s C-like textual macros, but not to the commands or extensions you write in EEL.

EEL has quite a few features that most extension languages don’t:

• Block structure, with a syntax resembling the C programming language.

• Full flow control: if, while, for, do, switch and goto. Additionally, EEL has a non-local goto facility

provided by setjmp and longjmp.

• Complete set of data types, including integers, arrays, structures, and pointers. In addition, you

may define new data types and allocate data objects dynamically.

• Subroutines with parameter passing. You may invoke subroutines recursively, and can designate

any subroutine a command.

• Rich set of arithmetic and logical operators. EEL has all the operators of the C programming

language.

• A powerful set of primitives. We wrote all of Epsilon’s commands in EEL.

• Global variables accessible everywhere, and local variables accessible only in the current routine.

EEL also has buffer-specific variables that change from buffer to buffer, and window-specific

variables that have a different value in each window.

In addition, the runtime system provides a source level tracing debugger, and an execution profiler.

Epsilon’s source subdirectory contains the EEL source code to all Epsilon’s commands. You may find it

helpful to look at this source code when learning the extension language. Even after you’ve become a

proficient EEL programmer, you probably will find yourself referring to the source code when writing your

own extensions, to see how a particular command accomplishes some task.

8.2 EEL Tutorial

This section will take you step by step through the process of creating a new command using EEL. You will

learn how to use the EEL compiler, a few control structures and data types, and a few primitive operations.

Most important, this section will teach you the mechanics of writing extensions in EEL.

As our example, we will write a simplified version of the insert-file command called simple-insert-file. It

will ask for the name of a file, and insert the contents of the file before point in the current buffer. We will

write it a few lines at a time, each time having the command do more until the whole command works.

When you write EEL routines, you may find this the way to go. This method allows you to debug small

sections of code.

Start Epsilon in a directory where you want to create the files for this tutorial. Using the find-file

command (Ctrl-X Ctrl-F), create a file with the name “learn.e”.

To write an extension, you: write the source code, compile the source code, load the compiled code,

then run the command.

First, we write the source code. Type the following into the buffer and save it:

374 Chapter 8. Introduction to EEL

#include "eel.h" /* standard definitions */

command simple_insert_file()

{

char inserted_file[FNAMELEN];

get_file(inserted_file, "Insert file", "");

say("You typed file name %s", inserted_file);

}

Let’s look at what the source code says. The first line includes the text of the file “eel.h” into this

program, as though you had typed it yourself at that point.

Comments go between /* and */.

The file “eel.h” defines some system-wide constants, and a few global variables. Always include it at

the beginning of your extension files.

The line

command simple_insert_file()

says to define a command with the name simple_insert_file. The empty parentheses mean that this

function takes no parameters. The left brace on the next line and the right brace at the end of the file delimit

the text of the command.

Each command or subroutine begins with a sequence of local variable declarations. Our command has

one, the line

char inserted_file[FNAMELEN];

which declares an array of characters called inserted_file. The array has a length of FNAMELEN. The

constant FNAMELEN (defined in eel.h) may vary from one operating system to another. It specifies the

maximum file name length, including the directory name. The semicolon at the end of the line terminates

the declaration.

The next statement

get_file(inserted_file, "Insert file", "");

calls the built-in subroutine get_file(). This primitive takes three parameters: a character array to store

the user’s typed-in file name, a string with which to prompt the user, and a value to offer as a default. In this

case, the Epsilon will prompt the user with the text between the double quotes (with a colon stuck on the

end). We call a sequence of characters between double quotes a string constant.

When the user invokes this command, the prompt string appears in the echo area. Epsilon then waits for

the user to enter a string, which it copies to the character array. While typing in the file name, the user may

use Epsilon’s file name completion and querying facility. This routine returns when the user hits the 〈Enter〉
key.

The next statement,

say("You typed file name %s", inserted_file);

prints in the echo area what file name the user typed in. The primitive say() takes one or more arguments.

The first argument acts as a template, specifying what to print out. The “%s” in the above format string says

to interpret the next argument as a character array (or a string), and to print that instead of the “%s”. In this

case, for the second argument we provided inserted_file, which holds the name of the file obtained in

the previous statement.

8.2. EEL Tutorial 375

For example, say the user types the file name “foo.bar”, followed by 〈Enter〉. The character array

inserted_file would have the characters “foo.bar” in it when the get_file() primitive returns. Then

the second statement would print out

You typed file name foo.bar

in the echo area.

One way to get this command into Epsilon is to run the EEL compiler to compile the source code into a

form Epsilon can interpret, called a bytecode file. EEL source files end in “.e”, and the compiler generates a

file of compiled binary object code that ends in “.b”. After you do that, you can load the .b file using the

load-bytes command.

But an easier way that combines these steps is to use Epsilon’s compile-buffer command on Alt-F3. This

command invokes the EEL compiler, as if you typed

eel filename

where filename is the name of the file you want to compile, and then (if there are no errors) loads the

resulting bytecode file. You should get the message “learn.b compiled and loaded.” in the echo area.

Now that you’ve compiled and loaded learn.b, Epsilon knows about a command named

simple-insert-file. Epsilon translates the underscores of command names to hyphens, so as to avoid conflicts

with the arithmetic minus sign in the source text. So the name simple_insert_file in the eel source code

defines simple-insert-file at command level.

Go ahead and invoke the command simple-insert-file. The prompt

Insert file:

appears in the echo area. Type in a file name now. You can use all Epsilon’s completion and querying

facilities. If you press ‘?’, you will get a list of all the files. If you type “foo?”, you will get a list of all the

files that start with “foo”. 〈Esc〉 and 〈Space〉 completion work. You can abort the command with Ctrl-G.

After you type a file name, this version of the command simply displays what you typed in the echo

area.

Let’s continue with the simple-insert-file command. We will create an empty temporary buffer, read the

file into that buffer, transfer the characters to our buffer, then delete the temporary buffer. Also, let’s get rid

of the line that displays what you just typed. Make the file learn.e look like this:

#include "eel.h" /* standard definitions */

command simple_insert_file()

{

char inserted_file[FNAMELEN];

char *original_buffer = bufname;

get_file(inserted_file, "Insert file", "");

zap("tempbuf"); /* make an empty buffer */

bufname = "tempbuf"; /* use that buffer */

if (file_read(inserted_file, 1) != 0)

error("Read error: %s", inserted_file);

/* copy the characters */

xfer(original_buffer, 0, size());

/* move back to buffer */

bufname = original_buffer;

376 Chapter 8. Introduction to EEL

delete_buffer("tempbuf");

}

This version has one more declaration at the beginning of the command, namely

char *original_buffer = bufname;

This declares original_buffer to point to a character array, and initializes it to point to the array named

bufname.

The value of the variable bufname changes each time the current buffer changes. For this reason, we

refer to such variables as buffer-specific variables. At any given time, bufname contains the name of the

current buffer. So this initialization in effect stores the name of the current buffer in the local variable

original_buffer.

After the get_file() call, we create a new empty buffer named “tempbuf” with the statement

“zap("tempbuf");”. We then make “tempbuf” the current buffer by setting the bufname variable with the

following.

bufname = "tempbuf";

Now we can read the file in:

if (file_read(inserted_file, 1) > 0)

error("Read error: %s", inserted_file);

This does several things. First, it calls the file_read() primitive, which reads a file into the current

buffer. It returns 0 if everything goes ok. If the file doesn’t exist, or some other error occurs, it returns a

nonzero error code. The actual return value in that case indicates the specific problem. This statement, then,

executes the line

error("Read error: %s", inserted_file);

if an error occurred while reading the file. Otherwise, we move on to the next statement. The primitive

error() takes the same arguments that say() takes. It prints out the message in the echo area, aborts the

command, and drops any characters you may have typed ahead.

Now we have the text of the file we want to insert in a buffer named tempbuf. The next statement,

xfer(original_buffer, 0, size());

calls the primitive xfer(), which transfers characters from one buffer to another. The first argument

specifies the name of the buffer to transfer characters to. The second and third arguments give the region of

the current buffer to transfer. In this case, we want to transfer characters to original_buffer, which holds

the name of the buffer from which we invoked this command. We want to transfer the whole thing, so we

give it the parameters 0 and size(). The primitive size() returns the number of characters in the current

buffer.

The last two statements return us to our original buffer and delete the temporary buffer.

The final version of this command adds several more details.

On the first line, we’ve added on cx_tab['i']. This tells Epsilon to bind the command to Ctrl-X I.

We’ve added a new character pointer variable named buf, because we will use Epsilon’s temp_buf()

subroutine for our temporary buffer rather than the wired-in name of “tempbuf”. This subroutine makes up

an unused buffer name and creates it for us. It returns the name of the buffer.

8.2. EEL Tutorial 377

#include "eel.h" /* standard definitions */

char region_file[FNAMELEN];

command simple_insert_file() on cx_tab[’i’]

{

char inserted_file[FNAMELEN], *buf;

char *original_buffer = bufname;

int err;

iter = 0;

get_file(inserted_file, "Insert file", region_file);

mark = point;

bufname = buf = temp_buf();

err = file_read(inserted_file, 1);

if (!err)

xfer(original_buffer, 0, size());

bufname = original_buffer;

delete_buffer(buf);

if (err)

file_error(err, inserted_file, "read error");

else

strcpy(region_file, inserted_file);

}

Figure 8.1: The final version of simple-insert-file

The line

mark = point;

causes Epsilon to leave the region set around the inserted text. The xfer() will insert its text between mark

and point. We’ve added the line iter = 0; to make the command ignore any numeric argument. Without

this line, it would ask you for a file to insert over and over, if you accidentally gave it a numeric argument.

We now save the error code that file_read() returns so we can delete the temporary buffer in the

event of an error. We also use the file_error() primitive rather than error() because the former will

translate system error codes to text.

Finally, we added the line

char region_file[FNAMELEN];

to provide a default if you should execute the command more than once. Because this definition occurs

outside of a function definition, the variable persists even after the command finishes. Variables defined

within a function definition (local variables) go away when the function finishes. We copy the file name to

region_file each time you use the command, and pass it to get_file() to provide a default value.

Chapter 9

Epsilon Extension
Language

379

This chapter describes the syntax and semantics of EEL, the Epsilon Extension Language. Starting on page

421, we describe the built-in functions and variables (called primitives) of EEL. The tutorial that explains

how to compile and load commands into Epsilon begins on page 373. You will find EEL very similar to the

C programming language. A list of differences between EEL and C appears on page 411.

9.1 EEL Command Line Flags

To invoke the EEL compiler, type eel filename. If you omit the file name, the compiler will display a

message showing its command line options.

Before the filename, you can optionally specify one or more command line switches. The EEL compiler

looks for an environment variable named EEL before examining its command line, then “types in” the

contents of that variable before the compiler’s real command line. Under Windows, the EEL compiler uses a

registry entry named EEL (a “configuration variable”, as described on page 10), not an environment variable.

The EEL compiler has the following flags:

-b By default, in each file it compiles, the EEL compiler includes a variable definition that

provides the full path to the original source file. It has a name such as

_loaded_eel_file_xyz for a file xyz.e. This flag omits that variable; it’s used for

compiling all EEL files that are part of Epsilon’s standard distribution. Epsilon’s

list-customizations command uses the information provided by such variables.

-dmac!def This flag defines the textual macro mac, giving it the definition def , as if you had

defined it using the #define command. The syntax -dmac defines the macro mac, giving

it the definition (1). You can also use the syntax -dmac=def , but beware: if you run EEL

via a .BAT or .CMD file, the system will replace any =’s with spaces, and EEL will not

correctly interpret the flag.

-e This flag tells the compiler to exclude definitions from #included files when it writes the

bytecode file. This results in smaller bytecode files. You can safely use this flag when

compiling EEL files other than epsilon.e that only include the file eel.h, but it’s most

useful with autoloaded files. Epsilon will signal an error if you call a function using a

variable whose definition has been omitted by -e in all loaded bytecode files.

-f This flag makes the compiler act as a filter, reading EEL code from stdin instead of a file,

and writing its binary output to stdout. A file name on the command line is still required,

but it is used only for error messages and debugging information.

-F This flag makes the compiler write its binary output to stdout instead of a bytecode file.

-idirectory This flag sets the directories to search for files included with the preprocessor

#include command. Precede each search directory with -i. If you use several -i flags on

the command line, the compiler will search the directories in the order they appear.

The compiler searches for included files using the following rules. First, if you use the

syntax #include "file.h", not #include <file.h>, EEL searches in the directory

containing the current source file. The -w1 flag makes it skip this step.

Next, EEL searches in each directory specified by -i.

If EEL still hasn’t found the include file, the -w2 flag makes EEL give up at this point.

Otherwise, EEL searches the EPSPATH configuration variable, looking for an include

subdirectory of each directory. If there is no EPSPATH configuration variable, EEL

searches a default EPSPATH (see page 12). When constructing this default EPSPATH, the

-w8 flag makes EEL omit any directory chosen based on the EEL compiler’s location.

-i- Makes the EEL compiler ignore all prior -i flags. This is useful if you use a configuration

variable to always provide certain -i flags.

380 Chapter 9. Epsilon Extension Language

-n Makes the EEL compiler skip displaying its copyright message.

-ofile Sets the output file. Normally EEL constructs the file name for the bytecode file based on

the input file, with the .e extension replaced by “.b”, and puts the bytecode file in the

current directory.

-p Makes the compiler display a preprocessed version of the file.

-q Suppress warning messages about unused local variables and function parameters.

-s Leave out debugging information from the bytecode file. Such a file takes up less space, and

runs a bit faster. If you use this switch, though, you cannot use the debugger on this file,

and the debug key Ctrl-〈Scroll Lock〉 (except under Windows and Unix) will not work

while such a function executes. We compiled the standard system with the -s flag. You

may wish to recompile some files without this flag so you can trace through functions and

see how they work.

-v Prints a hash mark each time the compiler encounters a function or global variable

definition. Use it to follow the progress of the compiler.

-wNUM Bits in NUM control how EEL searches for include files. The 1 bit tells EEL to treat

#include "file.h" the same as #include <file.h> and skip looking in the current

source file’s directory. The 2 bit tells EEL not to search for included files based on the

EPSPATH. The 8 bit tells EEL that when constructing a default EPSPATH, it shouldn’t

consider the location of the EEL executable. See the description of the -i flag above.

Values in the -w flag are cumulative, so -w1 -w2 is the same as -w3. Omit the number

(use -w) to clear all bits.

An example using these switches is:

eel -s -p -v -dCODE=3 -oout -i/headers source >preproc

9.2 The EEL Preprocessor

EEL includes a preprocessor that can do macro substitution on the source text, among other things. You give

preprocessor commands by including lines that start with “#” in your source text. A backslash character “\”

at the end of a line makes the preprocessor command continue to the next line. This section lists the

available preprocessor commands.

#define identifier replacement-text

This command defines a textual macro named identifier. When this identifier appears again in normal

text (not in quotes), it is immediately replaced with the characters in the replacement text.

The rules for legal macro names are the same as the rules for identifiers in the rest of EEL: a letter or the

underscore character “_”, followed by any number of letters, digits, or underscore characters. Identifiers

which differ by case are different identifiers, so mabel, maBel, and MABEL could be three different macros.

For clarity, it’s best to use all upper case names for macros, and avoid such names otherwise.

When the EEL compiler starts, the macro _EEL_ is predefined, with replacement text (1). The macros

UNICODE and BUNICODE are also defined, with the same values. You can test for UNICODE to write EEL code

that must also compile in older versions of Epsilon without Unicode support.

Note that these textual EEL macros are not related to keyboard macros. Only the EEL compiler knows

about textual macros; Epsilon has no knowledge of them. You cannot bind a textual macro to a key, for

example. Keyboard macros can be bound to a key, and the EEL compiler doesn’t know anything about them,

only the main Epsilon program. To further confuse matters, other editors refer to their extension languages

9.2. The EEL Preprocessor 381

as macro languages, and call all editor extensions “macros”. In this manual, we never use the word “macro”

to mean an editor extension written in EEL.

#define identifier(arg1,arg2,arg3,...) replacement-text

A macro with arguments is like a normal macro, but instances of the identifier in normal text must be

followed by the same number of text sections (separated by commas) as there are arguments. Commas

inside quotes or parentheses don’t separate text sections. Each of these text sections replace the

corresponding identifier within the replacement text. For example, the preprocessor changes

#define COLOR(fg, bg) ((fg) + ((bg) << 4))

int modecol=COLOR(8, 3);

int mcol=COLOR(new_col(6,2),name_to_col("green"));

to

int modecol=((8) + ((3) << 4))

int mcol=((new_col(6,2))+((name_to_col("green"))<<4))

The command

#undef identifier

removes the effect of a prior #define for the rest of a compilation.

The command

#include <filename>

inserts the text in another file at this point in the source text. #include’s may be nested. In the above

format, the EEL compiler searches for the file in each of the #include directories specified on the

command line, or in a default location if none were specified. See page 379.

If you use quote marks (" ") instead of angle brackets (< >) around the file name of the #include

command, the EEL compiler will first look in the directory of the original file for the included file, before

searching the #include directories as above. With either delimiter, the compiler will ignore attempts to

include a single file more than once in a compilation.

The command

#tryinclude <filename>

is the same as the #include command, except it’s not an error if EEL cannot locate the specified file.

EEL just ignores the command in that case.

The EEL compiler keeps track of the current source file name and line number to provide error

messages during compilation, and passes this information along in the bytecode file (unless you used the -s

command line option to suppress this). Epsilon then uses this information for the EEL debugger and profiler,

and displays it when certain errors occur. You can change the compiler’s notion of the current line and

source file with the command

#line number "filename"

This makes the compiler believe the current file is filename, and the #line command appears on line

number of it. If the file name is omitted, only the line number is changed.

382 Chapter 9. Epsilon Extension Language

#if constant-expression

. . . text . . .

#endif

The #if command permits sections of the source text to be conditionally included. A constant

expression (defined on page 405) follows the #if. If the value of the constant expression is nonzero, text

from this point to a matching #endif command is included. Otherwise, that region is ignored. As part of

the constant expression, the defined() keyword may be used; defined(XYZ) evaluates to 1 if a macro

named XYZ has been defined, otherwise 0.

#if constant-expression

. . . text . . .

#else

. . . text . . .

#endif

If an #else command appears between the #if and the #endif, the text following the #else is

ignored whenever the text preceding it is not. In other words, the text following the #else is ignored if the

constant is nonzero.

#if constant-expression

. . . text . . .

#elif constant-expression

. . . text . . .

#else

. . . text . . .

#endif

There may also be one or more #elif commands before an #else or #endif command. EEL evaluates

each constant expression in turn, and includes the text following the first of these constant expressions that

yields a nonzero value, skipping over all remaining commands in that block.

#ifdef identifier

. . . text . . .

#endif

#ifndef identifier

. . . text . . .

#endif

You can use the #ifdef command in place of the #if command. It ignores text between the command

and a matching #endif if the identifier is not currently defined as a textual macro with the #define

command. The text is included if the macro is defined. The #ifndef command is the same, but with the

condition reversed. It includes the text only if the macro is undefined. Both commands may have #else or

#elif sections, as with #if.

9.3. Lexical Rules 383

9.3 Lexical Rules

Comments in EEL begin with the characters /*, outside of any quotes. They end with the characters */. The

sequence /* has no effect while inside a comment, nor do preprocessor control lines.

You can also begin a comment with the characters //, outside of quotes. This kind of comment

continues until the end of the line.

9.3.1 Identifiers

Identifiers in EEL consist of a letter or the underscore character “_”, followed by any number of letters,

digits, or underscore characters. Upper case and lower case characters are distinct to the compiler, so Ab and

ab are different identifiers. When you load an identifier into Epsilon, Epsilon converts underscores “_” to

hyphens “-” and converts identifiers to lower case. For example, when invoking a command that has been

defined in an EEL source file as this_command(), you type this-command. All characters are significant,

and no identifier (or any token, for that matter) may be longer than 1999 characters.

The following identifiers are keywords, and you cannot use them for any other purpose:

if switch struct static

else case union unsigned

for default keytable enum

do goto typedef color_class

while sizeof buffer save_spot

return char window save_var

break short command spot

continue int on on_exit

user volatile zeroed color_scheme

byte

The keywords enum, unsigned, and static have no function in the current version of EEL, but we

reserve them for future use.

9.3.2 Numeric Constants

The term numeric constant collectively refers to decimal constants, octal constants, binary constants and hex

constants.

A sequence of digits is a decimal constant, unless it begins with the digit 0. If it begins with a 0, it is an

octal constant (base 8). The characters 0x followed by a hexadecimal number are also recognized (the digits

0–9 and the letters a–f or the letters A–F form hexadecimal numbers). These are the hex constants. The

characters 0b followed by a binary number form a binary constant. A binary number contains only the digits

0 and 1. Constants may contain _ characters for readability, as in 1_000_000; these are ignored.

All numeric constants in EEL are of type int.

9.3.3 Character Constants

Text enclosed in single quotes as in 'a' is a character constant. The type of a character constant is int. Its

value is the ASCII code for the character. Instead of a single character, an escape sequence can appear

between the quotes. Each escape sequence begins with a backslash, followed by a character from the

following table. A backslash followed by any other character represents that character.

The special escape sequences are:

384 Chapter 9. Epsilon Extension Language

\n newline character, ^J

\b backspace character, ^H

\t tab character, ^I

\r return character, ^M

\f form feed character, ^L

\yyy character with ASCII code yyy octal

\xhh character with ASCII code hh hexadecimal

\uhhhh character with code hhhh hexadecimal

\u{h} character with code h hexadecimal

\u[name] character with given Unicode name

For example, '\'' represents the ’ character, '\\' represents the \ character, '\0' represents the null

character, and '\n', '\12', and '\x0A', all represent the newline character (whose ASCII code is 12 in

octal notation, base 8, and 0A in hexadecimal, base 16).

The \u sequence is followed by four hex digits, while the \x sequence is followed by only two, and so

can only represent low-numbered characters. Enclose the hex digits in curly braces to directly mark the end

of the hex number; one to four hex digits can appear within. The square bracket syntax recognizes any

standard Unicode character name, such as Greek Capital Letter Alpha. These sequences are all

equivalent: \u[Greek Capital Letter Alpha], \u0391, \u{391}.

Anywhere a numeric constant is permitted, so is a character constant, and vice versa.

9.3.4 String Constants

Text enclosed in double quote characters (such as "example") is a string constant. It produces a block of

storage whose type is array of char, and whose value is the sequence of characters between the double

quotes, with a null character (ASCII code 0) automatically added at the end. All the escape sequences for

character constants work here too.

The compiler merges a series of adjacent string constants into a single string constant (before

automatically adding a null character at the end). For example, "sample" "text" produces the same

single block of storage as "sampletext".

If an EEL file that begins with a UTF-8 signature (“byte order mark”), then the compiler decodes

UTF-8 sequences in character and string constants. This method lets you include Unicode characters

directly instead of using escape sequences. If a file does not begin with a UTF-8 signature, the compiler

interprets bytes literally.

9.4 Scope of Variables

Variables may have two different kinds of “lifetimes”, or scopes. If you declare a variable outside of any

function declaration, it is a global variable. If you declare it inside a function declaration, it is a local

variable.

A local variable only exists while the function it is local to (the one you declared it in) is executing. It

vanishes when the function returns, and reappears (with some different value) when the function executes

later. If you call the function recursively, each call of the function has its own value for the local variable.

You may also declare a variable to be local to a block, in which case it exists only while code inside the

block is executing. A local variable so declared only has meaning inside the function or block it is local to.

A global variable exists independently of any function. Any function may use it. If functions declared

in different source files use the same global variable, the variable must be declared in both source files (or in

9.5. Data Types 385

files #included by both files) before its first use. If the two files have different initializations for the

variable, only the first initialization has effect.

If a local variable has the same name as a global variable, the local masks the global variable. All

references in the block to a variable of that name, from the local variable’s definition until the end of the

block it is defined in, are to the local variable. After the end of the block, the name again refers to the global

variable.

You can declare any global variable to be buffer-specific using the buffer keyword. A buffer-specific

variable has a value for each buffer and a default value. The default value is the value the variable has when

you create a new buffer (and hence a new occurrence of the buffer-specific variable). When you refer to a

buffer-specific variable, you normally refer to the part that changes from buffer to buffer. To refer to the

default portion, append “.default” to the variable name. For example, suppose the variable foo is

buffer-specific. References to foo would then refer to the value associated with the current buffer. To refer

to the default value, you would use the expression foo.default. (The syntax of appending “.default” is

available only when writing EEL programs, not when specifying a variable name to set-variable, for

example.) When you save Epsilon’s state using the write-state command, Epsilon saves only the default

value of each buffer variable, not the value for the current buffer.

Global variables may also be declared window-specific using the window keyword. A window-specific

variable has a separate value for each window and a default value. When Epsilon starts from a state file, it

uses the default value saved in the state file to set up the first window. When you split a window, the new

window’s variables start off with the same values as the original window. Epsilon also uses the default value

to initialize each new pop-up window. You can append “.default” to refer to the default value of a

window-specific variable.

9.5 Data Types

EEL supports a rich set of data types. First there are the basic types:

int These are 32 bit signed quantities. These correspond to integers. The value of an int

ranges from -2,147,483,648 to 2,147,483,647.

short These are like ints, except they are only 16 bits. Thus the value ranges from -32768 to

32767.

char These are 16 bit unsigned quantities. They correspond to characters. For example, the

buffer primitive curchar() returns an object of type char. The values range from 0 to

65535.

byte These are 8 bit unsigned quantities.

spot These are references to buffer positions. A spot can remember a buffer position in such a

way that after inserting or deleting characters in the buffer, the spot will still be between

the same two characters. Like pointers, spots can also hold the special value zero. See

page 424.

Besides basic types, there is an infinite set of types derived from these. They are defined recursively as

follows:

pointer If t is some type, then pointer to t is also a type. Conceptually, this is the address of

some object of type t. When you dereference an object of type pointer to t, the result is of

type t.

array If t is some type, then array of t is also a type.

386 Chapter 9. Epsilon Extension Language

structure If t1, . . . , tn are types, then structure of t1, . . . , tn is also a type. Conceptually, a

structure is a sequence of objects, where the jth object is of type tj .

union If t1, . . . , tn are types, then union of t1, . . . , tn is also a type. Conceptually, a union is

an object that can be of any of type t1, . . . , tn at different times.

function If t is a type, then function returning t is also a type.

Any function has a type, which is the type of the value it returns. If the function returns no value, it is of

int type, but it is illegal to attempt to use the function’s value.

Regardless of its type, you may declare any function to be a command (using the command keyword) if

it takes no parameters. Commands like named-command on Alt-X will then complete on its name, but there

is no other difference between commands and subroutines (user-defined functions which are not

commands). Functions that the user is expected to invoke directly (by pressing a key, for example) are

generally commands, while functions that act as helpers to commands are generally subroutines. Nothing

prevents an EEL function from calling a command directly, though, and the user can invoke any subroutine

directly as well (providing that it takes no arguments). Though a command may not have arguments, it may

return a value (which is ignored when the user directly invokes it).

9.5.1 Declarations

Declarations in EEL associate a type with an identifier. The structure of EEL declarations mimics the

recursive nature of EEL types.

A declaration is of the form:

declaration:

type-specifier ;

type-specifier declarator-list ;

declarator-list:

declarator

declarator , declarator-list

A type specifier names one of the basic types, a structure or union (described on page 389), or a typedef,

a type abbreviation (described on page 391).

type-specifier:

char

short

int

struct struct-or-union-specifier

union struct-or-union-specifier

spot

typedef-name

typedef-name:

identifier

A declarator, on the other hand, specifies the relationship of the identifier being declared to the type

named by the type specifier. If this is a recursive type, the relationship of the identifier’s type to the basic

type of the type specifier is indicated by the form of the declarator.

Declarators are of the following form:

9.5. Data Types 387

declarator:

identifier

(declarator)

* declarator

declarator [constant-expression]

declarator []

declarator ()

If D is a declarator, then (D) is identical to D. Use parentheses to alter the binding of composed

declarators. We discuss this more on page 390.

9.5.2 Simple Declarators

In the simplest case, the identifier being declared is of one of the basic types. For that, the declarator is

simply the identifier being declared. For example, the declarations

int length;

char this_character;

short small_value;

declare the type of the identifier length to be int, the type of this_character to be char, and the type of

small_value to be short.

If the relationship between the identifier and the type specified in the type specifier is more complex, so

is the declarator. Each type of declarator in the following sections contains exactly one identifier, and that is

the identifier being declared.

9.5.3 Pointer Declarators

Pointer declarators are used in conjunction with type specifiers to declare variables of type pointer to t,

where t is some type. The form of a pointer declarator is

* declarator

Suppose T is a type specifier and D is a declarator, and the declaration “T D;” declares the identifier

embedded in D to be of type “. . . T”. Then the declaration T *D; declares the identifier in D to be of type

“. . . pointer to T”. Several examples illustrate the concept.

int l;

int *lptr;

int **ldblptr;

Clearly, the first declaration declares l to be of type int. The type specifier is int and the declarator is l.

The second line is a little more complicated. The type specifier is still int, but the declarator is *lptr.

Using the rule above, we see that lptr is a pointer to an int. This is immediately clear from the above if you

substitute “int” for T , and “lptr” for D.

Similarly, the third line declares ldblptr to be a pointer to a pointer to an int.

388 Chapter 9. Epsilon Extension Language

9.5.4 Array Declarators

Array declarators are used in conjunction with type specifiers to declare objects of type array of t, where t is

some type. The form of an array declarator is

declarator [constant-expression]

but you may omit the constant expression if

• An initialized global variable of type “array of . . .” is being defined. (See page 392.) In this case, the

first constant-expression may be omitted, and the size of the array will be calculated from the

initializer.

• A function argument (sometimes called a formal parameter) of type “array of . . .” is being declared.

Since the type of the argument will be changed to “pointer to . . .” (as described on page 410) the first

constant-expression may be omitted.

The rules for constant expressions appear on page 405.

Suppose T is a type specifier and D is a declarator, and the declaration “T D;” declares the identifier

embedded in D to be of type “. . . T”. Then the declaration T (D)[]; declares the identifier to be of type “. . .

array of T”.

As an example, consider:

int (one_dim)[35];

int ((two_dim)[35])[44];

The first line declares the identifier one_dim to be of type array of int.

The second line declares two_dim to be array of array of int. Clearly, we can have arbitrary

multi-dimensional arrays by declaring the arrays in this manner.

As another example, consider the following:

char (*arg);

char (*argptr)[5];

char *(argary[5]);

From the preceding section, we know that the first line declares arg to be a pointer to a char. From this

section, we see that the second line declares argptr to be of type pointer to array of char.

Compare this to the third line, which declares argary to be of type array of pointer to char.

When you have mixed declarators as you have in this example, you sometimes can elide parentheses

according to the precedence rules of declarators. See section 9.5.7 for these precedences.

9.5.5 Function Declarators

Function declarators are used in conjunction with type specifiers to declare variables of type function

returning t, where t is some type. The form of a function declarator is

declarator ()

or

declarator (ansi-argument-list)

9.5. Data Types 389

Again, suppose T is a type specifier and D is a declarator, and the declaration “T D;” declares the

identifier embedded in D to be of type “. . . T”. Then the declaration T (D)(); declares the identifier to be

of type “. . . function returning T”.

Consider:

char (c)();

char *(fpc());

char (*pfc)(int count, char *msg);

The first line declares c to be of type function returning char. The second line declares fpc to be a

function returning pointer to char. The third line declares pfc to be of type pointer to function returning

char. The third example also declares that pfc requires two parameters and gives their types; the first two

examples provide no information about their functions’ parameters.

9.5.6 Structure and Union Declarations

This section describes how to define variables of type structure of t1, . . ., tn, where t1, . . ., tn are each

types. First, we give an informal description, with examples, of how structures are often declared. A more

formal description with BNF diagrams follows.

There is a special type-specifier, called a structure-or-union specifier, that defines structure and union

types. This type-specifier has several forms.

The simplest form is seen in the following example:

struct {

int field1;

char name[30];

char *data;

}

The field names of the structure are the identifiers being declared within the curly braces. These

declarations look like variable declarations, but instead of declaring variables, they declare field names. The

type of a particular field is the type the identifier would have if the declaration were a variable declaration.

The example above refers to a structure with fields named field1, name, and data, with types int,

array of char, and pointer to char, respectively.

Use the structure-or-union specifier like the other type-specifiers (int, short, char, and spot) in

declarations. For example:

struct {

int field1;

char name[30];

char *data;

} rec, *recptr, recary[4];

declares rec to be a structure variable, recptr to be a pointer to a structure, and recary to be an array of

(4) structures.

The structure-or-union-specifier may contain a tag, which gives a short name for the entire structure.

For example, the type-specifier in the following example:

390 Chapter 9. Epsilon Extension Language

struct recstruct {

int field1;

char name[30];

char *data;

};

creates a new type, struct recstruct, that refers to the structure being defined. Given this structure tag,

we may define our structure variables in the following manner:

struct recstruct rec, *recptr, recary[4];

Structure (or union) tags also let you create self-referential types. Consider the following:

struct list {

int data;

struct list *next;

};

struct list list1, list2;

This creates a structure type list, which has a data field that’s an int, and a next field that is a pointer

to a list structure. A structure may not contain an instance of itself, but may contain (as in this example) a

pointer to an object of its type.

More formally, a structure-or-union-specifier has the following form:

struct-or-union-specifier:

struct-or-union-tag

struct-or-union-tag { member-list }

{ member-list }

struct-or-union-tag:

identifier

member-list:

type-specifier declarator-list ;

type-specifier declarator-list ; member-list

A description of how to use structures and unions in expressions appears on page 405.

9.5.7 Complex Declarators

As some of the examples thus far have shown, you can compose (combine) declarators to yield arbitrarily

complicated types, like function returning pointer to an array of 10 chars:

char (*foo())[10];

When composing declarators, function and array declarators have the same precedence. They each take

precedence over pointer declarators. So the example we used in section 9.5.5:

char *(fpc());

could have been written more simply as

char *fpc();.

9.5. Data Types 391

The rule that EEL follows for declarations is that the identifier involved is to be declared so that an

expression with the form of the declarator has the type of the type specifier. This implies that the grouping

of operators in a declarator follows the same rules as the operators do in an expression.

There are a few restrictions on the combinations of declarators when functions are involved (and so on

the combinations of types). Functions may not return arrays, structures, unions, or functions, but they may

return pointers to any of these. Similarly, functions may not be members of structures, unions, or arrays, but

pointers to functions may be.

9.5.8 Typedefs

typedef-definition:

typedef type-specifier declarator-list ;

You can use typedefs to provide convenient names for complicated types. Once you define it, use a

typedef as a type specifier (like int) in any declaration. A typedef definition looks just like a variable

definition, except that the keyword typedef appears before the type specifier. The name of the typedef

being defined appears instead of the variable name, and the typedef has the same type the variable would

have had.

Typedefs only serve as abbreviations. They always create types that could be made in some other way.

A variable declared using a typedef is just the same as a variable declared using the full specification. For

example:

typedef short *NAME_LIST;

NAME_LIST nl, narray[20];

is equivalent to

short *nl, *narray[20];

9.5.9 Type Names

EEL’s sizeof operator and its casting operator specify particular types using type names. A type name

looks like a declaration of a single variable, except that the variable name is missing (as is the semicolon at

the end). For example, int * is a type name referring to a pointer to an int.

type-name:

type-specifier abstract-declarator

abstract-declarator:

empty

(abstract-declarator)

* abstract-declarator

abstract-declarator [constant-expression]

abstract-declarator []

abstract-declarator ()

abstract-declarator (ansi-argument-list)

Note that you could interpret a type name like int *() in two ways: either as a function returning a

pointer to an int (like int *foo();) or as a pointer to an int (like int *(foo);). EEL rules out the latter

392 Chapter 9. Epsilon Extension Language

by requiring that a parenthesized abstract-declarator be nonempty. Given this, the system is not ambiguous,

and an identifier can appear in only one place in each type name to make a legal declaration.

The same precedence rules apply to type names as to normal declarators (or to expressions). For

example, the type name char *[10] refers to an array of 10 pointers to characters, but char (*)[10]

refers to a pointer to an array of 10 characters.

9.6 Initialization

Declarations for the formal parameters of functions work just as described above, but you can additionally

provide local and global variables with a specific initial value.

local-variable-definition:

type-specifier local-declarator-list ;

local-declarator-list:

local-declarator

local-declarator , local-declarator-list

local-declarator:

declarator

declarator = expression

You can initialize a local variable with any expression so long as the corresponding assignment would

be permitted. Since you cannot assign to variables with types such as “array of . . .” and “structure of . . .”,

you cannot initialize such local variables at compile time. Local variables (those defined within a block)

have undefined initial values if no explicit initialization is present.

global-variable-definition:

type-specifier global-declarator-list ;

global-modifier-list global-declarator-list ;

global-modifier-list type-specifier global-declarator-list ;

global-modifier-list:

global-modifier

global-modifier global-modifier-list

global-modifier:

buffer

window

zeroed

user

volatile

global-declarator-list:

global-declarator

global-declarator , global-declarator-list

global-declarator:

declarator

declarator = string-constant

declarator = initializer

initializer:

constant-expression

9.6. Initialization 393

{ initializer-list }

{ initializer-list , }

initializer-list:

initializer

initializer , initializer-list

You may initialize a global variable of type “array of characters” with a string constant. If you omit the

length of the array in a declaration with such an initialization, it’s set to just contain the initializing string

(including its terminating null character).

If no explicit initialization is specified, variables defined globally are set to zero. If you provide a partial

initialization (for example, if you specify the first 5 characters in a 10 character array), the remainder of the

variable is set to zero. Initializers for global variables must involve only constant expressions known at

compile time, whereas initializers for local variables may involve arbitrary expressions (including function

calls, for example).

When Epsilon loads a file defining an initialized global variable and the variable was already defined to

have the same type, the initialization has no effect: the variable’s value remains the same. If the new

declaration specifies a different type for the variable, however, the variable’s value is indeed changed.

(Actually, Epsilon only compares the sizes of the variables. If you redefine an integer as a four character

array, Epsilon won’t apply the new initialization.) For example, suppose you declare foo to be an int and

initialize it to 5. If you later load a file which redeclares foo to be an int and initializes it to 7, the value of

foo would remain 5. If instead you redeclare foo to be a char and reinitialize it to ’C’, then the value would

change, since the size of a char is different from the size of an int.

To tell Epsilon that it must reinitialize the variable each time it reads a definition, use the volatile

keyword. Every time you load a bytecode file containing such a variable definition, Epsilon will set the

variable according to its initialization.

If you declare a global variable that is a number, spot, or pointer, the initializer must be a constant

expression. In fact, if the variable is a spot or pointer, you can only initialize it with the constant zero. For

example:

int i=3;

char *name="harold";

initializes the int variable i to be 3, and the character pointer name to point to the first character in the string

“harold”. The variable name must be a local variable. If it were global, then you could initialize it only to

zero, which is equivalent to not initializing it at all (see above).

If you declare a global array, you can initialize each element of the array. The initializer in this case

would be a sequence of constant expressions, separated by commas, with the whole thing enclosed in braces

{}. Consider the following examples:

int ary1[4] = { 10, 20, 30, 40 };

int ary2[] = { 10, 20, 30, 40 };

int ary3[4] = { 10, 20 };

Here we have ary1 declared to be an array of 4 ints. We initialize the first element in the array to 10,

the second to 20, and so on. The declaration of ary2 does the same thing. Notice that the square brackets in

the declarator are empty. The EEL compiler can tell from the initializer that the size must be 4. The

declaration of ary3 specifies the size of the array, but only initializes the first two elements. The compiler

initializes the remaining two elements to zero.

394 Chapter 9. Epsilon Extension Language

The initializers for global structures are similar. The items between the curly braces are a sequence of

expressions, with each expression’s type matching the type of the corresponding field name. For example,

the declaration:

struct {

int f1;

char f2;

short f3;

} var = { 33, ’t’, 22 };

declares the variable var to be a structure with fields f1, f2, and f3, with types int, char, and short

respectively. The declaration initializes the f1 to 33, the character field f2 to ’t’, and the short field f3 to

22.

You cannot initialize either unions or local structures. Global pointers may only be initialized to zero

(which is equivalent to not initializing them at all).

If you initialize an array or structure which has subarrays or substructures, simply recursively apply the

rules for initialization. For example, consider the following:

struct {

char c;

int ary1[3];

} var = { ’t’, { 3, 4, 5} };

This declares var to be a structure containing a character and an array of 3 ints. It initializes the

character to ’t’, and the array of ints so that the first element is 3, the second 4, and the third 5.

9.7 Statements

EEL has all of the statements of the C programming language. You can precede a statement by a label, an

identifier followed by a colon, which you can use with the goto statement to explicitly alter the flow of

control. Except where noted below, statements are executed in order.

9.7.1 Expression Statement

expression;

The expression is simply evaluated. This is the form of function calls and assignments, and is the most

common type of statement in EEL.

9.7.2 If Statement

if (expression)

statement

If the value of expression is not zero, statement executes. Otherwise control passes to the statement

after the if statement.

if (expression)

statement1

9.7. Statements 395

else

statement2

If the value of expression is not zero, statement1 executes. If the value of expression is zero, control

passes to statement2.

9.7.3 While, Do While, and For Statements

while (expression)

statement

In a while loop, the expression is evaluated. If nonzero, the statement executes, and the expression is

evaluated again. This happens over and over until the expression’s value is zero. If the expression is zero the

first time it is evaluated, statement is not executed at all.

do

statement

while (expression);

A do while loop is just like a plain while loop, except the statement executes before the expression is

evaluated. Thus, the statement will always be evaluated at least once.

for (expression1; expression2; expression3)

statement

In a for loop, first expression1 is evaluated. Then expression2 is evaluated, and if it is zero EEL leaves

the loop and begins executing instructions after statement. Otherwise the statement is executed, expression3

is evaluated, and expression2 is evaluated again, continuing until expression2 is zero.

You can omit any of the expressions. If you omit expression2, it is like expression2 is nonzero. while

(expression) is the same as for (; expression;). The syntax for (;;) creates an endless loop that

must be exited using the break statement (or one of the other statements described below).

9.7.4 Switch, Case, and Default Statements

switch (expression)

statement

case constant-expression: statement

default: statement

Statements within the statement following the switch (which is usually a block, as described below)

are labeled with constant expressions using case. The expression is evaluated (it must yield an int), and

Epsilon branches to the case statement with the matching constant. If there is no match, Epsilon branches

to the default statement if there is one, and skips over the switch statement if not.

A case or default statement associates with the smallest surrounding switch statement. Each

switch statement must have at most one case statement with any given value, and at most one default

statement.

396 Chapter 9. Epsilon Extension Language

9.7.5 Break and Continue Statements

break;

This statement exits from the smallest containing for, while, do while or switch statement. The

break statement must be the last statement in each case if you don’t want execution to “fall through” and

execute the statements for the following cases too.

continue;

The continue statement immediately performs the test for the smallest enclosing for, while, or do

while statement. It is the same as jumping to the end of the statement in each of their definitions. In the

case of for, expression3 will be evaluated first.

9.7.6 Return Statement

return;

return expression;

The return statement exits from the function it appears in. The first form returns no value, and

produces an error message if you called the function in a way that requires a value. The second form returns

expression as the value of the function. It must have the same type as you declared the function to be. It is

not an error for the value to be unused by the caller.

If execution reaches the end of a function definition, it is the same as if return; were there.

9.7.7 Save_var and Save_spot Statements

statement:

save_var save-list;

save_spot save-list;

save-list:

save-item

save-item , save-list

save-item:

identifier

identifier = expression

identifier modify-operator expression

identifier ++

identifier --

The save_var statement tells Epsilon to remember the current value of a variable, and set it back to its

current value when the function that did the save_var exits. Epsilon will restore the value no matter how

the function exits, even if it calls another function which signals an error, and this aborts out of the calling

function.

You can provide a new value for the variable at the same time you save the old one. Epsilon first saves

the old value, then assigns the new one. You can use any of the assignment operators listed on page 403, as

well as the ++ and -- operators.

For example, this command plays a note at 440 Hz for one second, without permanently changing the

user’s variable settings for the bell (in versions of Epsilon that support changing the bell’s frequency and

duration).

9.7. Statements 397

command play_note()

{

save_var beep_frequency = 440;

save_var beep_duration = 100;

ding(); /* uses beep_ variables */

}

The save_spot statement functions like save_var, but it creates a spot (see page 424) in the current

buffer to hold the old value. The spot will automatically go away when the function exits. Use save_spot

instead of save_var when you wish to save a buffer position, and you want it to stay in the right place even

if the buffer contents change.

The save_var and save_spot statements can apply to global variables with “simple” types: those that

you can directly assign to with the = operator. They don’t work on structures, for example, or on local

variables.

Although the save_var and save_spot statements resemble variable declarations, they are true

statements. You can use the if statement (above), for example, to only save a variable in certain cases.

These statements operate with a “stack” of saved values, so that if you save the same variable twice in a

function, only the first setting will have an effect on the final value of the variable. (Repeated save

statements take up space on the saved value stack, however, so they should be avoided.) When you save a

buffer-specific or window-specific variable, Epsilon remembers which buffer’s or window’s value was

saved, and restores only that one.

The restore_vars() primitive restores all variables saved in the current function. After a

restore_vars(), future modifications to any saved variables won’t be undone.

9.7.8 On_exit Statement

statement:

on_exit statement

An on_exit statement tells Epsilon to run some code later, when the current function exits. It can be

used to clean up temporary data. As with the save_var statement in the previous section, Epsilon will run

the specified code no matter how the function exits, even if it calls another function which signals an error,

and this aborts out of the calling function.

The statement to be executed later can use local or global variables, call other functions, and so forth. It

can be a block or other complex type of statement, but it cannot use certain control flow statements: switch,

case, default, break, continue, return, goto, or labels. And it cannot use on_exit, save_var,

save_spot, or restore_vars() itself. (If the on_exit statement’s code calls a function, that function can

use any of these.)

The restore_vars() primitive also causes all pending on_exit statements to be executed at once,

just as if the current function were about to exit.

All on_exit, save_var, and save_spot statements push their pending operations onto a stack, and

they are executed in order when the function returns or when restore_vars() is used, newest to oldest.

9.7.9 Goto and Empty Statements

goto label;

label: statement

398 Chapter 9. Epsilon Extension Language

The next statement executed after the goto will be the one following the label. It must appear in the

same function as the goto, but may be before or after.

;

This null statement is occasionally used in looping statements, where all the “work” of the loop is done

by the expressions. For example, a loop that calls a function foo() repeatedly until it returns zero can be

written as

while (foo()) ;.

9.7.10 Block

{

declarations

statements

}

Anywhere you can have a statement, you can have a block. A block contains any number of local

variable declarations or statements (including zero). The variables declared in the block are local to the

block, and you may only use them in the following statements (or in statements contained in those

statements). A block’s declarations can be mixed in freely among its statements. The body of a function

definition is itself a block.

9.8 Conversions

When a value of a certain type is changed to another type, a conversion occurs.

When a number of some type is converted to another type of number, if the number can be represented

in the latter type its value will be unchanged. All possible characters can be represented as ints or short ints,

and all short ints can be represented as ints, so these conversions yield unchanged values.

Technically, Epsilon will sign-extend a short int to convert it to an int, but will pad a character with zero

bits on the left to convert it to an int or short int. Converting a number of some type to a number of a shorter

type is always done by dropping bits.

A pointer may not be converted to an int, or vice versa, except for function pointers. The latter may be

converted to a short int, or to any type that a short int may be converted to. A pointer to one type may be

converted to a pointer to another type, as long as neither of them is a function pointer.

All operators that take numbers as operands will take any size numbers (characters, short ints, or ints).

The operands will be converted to int if they aren’t already ints. Operators that yield numbers always

produce ints.

9.9 Operator Grouping

In an expression like

10 op1 20 op2 30

the compiler determines the rules for grouping by the precedence and associativity of the operators op1 and

op2. Each operator in EEL has a certain precedence, with some precedences higher than others. If op1 and

9.10. Order of Evaluation 399

Highest Precedence

l-to-r () [] -> .

r-to-l All unary operators (see below)

l-to-r * / %

l-to-r + -

l-to-r << >>

l-to-r > < >= <=

l-to-r == !=

l-to-r &

l-to-r ^

l-to-r |

l-to-r &&

l-to-r ||

l-to-r ? :

r-to-l All assignment operators (see below)

l-to-r ,

Lowest Precedence

Assignment operators are: = *= /= %= += -=

<<= >>= &= ^= |=

Unary operators are: * & - ! ~

++ -- sizeof (type-name)

Figure 9.1: Operator Precedence

op2 have different precedences, the one with the higher precedence groups tighter. In table 9.1, operators

with higher precedences appear on a line above operators with lower precedences. Operators with the same

precedence appear on the same line.

For example, say op1 is + and op2 is *. Since *’s line appears above +’s, * has a higher precedence than

+ and the expression 10 + 20 * 30 is the same as 10 +(20 * 30).

If two operators have the same precedence, the compiler determines the grouping by their associativity,

which is either left-to-right or right-to-left. All operators of the same precedence have the same associativity.

For example, suppose op1 is - and op2 is +. These operators have the same precedence, and associate

left-to-right. Thus 10 - 20 + 30 is the same (10 - 20) + 30. All operators on the same line in the table

have the same precedence, and their associativity is given with either “l-to-r” or “r-to-l.”

Enclosing an expression in parentheses alters the grouping of operators. It does not change the value or

type of an expression itself.

9.10 Order of Evaluation

Most operators do not guarantee a particular order of evaluation for their operands. If an operator does, we

mention that fact in its description below. In the absence of such a guarantee, the compiler may rearrange

400 Chapter 9. Epsilon Extension Language

calculations within a single expression as it wishes, if the result would be unchanged ignoring any possible

side effects.

For example, if an expression assigns a value to a variable and uses the variable in the same expression,

the result is undefined unless an operator that guarantees order of evaluation occurs at an appropriate point.

Note that parentheses do not alter the order of evaluation, but only serve to change the grouping of

operators. Thus in the statement

i = foo() + (bar() + baz());

the three functions may be called in any order.

9.11 Expressions

9.11.1 Constants and Identifiers

expression:

numeric-constant

string-constant

identifier

color_class identifier

The most basic kinds of expressions are numeric and string constants. Numeric constants are of type

“int”, and string constants are of type “array of character”. However, EEL changes any expression of type

“array of . . .” into a pointer to the beginning of the array (of type “pointer to . . .”). Thus a string constant

results in a pointer to its first character.

An identifier is a valid expression only if it has been previously declared as a variable or function. A

variable of type “array of . . .” is changed to a pointer to the beginning of the array, as described above.

Some expressions are called lvalue expressions. Roughly, lvalue expressions are expressions that refer

to a changeable location in memory. For example, if foo is an integer variable and func() is a function

returning an integer, then foo is an lvalue, but func() is not. The & and . operators, the ++ and --

operators, and all assignment operators require their operands to be lvalues. Only the *, [], ->, and .

operands return lvalues.

An identifier which refers to a variable is an lvalue if its type is an integer, a spot, a pointer, a structure,

or a union, but not if its type is an array or function.

If an identifier has not been previously declared, and appears in a function call as the name of the

function, it is implicitly declared to be a function returning an int.

If the name of a previously declared function appears in an expression in any context other than as the

function of a function call, its value is a function pointer to the named function. Function pointers may not

point to primitive functions.

For example, if foo is previously undeclared, the statement foo(1, 2); declares it as a function

returning an int. If the next statement is return foo;, a pointer to the function foo() will be returned.

Once a color class newclass has been declared, you can refer to it by using the special syntax

color_class newclass. This provides a numeric code that refers to the particular color class. It’s used in

conjunction with the primitives alter_color(), add_region(), set_character_color(), and others.

See page 106 for basic information on color classes, and page 407 for information on declaring color classes

in EEL.

9.11. Expressions 401

9.11.2 Unary Operators

expression:

! expression

* expression

& expression

- expression

~ expression

sizeof expression

sizeof(type-name)

(type-name) expression

++ expression

-- expression

expression ++

expression --

The ! operator yields one if its operand is zero, and zero otherwise. It can be applied to pointers, spots,

or numbers, but its result is always an int.

The unary * operator takes a pointer and yields the object it points to. If its operand has type “pointer to

. . .”, the result has type “. . .”, and is an lvalue. You can also apply * to an operand of type “spot”, and the

result is a number (a buffer position).

The unary & operator takes an lvalue and returns a pointer to it. It is the inverse of the * operator, and its

result has type “pointer to . . .” if its operand has type “. . .”. (You cannot construct a spot by applying the &

operator to a position. Use the alloc_spot() primitive described on page 424.)

The unary - and ~ operators work only on numbers. The first negates the given number, and the second

flips all its bits, changing ones to zeros and zeros to ones.

The sizeof operator yields the size in bytes of an object. You can specify the object as an expression

or with a type name (described on page 391). In the latter case, sizeof returns the size in bytes of an object

of that type. Characters and shorts require two bytes, and ints four bytes. An array of 10 ints requires 40

bytes, and this is the number sizeof(int [10]) will give, not 10.

An expression with a parenthesized type name before it is a cast. The cast converts the expression to the

named type using the rules beginning on page 398, and the result is of that type. Specify the type using a

type name, described on page 391.

The ++ and -- operators increment and decrement their lvalue operands. If the operator appears before

its operand, the value of the expression is the new value of the operand. The expression (++var) is the same

as (var += 1), and (--var) is the same as (var -= 1). You can apply these operators to pointers, in

which case they work as described under pointer addition below.

If the ++ or -- operators appear after their operand, the operand is changed in the same way, but the

value of the expression is the value of the operand before the change. Thus the expression var++ has the

same value as var, but var has a different value when you reference it the next time.

9.11.3 Simple Binary Operators

expression:

expression + expression

expression - expression

402 Chapter 9. Epsilon Extension Language

expression * expression

expression / expression

expression % expression

expression == expression

expression != expression

expression < expression

expression > expression

expression <= expression

expression >= expression

expression && expression

expression || expression

expression & expression

expression | expression

expression ^ expression

expression << expression

expression >> expression

The binary + operator, when applied to numbers, yields the sum of the numbers. One of its operands

may also be a pointer to an object in an array. In this case, the result is a pointer to the same array, offset by

the number to another object in the array. For example, if p points to an object in an array, p + 1 points to

the next object in the array and p - 1 points to the previous object, regardless of the object’s type.

The binary - operator, when applied to numbers, yields the difference of the numbers. If the first

operand is a pointer and the second is a number, the rules for addition of pointers and numbers apply. For

example, if p is a pointer, p - 3 is the same as p + -3.

Both operands may also be pointers to objects in the same array. In this case the result is the difference

between them, measured in objects. For example, if arr is an array of ten ints, p1 points to the third int, and

p2 points to the eighth, then p1 - p2 yields the int -5. The result is undefined if the operands are pointers to

different arrays.

The binary * operator is for multiplication, and the / operator is for division. The latter truncates

toward 0 if its operands are positive, but the direction of truncation is undefined if either operand is negative.

The % operator provides the remainder of the division of its operands, and x % y is always equal to x - (x

/ y) * y. All three operators take only numbers and yield ints.

The == operator yields one if its arguments are equal and zero otherwise. The arguments must either

both be numbers, both spots, or both pointers to objects of the same type. However, if one argument is the

constant zero, the other may be a spot or any type of pointer, and the expression yields one if the pointer is

null, and zero otherwise. The != operator is just like the == operator, but returns one where == would return

zero, and zero where == would return one. The result of either operator is always an int.

The <, >, <=, and >= operators have a value of one when the first operand is less than, greater than, less

than or equal to, or greater than or equal to (respectively) the second operand. The operands may both be

numbers, they may be pointers to the same array, or one may be a pointer or spot and the other zero. In the

last case, Epsilon returns values based on the convention that a null pointer or spot is equal to zero and a

non-null one is greater than zero. The result is undefined if the operands are pointers to different arrays of

the same type, and it is an error if they are pointers to different types of objects, or if one is a spot and the

other is neither a spot nor zero.

The && operator yields one if both operands are nonzero, and zero otherwise. Each operand may be a

pointer, spot, or number. Moreover, the first operand is evaluated first, and if it is zero, the second operand

will not be evaluated. The result is an int.

9.11. Expressions 403

The || operator yields one if either of its operands are nonzero, and zero if both are zero. Each operand

may be a pointer, spot, or number. The first operand is evaluated first, and if it is nonzero, the second

operand will not be evaluated. The result is an int.

The & operator yields the bitwise AND of its numeric operands. The | and ^ operators yields the

bitwise OR and XOR (respectively) of their numeric operands. The result for all three is an int. A bit in the

result of an AND is on if both corresponding bits in its operands are on. A bit in the result of an OR is on if

either of the corresponding bits in its operands are on. A bit in the result of an XOR is on if one of the

corresponding bits in its operands is on and the other is off.

The << operator yields the first operand with its bits shifted to the left the number of times given by the

right operand. The >> operator works similarly, but shifts to the right. The former fills with zero bits, and

the latter fills with one bits if the first operand was negative, and zero bits otherwise. If the second operand is

negative or greater than 31, the result is undefined. Both operands must be numbers, and the result is an int.

9.11.4 Assignment Operators

expression:

expression = expression

expression modify-operator expression

modify-operator:

+=

-=

*=

/=

%=

&=

|=

^=

<<=

>>=

The plain assignment operator = takes an lvalue (see page 400) as its first operand. The object referred

to by the lvalue is given the value of the second operand. The types of the operands may both be numbers,

spots, pointers to the same type of object, or compatible structures. If the first operand is a pointer or spot

and the second is the constant zero, the pointer or spot is made null. The value of the expression is the new

value of the first operand, and it has the same type.

The other kinds of assignment operators are often used simply as abbreviations. For example, if a is a

variable, a += (b) is the same as a = a + (b). However, the first operand of an assignment is only

evaluated once, so if it has side effects, they will only occur once.

For example, suppose a is an array of integers with values 10, 20, 30, and so forth. Suppose p() is a

function that will return a pointer to the first element of a the first time it’s called, then a pointer to the

second element, and so forth. After the statement *p() += 3;, a will contain 13, 20, 30. After *p() =

*p() + 3;, however, a is certain not to contain 13, 20, 30, since p() will never return a pointer to the same

element of a twice. Because the order of evaluation is unspecified with these operators, the exact result of

the latter statement is undefined (either 10, 13, 30 or 23, 20, 30).

The result of all these assignment statements is the new value of the first operand, and will have the

same type. The special rules for mixing pointers and ints with the + and - operators also apply here.

404 Chapter 9. Epsilon Extension Language

9.11.5 Function Calls

expression:

expression ()

expression (expression-list)

expression-list:

expression

expression , expression-list

An expression followed by a parenthesized list of expressions (arguments) is a function call. Usually

the first expression is the name of a function, but it can also be an expression yielding a function. (The only

operator that yields a function is the unary * when applied to a function pointer.) The type of the result is the

type of the returned value. If the function returns no value, the expression must appear in a place where its

value is not used. You may call any function recursively.

If an identifier that has not been previously declared appears as the name of the function, it is implicitly

declared to be a function returning an int.

Each argument is evaluated and a copy of its value is passed to the function. Character and short

arguments are converted to ints in the process. Aside from this, the number and type of arguments must

match the definition of the function. The order of evaluation of the arguments to a function is undefined.

Since only a copy of each parameter is passed to the function, a simple variable cannot be altered if its

name only appears as the argument to a function. To alter a variable, pass a pointer to it, and have the

function modify the object pointed to. Since an array is converted to a pointer whenever its name occurs, an

array that is passed to a function can indeed be altered by the function. Numbers, spots, and pointers may be

parameters, but structures, unions, or functions cannot be. Pointers to such things are allowed, of course.

An EEL function can call not just other EEL functions, but also any of Epsilon’s built-in functions,

known as primitives. These are listed in the next chapter. An EEL function can also call a keyboard macro

as a function. The word “function” refers to any of the various types of routines that a command written in

EEL can call. These include other commands or subroutines (themselves written in EEL), primitives that are

built into Epsilon and cannot be changed, and keyboard macros (see page 145). Textual macros that are

defined with the #define preprocessor statement are not functions.

Each function may require a certain number of arguments and may return a value of a particular type.

Keyboard macros, however, never take arguments or return a value.

9.11.6 Miscellaneous Operators

expression:

expression ? expression : expression

expression , expression

expression [expression]

expression -> identifier

expression . identifier

The conditional operator ? : has three operands. The first operand is always evaluated first. If nonzero,

the second operand is evaluated, and that is the value of the result. Otherwise, the third operand is evaluated,

and that is the value of the result. Exactly one of the second and third operands is evaluated. The first

operand may be a number, spot, or pointer. The second and third operands may either both be numbers, both

spots, both pointers to the same type of object, or one may be a pointer or spot and the other the constant

9.12. Constant Expressions 405

zero. In the first case the result is an int, and in the last two cases the result is a spot or a pointer of the same

type.

The , operator first evaluates its first argument and throws away the result. It then evaluates its second

argument, and the result has that value and type. In any context where a comma has a special meaning (such

as in a list of arguments), EEL assumes that any commas it finds are used for that special meaning.

The [] operator is EEL’s subscripting operator. Because of the special way that addition of a pointer

and a number works, we can define the subscripting operator in terms of other operators. The expression

e1[e2] is the same as *((e1)+(e2)), and since addition is commutative, also the same as e2[e1]. In

practice, subscripting works in the expected way. Note that the first object in an array has subscript 0,

however. One of the operands must be a pointer and the other a number. The type of the result is that of the

pointed-to object.

The . operator disassembles structures or unions. Its operand is an lvalue which is a structure or union.

After the . an identifier naming one of the operand’s members must appear. The result is an lvalue referring

to that member.

The -> operator is an abbreviation for a dereference (unary *) followed by a member selection as

above. Its operand is a pointer to a structure or union, and it is followed by the name of one of the structure’s

or union’s members. The result is an lvalue referring to that member. The expression

strptr->membername is the same as the expression (*strptr).membername.

9.12 Constant Expressions

A constant expression is an expression which does not contain certain things. It may not have references to

variables, string constants, or function calls. No subexpressions may have a type of spot, structure, union,

array, or pointer. It may have numeric constants, character constants, and any operators that act on them, and

the sizeof operator may appear with any operand.

Additionally, for constant expressions in preprocessor lines, you can test if a macro m has been defined

by writing defined(m). This expression evaluates to 1 if a macro by that name has been defined, 0 if not.

The term “the constant zero” means a constant expression whose value is zero, not necessarily a

numeric constant.

9.13 Global Definitions

program:

global-definition

global-definition program

global-definition:

function-definition

global-variable-definition

keytable-definition

typedef-definition

color-class-definition

Each file of EEL code consists of a series of definitions for global variables and functions. Global

variable definitions have the same format as local variable definitions. The first definition of a global variable

Epsilon receives determines the initial value of the variable, and later initializations have no effect, unless

you use the volatile keyword when defining the variable (see page 393). If the first definition provides no

explicit initialization, the variable is filled with zeros or null pointers as appropriate, depending on its type.

406 Chapter 9. Epsilon Extension Language

You can declare any global variable (except a key table or color class) to be buffer-specific by placing

the keyword buffer before the type specifier. When the definition is first read in, its initializer determines

the value of the variable for each buffer that then exists, and also the default value of the variable. Whenever

you create a new buffer (and hence a new copy of the buffer-specific variable), the variable’s value in that

buffer is set to the default value.

Similarly, you can declare any global variable except a key table or color class to be window-specific by

placing the keyword window before the type specifier. When the definition is first read in, its initializer

determines the value of the variable for each window that then exists, and also the default value of the

variable. Whenever you split a window in two, the new window inherits its initial value for the

window-specific variable from the original window. Epsilon uses the default value of a window-specific

variable when it creates the first tiled window while starting up, and when it creates pop-up windows.

Epsilon’s write-state command writes a new state file containing all variables, EEL functions, macros,

colors, and so forth that Epsilon knows about. The file includes the current values of all numeric variables,

all global character array variables, and any structures or unions containing just these types. But Epsilon

doesn’t save the values of variables containing pointers or spots, and sets these to zero as it writes a state file.

You can put the zeroed keyword before the definition of a variable of any type to tell Epsilon to zero that

variable when it writes a state file.

In commands like set-variable, Epsilon distinguishes between user variables and system variables, and

only shows the former in its list of variables you can set. By default, each global variable you define is a

system variable that users will not see. Put the user keyword before a variable’s definition to make the

variable a user variable.

9.13.1 Key Tables

keytable-definition:

keytable keytable-list ;

keytable-list:

identifier

identifier , keytable-list

A key table is a set of bindings, one for each key on the keyboard, with keys modified by control, alt,

and shift counted as separate keys. Various mouse actions and system events are also represented by special

key codes. Each entry in the key table contains a short integer, which is an index into the name table. In

other words, each entry corresponds to a named Epsilon object, either a command, subroutine, keyboard

macro, or another key table.

You can declare a key table by using the keytable keyword in place of the type specifier in a global

variable definition. A key table definition can contain no initialization, just keytable followed by a list of

comma-separated key table names and a semicolon. A key table acts like an array of short ints, but you can

also use it in the on part of a function definition (as described below).

Key codes, the values that index a key table, can be very large numbers. Looping through all possible

key codes with a simple for (i = 0; i < MAXKEYS; i++) statement is far too slow; see page 559 for

the right way to write such loops.

9.13.2 Color Classes

color-class-definition:

color_class color-class-list ;

color_scheme color-scheme-list ;

9.13. Global Definitions 407

color-class-list:

color-class-item

color-class-item , color-class-list

color-class-item:

identifier

identifier color_scheme string-constant = color-pair

identifier { color-scheme-spec-list }

identifier = color-pair

color-scheme-spec-list:

color-scheme-spec

color-scheme-spec color-scheme-spec-list

color-scheme-spec:

color_scheme string-constant = color-pair ;

color-scheme-list:

color-scheme-item

color-scheme-item , color-scheme-list

color-scheme-item:

string-constant

string-constant color_class identifier = color-pair

string-constant { color-class-spec-list }

color-class-spec-list:

color-class-spec

color-class-spec color-class-spec-list

color-class-spec:

color_class identifier = color-pair ;

color-pair:

color_class identifier

constant-expression

constant-expression on constant-expression

A color class specifies a particular pair of foreground and background colors Epsilon should use on a

certain part of the screen, or when displaying a certain type of text. For example, Epsilon uses the color

class c_keyword to display keywords in C-like languages. More precisely, the color class specifies which

foreground/background pair of colors to display under each defined color scheme. If the user selects a

different color scheme, Epsilon will immediately begin displaying C keywords using the c_keyword color

pair defined for the new scheme.

Before you use a color class in an expression like set_character_color(pos1, pos2,

color_class c_keyword);, you must declare the color class (outside of any function definition) using

the color_class keyword:

color_class c_keyword;

When you declare a new color class, you may wish to specify the colors to use for a particular color

scheme using the color_scheme keyword:

color_class c_keyword

color_scheme "standard-gui" = black on white;

color_class c_keyword

color_scheme "standard-color" = green on black;

408 Chapter 9. Epsilon Extension Language

If you have many color definitions all for the same color class, you can use this syntax:

color_class c_keyword {

color_scheme "standard-gui" = black on white;

color_scheme "standard-color" = green on black;

};

Similarly, if you have many color definitions for the same color scheme, you can avoid repeating it by

writing:

color_scheme "standard-gui" {

color_class c_keyword = black on white;

color_class c_function = blue on white;

color_class c_identifier = black on white;

};

To specify the particular foreground and background colors for a color class (using the syntax

foreground on background), you can use these macros defined in eel.h:

#define black MAKE_RGB(0, 0, 0)

#define dark_red MAKE_RGB(128, 0, 0)

#define dark_green MAKE_RGB(0, 128, 0)

#define brown MAKE_RGB(128, 128, 0)

// etc.

See that file for the current list of named colors. These functions use the MAKE_RGB() macro, providing

particular values for red, green, and blue. You can use this macro yourself, in a color class definition, to

specify precise colors:

color_scheme "my-color-scheme" {

color_class c_keyword = MAKE_RGB(223, 47, 192) on yellow;

};

There are several other macros useful in color definitions:

#define MAKE_RGB(rd,grn,bl) ((rd) + ((grn) << 8) + ((bl) << 16))

#define GETRED(rgb) ((rgb) & 0xff)

#define GETGREEN(rgb) (((rgb) >> 8) & 0xff)

#define GETBLUE(rgb) (((rgb) >> 16) & 0xff)

The GETRED(), GETGREEN(), and GETBLUE() macros take a color expression created with

MAKE_RGB() and extract one of its three components, which are always numbers from 0 to 255.

The foreground color for a color class may also include font style bits, by or’ing any of the macros

EFONT_BOLD, EFONT_UNDERLINED, and EFONT_ITALIC into the color code.

The ETRANSPARENT macro is a special code that may be used in place of a background color. It tells

Epsilon to substitute the background color of the "text" color class in the current color scheme. The

following three examples are all equivalent:

9.13. Global Definitions 409

color_class text color_scheme "standard-gui" = yellow on red;

color_class c_keyword color_scheme "standard-gui" = blue on red;

color_class text color_scheme "standard-gui" = yellow on red;

color_class c_keyword color_scheme "standard-gui" = blue

on ETRANSPARENT;

color_class text color_scheme "standard-gui" = yellow on red;

color_class c_keyword color_scheme "standard-gui" = blue;

The last example works because you may omit the on background part from the syntax foreground on

background, and just specify a foreground color. Epsilon interprets this as if you typed on transparent,

and substitutes the background color specified for "text".

You can also specify that a particular color class is the same as a previously-defined color class, like this:

color_scheme "standard-gui" {

color_class text = black on white;

color_class tex_text = color_class text;

};

When, for the current scheme, there’s no specific color information for a color class, Epsilon looks for a

default color class specification, one that’s not associated with any scheme:

color_class diff_added = black on yellow;

color_class c_string = cyan;

color_class c_charconst = color_class c_string;

The first definition above says that, in the absence of any color-scheme-specific setting for the

diff_added color class, it should be displayed as black text on a yellow background. The second says that

text in the c_string color class should be displayed using cyan text, on the default background for the

scheme (that defined for the text color class). And the third says that text in the c_charconst color class

should be displayed the same as text in the c_string color class for that scheme.

Internally, Epsilon stores all color class settings that occur outside any color scheme in a special color

scheme, which is named "color-defaults". See page 473 for more on colors.

9.13.3 Function Definitions

function-definition:

function-head block

function-head argument-decl-list block

ansi-function-head block

callable-function-head block

callable-function-head:

typed-function-head

command typed-function-head

typed-function-head on binding-list

command typed-function-head on binding-list

binding-list:

410 Chapter 9. Epsilon Extension Language

keytable-name [constant-expression]

keytable-name [constant-expression] , binding-list

keytable-name:

identifier

typed-function-head:

identifier ()

type-specifier identifier ()

function-head:

identifier (argument-list)

type-specifier identifier (argument-list)

ansi-function-head:

identifier (ansi-argument-list)

type-specifier identifier (ansi-argument-list)

ansi-argument-list:

type-specifier declarator

type-specifier declarator , ansi-argument-list

argument-list:

identifier

identifier , argument-list

argument-decl-list:

type-specifier declarator-list ;

type-specifier declarator-list ; argument-decl-list

A function definition begins with a type specifier, the name of the function, and parentheses

surrounding a comma-separated list of arguments. Any bindings may be given here using the on keyword,

as described below. Declarations for the arguments then appear, and the body of the function follows. If the

command keyword appears before the type specifier, the function is a command, and Epsilon will do

completion on the function when it asks for the name of a command. A function may be a command only if

it has no arguments.

You may omit the type specifier before the function name, in which case the function’s type is int. You

may also omit the declaration for any argument, in which case the argument will be an int. Note that unlike

some languages such as Pascal, if there are no arguments, an empty pair of parentheses must still appear,

both in the definition and where you call the function.

You may also define functions using ANSI C/C++ syntax, in which type information for function

arguments appears with the argument names inside parentheses. These function headers have the same

effect:

average(int count, short *values) average(count, values)

short *values;

When you call a function, arguments of type char or short are automatically changed to ints. A

corresponding change happens to declarations of function arguments and return values. Additionally,

function arguments declared as an array of some type are changed to be a pointer to the same type, just as

array variables are changed to pointers to the start of the array when their names appear in expressions (see

page 400). For example, these two function headers have the same effect.

short average(count, values)

char count;

short values[];

average(count, values)

short *values;

9.14. Differences Between EEL And C 411

The user can call any function which takes no arguments, or bind such a function to a key. Functions

which are normally invoked in this way can be made commands with the command keyword, but this is not

necessary. If you omit the command keyword, Epsilon will not perform command completion on the

function’s name. The on keyword can appear after the (empty) parentheses of a function’s argument list, to

provide bindings for the function. Each binding consists of a key table name, followed by a constant (the

key number) in square brackets []. There may be several bindings following the on keyword, separated by

commas. You must have previously declared the key table name in the same file (or an #included file). The

binding takes effect when you load the function.

Sometimes it is necessary to declare an identifier as a function, although the function is actually defined

in a separately compiled source file. For example, you must declare a function before you use a pointer to

that function. Also, the EEL compiler must know that a function returns a non-numeric type if its return

value is used. Any declaration of an identifier with type function returning . . . is a function declaration.

Function declarations may appear anywhere a local or global variable declaration is legal. So long as the

identifier is not masked by a local variable of the same name, the declaration has effect until the end of the

file.

Any function named when_loading() is automatically executed when you load the bytecode file it

appears in into Epsilon. There may be any number of when_loading() functions defined in a file, and they

execute in order, while the file is being loaded. Such functions are deleted as soon as they return. They may

take no arguments.

9.14 Differences Between EEL And C

• Global variables may not be initialized with any expression involving pointers. This includes strings,

which may only be used to directly initialize a declared array of characters. That is,

char example[] = "A string.";

is legal, while

char *example = "A string.";

is not.

• There are no static variables or functions. All local variables vanish when the function returns, and all

global objects have names that separately compiled files can refer to.

• The C reserved word “extern” does not exist. In EEL, you may define variables multiple times with no

problems, as long as they are declared to have the same type. The first definition read into Epsilon

provides the initialization of the variable, and further initializations have no effect. However, if the

variable is later declared with a different size, the size changes and the new initialization takes effect.

To declare a function without defining it in a particular source file, see page 411.

• The C types “long”, “enum”, “void”, “float”, and “double” do not exist. Ints and shorts are always

signed. Chars and bytes are always unsigned. There are no C bit fields. The C reserved words “long”,

“float”, and “double” are not reserved in EEL.

• EEL provides the basic data type spot, and understands color class expressions and declarations

using the color_class and color_scheme keywords.

• You may not cast between pointers and ints, except that function pointers may be cast to shorts, and

vice versa. The constant zero may be cast to any pointer type. A pointer may be cast to a pointer of

another type, with the exception of function pointers.

412 Chapter 9. Epsilon Extension Language

• You can use the reserved word keytable to declare empty key tables, as in

keytable reg_tab, cx_tab;

Local key tables are not permitted.

• The reserved word command is syntactically like a storage class. Use it to indicate that the function is

normally called by the user, so command completion will work. The user can also call other functions

(as long as they have no arguments) but the completion facility on command names ignores them.

• After the head of any function definition with no arguments, you can use the reserved word on to give

a binding. It is followed by the name of a key table already declared, and an index (constant int

expression) in square brackets. There may be more than one (separated by commas). For example,

command visit_file() on cx_tab[CTRL(’V’)]

• You can use the reserved word buffer as a storage class for global variables. It declares a variable to

have a different value for each buffer, plus a default value. As you switch between buffers, a reference

to a buffer-specific variable will refer to a different value.

• You can also use the reserved word window as a storage class for global variables. This declares the

variable to have a different value for each window, plus a default value. As you switch between

windows, a reference to a window-specific variable will refer to a different value.

• The reserved words zeroed and user do not exist in C. See page 406. The reserved word volatile

does exist in ANSI C, but serves a different purpose in EEL. See page 393.

• The EEL statements save_var, save_spot, and on_exit do not exist in C. See page 396.

• In each compile, an include file with a certain name is only read once, even if there are several

#include directives that request it.

9.15 Syntax Summary

program:

global-definition

global-definition program

global-definition:

function-definition

global-variable-definition

keytable-definition

typedef-definition

color-class-definition

typedef-definition:

typedef type-specifier declarator-list ;

color-class-definition:

color_class color-class-list ;

color_scheme color-scheme-list ;

color-class-list:

color-class-item

color-class-item , color-class-list

9.15. Syntax Summary 413

color-class-item:

identifier

identifier color_scheme string-constant = color-pair

identifier { color-scheme-spec-list }

identifier = color-pair

color-scheme-spec-list:

color-scheme-spec

color-scheme-spec color-scheme-spec-list

color-scheme-spec:

color_scheme string-constant = color-pair ;

color-scheme-list:

color-scheme-item

color-scheme-item , color-scheme-list

color-scheme-item:

string-constant

string-constant color_class identifier = color-pair

string-constant { color-class-spec-list }

color-class-spec-list:

color-class-spec

color-class-spec color-class-spec-list

color-class-spec:

color_class identifier = color-pair ;

color-pair:

color_class identifier

constant-expression

constant-expression on constant-expression

keytable-definition:

keytable keytable-list ;

keytable-list:

identifier

identifier , keytable-list

global-variable-definition:

type-specifier global-declarator-list ;

global-modifier-list global-declarator-list ;

global-modifier-list type-specifier global-declarator-list ;

global-modifier-list:

global-modifier

global-modifier global-modifier-list

global-modifier:

buffer

window

zeroed

user

volatile

declarator-list:

414 Chapter 9. Epsilon Extension Language

declarator

declarator , declarator-list

declarator:

identifier

(declarator)

* declarator

declarator [constant-expression]

declarator []

declarator ()

global-declarator-list:

global-declarator

global-declarator , global-declarator-list

global-declarator:

declarator

declarator = string-constant

declarator = initializer

initializer:

constant-expression

string-constant

{ initializer-list }

{ initializer-list , }

initializer-list:

initializer

initializer , initializer-list

type-specifier:

char

short

int

struct struct-or-union-specifier

union struct-or-union-specifier

spot

typedef-name

typedef-name:

identifier

struct-or-union-specifier:

struct-or-union-tag

struct-or-union-tag { member-list }

{ member-list }

struct-or-union-tag:

identifier

member-list:

type-specifier declarator-list ;

type-specifier declarator-list ; member-list

type-name:

type-specifier abstract-declarator

9.15. Syntax Summary 415

abstract-declarator:

empty

(abstract-declarator)

* abstract-declarator

abstract-declarator [constant-expression]

abstract-declarator []

abstract-declarator ()

abstract-declarator (ansi-argument-list)

function-definition:

function-head block

function-head argument-decl-list block

ansi-function-head block

callable-function-head block

callable-function-head:

typed-function-head

command typed-function-head

typed-function-head on binding-list

command typed-function-head on binding-list

binding-list:

keytable-name [constant-expression]

keytable-name [constant-expression] , binding-list

keytable-name:

identifier

typed-function-head:

identifier ()

type-specifier identifier ()

function-head:

identifier (argument-list)

type-specifier identifier (argument-list)

ansi-function-head:

identifier (ansi-argument-list)

type-specifier identifier (ansi-argument-list)

ansi-argument-list:

type-specifier declarator

type-specifier declarator , ansi-argument-list

argument-list:

identifier

identifier , argument-list

argument-decl-list:

type-specifier declarator-list ;

type-specifier declarator-list ; argument-decl-list

block:

{ statement-list }

{ }

local-variable-definition:

416 Chapter 9. Epsilon Extension Language

type-specifier local-declarator-list ;

local-declarator-list:

local-declarator

local-declarator , local-declarator-list

local-declarator:

declarator

declarator = expression

statement-list:

statement

statement statement-list

statement:

expression ;

if (expression) statement

if (expression) statement else statement

while (expression) statement

do statement while (expression);

for (opt-expression ; opt-expression ; opt-expression) statement

switch (expression) statement

case constant-expression : statement

default: statement

break;

continue;

return;

return expression ;

save_var save-list ;

save_spot save-list ;

on_exit statement

goto label ;

label : statement

;

local-variable-definition

typedef-definition

block

save-list:

save-item

save-item , save-list

save-item:

identifier

identifier = expression

identifier modify-operator expression

identifier ++

identifier --

label:

identifier

opt-expression:

9.15. Syntax Summary 417

empty

expression

expression:

numeric-constant

string-constant

identifier

identifier.default

color_class identifier

(expression)

! expression

* expression

& expression

- expression

~ expression

sizeof expression

sizeof(type-name)

(type-name) expression

++ expression

-- expression

expression ++

expression --

expression + expression

expression - expression

expression * expression

expression / expression

expression % expression

expression == expression

expression != expression

expression < expression

expression > expression

expression <= expression

expression >= expression

expression && expression

expression || expression

expression & expression

expression | expression

expression ^ expression

expression << expression

expression >> expression

expression = expression

expression modify-operator expression

expression ? expression : expression

expression , expression

expression ()

expression (expression-list)

418 Chapter 9. Epsilon Extension Language

expression [expression]

expression . identifier

expression -> identifier

modify-operator:

+=

-=

*=

/=

%=

&=

|=

^=

<<=

>>=

expression-list:

expression

expression , expression-list

constant-expression:

numeric-constant

(constant-expression)

! constant-expression

- constant-expression

~ constant-expression

sizeof constant-expression

sizeof(type-name)

constant-expression + constant-expression

constant-expression - constant-expression

constant-expression * constant-expression

constant-expression / constant-expression

constant-expression % constant-expression

constant-expression == constant-expression

constant-expression != constant-expression

constant-expression < constant-expression

constant-expression > constant-expression

constant-expression <= constant-expression

constant-expression >= constant-expression

constant-expression && constant-expression

constant-expression || constant-expression

constant-expression & constant-expression

constant-expression | constant-expression

constant-expression ^ constant-expression

constant-expression << constant-expression

constant-expression >> constant-expression

constant-expression ? constant-expression : constant-expression

constant-expression , constant-expression

9.15. Syntax Summary 419

Chapter 10

Primitives and EEL
Subroutines

421

In this chapter, we describe all EEL primitives, as well as a few useful EEL subroutines. In Epsilon, the term

“primitive” refers to a function or variable that is not written or defined in EEL, but rather built into Epsilon.

Each section discusses items that pertain to a particular topic, and begins with EEL declarations for the

items discussed in that section. If we implemented an item as an EEL subroutine, the declaration often

includes a comment that identifies the EEL source file defining the item.

Some EEL primitives have optional parameters. For example, you can call the get_tail() primitive

as either get_tail(fname, 1) or get_tail(fname). Any missing parameter automatically takes a value

of zero. In this manual, we indicate an optional parameter by showing a ? before it.

When writing EEL extensions, an easy way to look up the documentation on the primitive or subroutine

at point is to press F1 F 〈Enter〉.

10.1 Buffer Primitives

10.1.1 Changing Buffer Contents

insert(int ch)

user buffer int point;

An Epsilon buffer contains text that you can edit. Most of the primitives in this section act on, or refer

to, one of the buffers designated as the current buffer.

The insert() primitive inserts a single character into the current buffer. Its argument says what

character to insert. The buffer’s insertion point, or just point, refers to the particular position in each buffer

where insertions occur.

The int variable named point stores this position. Its value denotes the number of characters from the

beginning of the buffer to the spot at which insertions happen. For example, a value of zero for point

means that insertions would occur at the beginning of the buffer. A value of one for point means that

insertions would occur after the first character, etc.

To change the insertion point, you can assign a new value to point. For example, the statement

point = 3;

makes insertions occur after the third character in the buffer, assuming the buffer has at least 3 characters. If

you set point to a value less than zero, point takes the value zero. Similarly, if you set point to a value

greater than the size of the buffer, its value becomes the number of characters in the buffer.

When the current buffer changes, the value of the variable point automatically changes with it. We call

variables with this behavior buffer-specific variables. See page 528.

int size()

The primitive function size() returns the number of characters in the current buffer. You cannot set the

size directly: you can change the size of the buffer only by inserting or deleting characters. For this reason,

we implemented size() as a function, not a variable like point.

The variable point refers not to a character position, but rather to a character boundary, a place

between characters (or at the beginning or end of a buffer). The legal values for point range from zero to

size(). We will refer to a value in this range, inclusive of the ends, as a position. A position is a place

between characters in a buffer, or at the beginning of the buffer, or at the end. The value of a position is the

number of characters before it in the buffer. In EEL, ints (integers) hold positions.

When Epsilon inserts a character, it goes before point, not after it. If Epsilon didn’t work this way,

inserting a, then b, then c would result in cba, not abc.

422 Chapter 10. Primitives and EEL Subroutines

delete(int pos1, int pos2)

int delete_if_highlighted()

The delete() primitive deletes all characters between the two positions supplied as arguments to it.

The order of the arguments doesn’t matter.

The delete() primitive doesn’t save deleted text in a kill buffer. The kill commands themselves

manage the kill buffers, and use the delete() primitive to actually remove the text.

Commands that insert text often begin by calling the delete_if_highlighted() subroutine. If

there’s a highlighted region, this subroutine deletes it and returns 1. Otherwise (or if the

typing-deletes-highlight variable has been set to zero), it returns 0.

replace(int pos, int ch)

int character(int pos)

int curchar()

The replace() primitive changes the character at position pos to ch. The parameter pos refers to the

position before the character in question. Therefore, the value of pos can range from 0 to size()-1,

inclusively.

The character() primitive returns the character after the position specified by its argument, pos. The

curchar() returns the same value as character(point). These two primitives return -1 when the

position involved isn’t valid, such as at the end of the buffer or before its start (when pos is less than zero).

For example, character(size()) returns -1, as does curchar() with point at the end of the buffer.

stuff(char *str)

int bprintf(char *format, ...)

int buffer_printf(char *name, char *format, ...)

int buf_printf(int bnum, char *format, ...)

buf_stuff(int bnum, char *s, int len)

The stuff() function inserts an entire string into the current buffer.

The bprintf() function also inserts a string, but it takes a format string plus other arguments and

builds the string to insert using the rules on page 461. The buffer_printf() functions similarly, except

that it takes the name of the buffer into which to insert the string. It creates the buffer if necessary. Similarly,

buf_printf() takes a buffer number, and inserts the formatted string into that buffer. All of the primitives

described in this paragraph return the number of characters they inserted into the buffer.

The buf_stuff() primitive includes a length parameter, so it can handle text that may contain null

characters. It inserts the len characters at s into the buffer buf.

10.1.2 Moving Text Between Buffers

xfer(char *buf, int from, int to)

buf_xfer(int bnum, int from, int to) /* buffer.e */

raw_xfer(int bnum, int from, int to)

buf_xfer_colors(int bnum, int from, int to)

grab_buffer(int bnum) /* buffer.e */

The xfer() subroutine transfers characters from one buffer to another. It copies the characters between

from and to in the current buffer and inserts them at point in the named buffer. It positions the mark in the

10.1. Buffer Primitives 423

named buffer just before the inserted characters, and positions its point right after the insertion. The

current buffer doesn’t change. The buf_xfer() subroutine works similarly, but accepts a buffer number

instead of a name. Both use the raw_xfer() primitive to transfer the text.

The buf_xfer_colors() subroutine is like buf_xfer(), but copies any colors set by

set_character_color() as well.

The grab_buffer() subroutine copies text in the other direction. It inserts the text of buffer number

bnum into the current buffer before point, setting the mark before the inserted text.

10.1.3 Getting Text from a Buffer

grab(int pos1, int pos2, char *to)

grab_expanding(int pos1, int pos2, char **toptr, int minlen)

buf_grab_bytes(int buf, int from, int to, char *dest)

The grab() primitive copies characters from the buffer to a string. It takes the range of characters to

copy, and a character pointer indicating where to copy them. The buffer doesn’t change. The positions may

be in either order. The resulting string will be null-terminated.

The grab_expanding() subroutine is similar, but works with a dynamically allocated character

pointer, not a fixed-length character array. Pass a pointer to a char * variable, and the subroutine will resize

it as needed to hold the result. The char * variable may hold NULL initially. The minlen parameter

provides a minimum allocation length for the result.

The buf_grab_bytes() subroutine copies characters in the specified range in the buffer buf into the

character array dest, in the same fashion as grab(). Despite its name, it operates on 16-bit characters, not

8-bit bytes.

grab_full_line(int bnum, char *str) /* buffer.e */

grab_line(int bnum, char *str) /* buffer.e */

The grab_full_line() subroutine copies the entire current line of buffer number bnum into the

character array str. It doesn’t change point. The grab_line() subroutine copies the remainder of bnum’s

current line to str, and moves to the start of the next line. Neither function copies the 〈Newline〉 at the end

of the line, and each returns the number of characters copied.

grab_line_offset(int b, char *s, int offset, int wrap)

get_line_from_buffer(int buf, int line, char *res)

move_line_to_buffer(int dest)

The grab_line_offset() subroutine copies a line from buffer b into s, discarding any trailing

newline and returning the string’s length. The offset parameter specifies which line: 0 means the buffer’s

current line, 1 means the next, and so forth. The subroutine moves to end of the appropriate line. If offset

is negative, the subroutine moves to a previous line and copies it, remaining at its start. The wrap parameter,

if nonzero, makes the subroutine wrap around to the opposite end of the buffer if it hits an end when

counting lines; if zero, a too-high offset returns zero and empties s.

The get_line_from_buffer() subroutine copies the line’th line in buffer buf to res.

The move_line_to_buffer() subroutine copies the current line to the buffer dest, then deletes it

from the current buffer.

int grab_numbers(int bnum, int *nums) /* buffer.e */

int break_into_numbers(char *s, int *nums)

424 Chapter 10. Primitives and EEL Subroutines

The grab_numbers() subroutine uses grab_line() to retrieve a line from buffer bnum. Then it

breaks the line into words (separated by spaces and tabs), and tries to interpret each word as a number by

calling the numtoi() subroutine. It puts the resulting numbers in the array nums. The function returns the

number of words on the line.

The break_into_numbers() subroutine is similar, but retrieves the numbers from a string s. It returns

the count of numbers it found, putting their values into the nums array.

int grab_string(int bnum, char *s, char *endmark) /* buffer.e */

int grab_string_expanding(int bnum, char **s,

char *endmark, int minlen)

The grab_string() subroutine copies from buffer bnum into s. It copies from the buffer’s current

position to the beginning of the next occurrence of the text endmark, and leaves the buffer’s point after that

text. It returns 1, unless it couldn’t find the endmark text. In that case, it moves to the end of the buffer, sets

s to the empty string, and returns 0.

The grab_string_expanding() subroutine is similar, but works with dynamically allocated

character pointers, not fixed-length character arrays. Pass a pointer to a char * variable, and the subroutine

will resize it as needed to hold the result. The char * variable may hold NULL initially. The minlen

parameter provides a minimum allocation length for the result.

10.1.4 Spots

spot alloc_spot(?int left_ins)

free_spot(spot sp)

int spot_to_buffer(spot sp)

A place in the buffer is usually recorded and saved for later use as a count of the characters before that

place: this is a position, as described on page 421. Sometimes it is important for the stored location to

remain between the same pair of characters even if many changes are made to other parts of the buffer

(affecting the number of characters before the saved location).

Epsilon provides a type of variable called a spot for this situation. The declaration

spot sp;

says that sp can refer to a spot. It doesn’t create a new spot itself, though.

The alloc_spot() primitive creates a new spot and returns it, and the free_spot() primitive takes a

spot and discards it. The spot that alloc_spot() returns is initially set to point, and is associated with the

current buffer. Deleting a buffer frees all spots associated with it. If you try to free a spot whose buffer has

already been deleted, Epsilon will ignore the request, and will not signal an error.

The spot_to_buffer() primitive takes a spot and returns the buffer number it was created for, or -1

if the buffer no longer exists, or -2 if the buffer exists, but that particular spot has since been deleted.

If the left_ins parameter to alloc_spot() is nonzero, a left-inserting spot is created. If the

left_ins parameter is 0, or is omitted, a right-inserting spot is created. The only difference between the

two types of spots is what they do when characters are inserted right where the spot is. A left-inserting spot

stays after such inserted characters, while a right-inserting spot stays before them. For example, imagine an

empty buffer, with all spots at 0. After five characters are inserted, any left-inserting spots will be at the end

of the buffer, while right-inserting spots will remain at the beginning.

A spot as returned by alloc_spot() behaves a little like a pointer to an int, in that you must

dereference it by writing *sp to obtain the position it currently refers to. For example:

10.1. Buffer Primitives 425

fill_all() /* fill paragraphs, leave point alone */

{

spot oldpos = alloc_spot(), oldmark = alloc_spot();

*oldpos = point;

oldmark = mark; / save old values */

point = 0; /* make region be whole buffer */

mark = size();

fill_region(); /* fill paragraphs in region */

mark = *oldmark; /* restore values */

point = *oldpos;

free_spot(oldmark); /* free saving places */

free_spot(oldpos);

}

A simpler way to write the above subroutine uses EEL’s save_spot keyword. The save_spot

keyword takes care of allocating spots, saving the original values, and restoring those values when the

subroutine exits. See page 396 for more on save_spot.

fill_all() /* fill paragraphs, leave point alone */

{ /* uses save_spot */

save_spot point = 0; /* make region be whole buffer */

save_spot mark = size();

fill_region(); /* fill paragraphs in region */

}

Like a pointer, a spot variable can contain zero, and alloc_spot() is guaranteed never to return this

value. Epsilon signals an error if you try to dereference a spot which has been freed, or whose buffer no

longer exists.

buffer spot point_spot;

buffer spot mark_spot;

#define point *point_spot

#define mark *mark_spot

/* These variables are actually defined

differently. See below. */

Each new buffer begins with two spots, point_spot and mark_spot, set to the beginning of the buffer.

Point_spot is a left-inserting spot, while mark_spot is a right-inserting spot. These spots are created

automatically with each new buffer, and you cannot free them. You can think of the built-in variables point

and mark as simply macros that yield *point_spot and *mark_spot, respectively. That’s why you don’t

need to put a * before each reference to point.

user buffer int point; /* True definitions */

user buffer int mark;

spot get_spot(int which)

#define point_spot get_spot(0)

#define mark_spot get_spot(1)

Actually, while point and mark could be defined as macros, as above, they’re not. Epsilon recognizes

them as built-in primitives for speed. On the other hand, point_spot and mark_spot actually are macros!

They use the get_spot() primitive, which has no function other than to return these two values.

426 Chapter 10. Primitives and EEL Subroutines

do_set_mark(int val)

The do_set_mark() subroutine sets the current buffer’s mark to the specified value. It also records the

current virtual column (which, typically, should match the mark). The rectangle commands retrieve this, so

that in virtual mode you can copy rectangles that end in virtual space.

set_spot(spot *s, int pos)

The set_spot() subroutine sets a spot so it refers to the position pos in the current buffer. Pass it the

address of a spot variable. If the spot is zero or refers to a different buffer, the subroutine will create a new

right-inserting spot in the current buffer, freeing the old spot.

10.1.5 Narrowing

user buffer int narrow_start;

user buffer int narrow_end;

int narrow_position(int p) /* buffer.e */

Epsilon provides two primitive variables, narrow_start and narrow_end, that restrict access to the

current buffer. The commands narrow-to-region and widen-buffer, described on page 166, use these

variables. Epsilon ignores the first narrow_start characters and the last narrow_end characters of the

buffer. Usually, these variables have a value of zero, so no such restriction takes place. Characters outside of

the narrowed region will not appear on the screen, and will remain outside the control of normal Epsilon

commands.

If you try to set a primitive variable such as point to a position outside of the narrowed area, Epsilon

will change the value to one inside the narrowed area. For example, suppose the buffer contains one hundred

characters, with the first and last ten characters excluded, so only eighty appear on the screen. In this case,

size() will return one hundred, and narrow_start and narrow_end will each have a value of ten. The

statement point = 3; will give point a value of ten (the closest legal value), while the statement point =

10000; will give point the value ninety. Epsilon adjusts the parameters of primitive functions in the same

way. Suppose, in the example above, you try to delete all the characters in the buffer, using the delete()

primitive. Epsilon would take the statement delete(0, size()); and effectively change it to

delete(10, 90); to delete only the characters inside the narrowed area.

The narrow_position() subroutine returns its argument p, adjusted so that it’s inside the narrowed

buffer boundaries.

Writing the buffer to a file ignores narrowing. Reading a file into the buffer lifts any narrowing in effect

by setting narrow_start and narrow_end to zero.

10.1.6 Undo

int undo_op(int is_undo)

undo_mainloop()

undo_redisplay()

user buffer int undo_size;

With a nonzero argument, the undo_op() primitive undoes one basic operation like the undo

command, described on page 98. With an argument of zero, it acts like redo. It returns a bit pattern

describing what types of operations were undone or redone. The bit codes are defined in codes.h.

10.1. Buffer Primitives 427

UNDO_INSERT means that originally an insertion occurred, and it was either undone or redone. The

UNDO_DELETE and UNDO_REPLACE codes are similar.

Epsilon groups individual buffer changes into groups, and undoes one group at a time. While saving

changes for undoing, Epsilon begins a new group when it redisplays buffers or when it begins a new

command in the main loop. The UNDO_REDISP code indicates the former happened, and UNDO_MAINLOOP

the latter. UNDO_MOVE indicates movement is being undone, and UNDO_END is used when Epsilon could only

undo part of a command. If undo_op() returns zero, the buffer was not collecting undo information (see

below).

Epsilon automatically starts a new undo group each time it does normal redisplay or passes through its

main loop, by calling either the undo_redisplay() or undo_mainloop() primitives, respectively. You

can call either of these primitives yourself to make Epsilon start a new undo group.

In addition to starting a new group, the undo_mainloop() primitive also makes the current buffer start

to collect undo information. When you first create a buffer, Epsilon doesn’t keep undo information for it, so

that “system” buffers don’t have this unnecessary overhead. Each time it passes through the main loop,

Epsilon calls undo_mainloop(), and this makes the current buffer start collecting undo information, if it

isn’t already, and if the buffer-specific variable undo_size is nonzero.

int undo_count(int is_undo)

The undo_count() primitive takes a parameter that specifies whether undoing or redoing is involved,

like undo_op(). The primitive returns a value indicating how much undoing or redoing information is

saved. The number doesn’t correspond to a particular number of commands, but to their complexity.

user buffer int undo_flag;

In addition to buffer changes and movements, Epsilon can record other information in its list of

undoable operations. Each time you set the undo_flag variable, Epsilon inserts a “flag” in its undo list with

the particular value you specify. When Epsilon is undoing or redoing and encounters a flag, it immediately

ends the current group of undo operations and returns a code with the UNDO_FLAG bit on. It puts the value of

the flag it encountered in the undo_flag variable. The yank-pop command uses flags 1 and 2 for undoing

the previous yank.

10.1.7 Searching Primitives

user int matchstart;

user int matchend;

int search(int dir, char *str)

user short abort_searching;

#define ABORT_JUMP -1

#define ABORT_ERROR -2

The search primitives each look for the first occurrence of some text in a particular direction from point.

Use 1 to specify forward, -1 to specify backward. They move point to the far end of the match, and set the

matchstart and matchend variables to the near and far ends of the match, respectively. For example, if the

buffer contains “abcd” and you search backward from the end for “bc”, point and matchend will be 1

(between the ‘a’ and the ‘b’) and matchstart will be 3. If the search text does not appear in the buffer,

point goes to the appropriate end of the buffer. These primitives return 1 if they find the text and 0 if not.

The most basic searching function is the search() primitive. It takes a direction and a string, and

searches for the string. It returns 1 if it finds the text, or 0 if it does not.

428 Chapter 10. Primitives and EEL Subroutines

If the user presses the abort key during searching, Epsilon’s behavior depends upon the value of the

abort_searching variable. If it’s ABORT_IGNORE (0), the key is ignored and the search continues. If it’s

ABORT_JUMP (the default), Epsilon aborts the search and jumps by calling the check_abort() primitive. If

it’s ABORT_ERROR, Epsilon aborts the search and returns the value ABORT_ERROR. The search(),

re_search(), re_match(), and buffer_sort() primitives all use the abort_searching variable to

control aborting.

user buffer short case_fold;

If the case-fold buffer-specific variable is nonzero, characters that match except for case count as a

match. Otherwise, only exact matches (including case) count. To alter folding rules, see page 518.

Regular Expression Searching

int re_search(int flags, char *pat)

int re_compile(int flags, char *pat)

int re_match()

#define RE_FORWARD 0

#define RE_REVERSE 2

#define RE_FIRST_END 4

#define RE_SHORTEST 8

#define RE_IGNORE_COLOR 16

Several searching primitives deal with a powerful kind of pattern known as a regular expression.

Regular expressions allow you to search for complex patterns. Regular expressions are strings formed

according to the rules on page 63.

The re_search() primitive searches the buffer for one of these patterns. It operates like the search()

primitive, taking a direction and pattern and returning 1 if it finds the pattern. It moves to the far end of the

pattern from the starting point, and sets matchstart to the near end. If it doesn’t find the pattern, or if the

pattern is illegal, it returns 0. In the latter case point doesn’t move, in the former point moves to the end (or

beginning) of the buffer.

When you specify a direction using 1 or -1, Epsilon selects the first-beginning, longest match, unless

the search string overrides this. However, instead of providing a direction (1 or -1) as the first parameter to

re_search() or re_compile(), you can provide a set of flags. These let you specify finding the shortest

possible match, for example, without altering the search string.

The RE_FORWARD flag searches forward, while the RE_REVERSE flag searches backward. (If you don’t

include either, Epsilon searches forward.) The RE_FIRST_END flag says to find a match that ends first, rather

than one that begins first. The RE_SHORTEST flag says to find the shortest possible match, rather than the

longest. However, if the search string contains sequences that specify first-ending, first-beginning, shortest,

or longest matches, those sequences override any flags.

A pattern may include color class assertions, as described on page 71. The RE_IGNORE_COLOR flag

makes Epsilon ignore such assertions. The do_color_searching() subroutine uses this; if your search

might include such assertions, calling that subroutine instead of these primitives will take care of ensuring

that the buffer’s syntax highlighting is up to date.

The re_compile() primitive checks a pattern for legality. It takes the same arguments as

re_search() and returns 1 if the pattern is illegal, otherwise 0. The re_match() primitive tells if the

last-compiled pattern matches at this location in the buffer, returning the far end of the match if it does, or -1

if it does not.

10.1. Buffer Primitives 429

int parse_string(int flags, char *pat, ?char *dest)

int matches_at(int pos, int dir, char *pat)

int matches_at_length(int pos, int dir, char *pat)

int matches_in(int start, int end, char *pat)

The parse_string() primitive looks for a match starting at point, using the same rules as

re_match(). It takes a direction (or flags) and a pattern like re_compile(), and a character pointer. It

looks for a match of the pattern beginning at point, and returns the length of such a match, or zero if there

was no match.

The third argument dest may be a null pointer, or may be omitted entirely. But if it’s a pointer to a

character array, parse_string() copies the characters of the match there, and moves point past them. If

the pattern does not match, dest isn’t modified.

The matches_at() subroutine accepts a regular expression pat and returns nonzero if the given

pattern matches at a particular position in the buffer in the given direction. The matches_at_length()

subroutine is similar, but it returns the length of the match, or zero if there was no match.

The matches_in() subroutine accepts a regular expression pat and searches for the pattern in the

specified buffer range, returning nonzero to indicate it matches. Neither matches_at() nor matches_in()

move point.

int find_group(int n, int open)

The find_group() primitive tells where in the buffer certain parts of the last pattern matched. It

counts opening parentheses used for grouping in the last pattern, numbered from 1, and returns the position

it was at when it reached a certain parenthesis. If open is nonzero, it returns the position of the n’th left

parenthesis, otherwise it returns the position of its matching right parenthesis. If n is zero, it returns

information on the whole pattern. If n is too large, or negative, the primitive aborts with an error message.

Parentheses that use the syntax (?:) don’t count.

Searching Subroutines

int do_searching(int flags, char *str) /* search.e */

int do_color_searching(int flags, char *str) /* search.e */

The do_searching() subroutine defined in search.e is handy when you want to use a variable to

determine the type of search. A flags value of 0 means perform a plain forward search. The flags

REVERSE, REGEX, and WORD specify a reverse search, a regular expression search, or a word search,

respectively. The subroutine normally performs case-folding if the buffer’s case_fold variable is non-zero;

pass MODFOLD to force Epsilon to search without case-folding, or pass MODFOLD and FOLD to force Epsilon

to case-fold. The above flags may be combined in any combination.

The do_searching() subroutine returns 1 on a successful search, or 0 if the search text was not found.

It can also return DSABORT if the user aborted the search (see the abort_searching variable) or DSBAD if

the (regular expression) search pattern was invalid. If the search was successful, Epsilon moves to just after

the found text (or just before, for reverse searches); in all other cases point doesn’t change.

The do_color_searching() subroutine defined in search.e takes parameters and returns values just

like do_searching(), but it handles regular expressions that use assertions like <c:perl-comment> to

match based on the colors applied via syntax highlighting. If you use such syntax in a primitive like

re_search(), Epsilon will search based on the syntax highlighting currently applied to the buffer. Because

Epsilon computes syntax highlighting only as needed during screen display, as well as in the background,

the buffer’s syntax highlighting may not be up to date. This subroutine ensures that the buffer’s syntax

highlighting is up to date as it finds matches, by reparsing and recoloring the buffer whenever it has to.

430 Chapter 10. Primitives and EEL Subroutines

int word_search(int dir, char *str)

int narrowed_search(int flags, char *str, int limit)

If do_searching() needs to search in word mode, it calls the word_search() subroutine. This

function searches for str, rejecting matches unless they are preceded and followed by non-word characters.

More precisely, it converts the text into a regular expression pattern, constructed so that each space in the

original pattern matches any sequence of whitespace characters, and each word in the pattern only matches

whole words.

The narrowed_search() subroutine is like do_searching(), but takes a parameter limit to limit

the search. Epsilon will only search a region of the buffer within limit characters of its starting point. For

example, if point is at 30000 and you call narrowed_search() and specify a reverse search with a limit of

1000, the match must occur between positions 29000 and 30000. If no such match is found, point will be set

to 29000 and the function will return 0.

string_replace(char *str, char *with, int flags)

show_replace(char *str, char *with, int flags)

The string_replace() subroutine allows you to do string replacements from within a function. It

accepts flags from the same list as do_searching(). Provide the INCR flag if you want the subroutine to

display the number of matches it found, and the number that were replaced. Provide the QUERY flag to ask

the user to confirm each replacement. This subroutine sets the variables replace-num-found and

replace-num-changed to indicate the total number of replacements it found, and the number the user

elected to change.

If you want to display what will be replaced without replacing anything, call the show_replace()

subroutine. It takes the same parameters as string_replace(), and displays a message in the echo area.

All Epsilon’s replacing commands call this subroutine to display their messages.

int simple_re_replace(int flags, char *str, char *repl)

The simple_re_replace() subroutine performs a regular expression replacement on the current

buffer. It searches through the buffer, starting from the top (the bottom, for reverse searches), and passing

flags and str directly to the re_search() primitive. It deletes each match and inserts the string repl

instead, returning the number of replacements it did. The replacement text is inserted literally, with no

interpolation. If you want to use #1 in your replacement text or other more involved things, call

string_replace() instead. The subroutine preserves point using a spot; if the text containing point is

replaced, point will go after the replacement.

int search_read(char *str, char *prmpt, int flags)

int default_fold(int flags)

int get_search_string(char *pr, int flags)

char *default_search_string(int flags)

char **default_replace_string(int flags)

To ask the user for a search string, use the search_read() subroutine. Its parameter str provides an

initial search string, and it returns a set of flags which you can pass to do_searching(). It takes an initial

set of flags, which you can use to start the user in one of the searching modes. Call default_fold() with

any flags before calling search_read(). It will turn on any needed flags relating to case-folding, based on

the value of the case_fold variable, and return a modified set of flags.

The function leaves the string in either the _default_search or the _default_regex_search

variable, depending upon the searching flags it returns. You can call the default_search_string()

10.1. Buffer Primitives 431

subroutine with that set of searching flags and it will return a pointer to the appropriate one of these.

Depending on what the user types, the search_read() subroutine may perform searching itself, in addition

to returning the search string.

The similar default_replace_string() subroutine returns a pointer to the address of the current

replacement string. Dereference it to access the replacement string.

The get_search_string() subroutine asks the user for a string to search for by calling

search_read().

buffer int (*search_continuation)();

int sample_search_continuation(int code, int flags, char *str)

In some modes a buffer may contain a single “record” out of many. Records may be swapped by

changing the narrowing on the buffer (as in Info mode), while in other modes the contents of the buffer may

be completely replaced with text from a different record.

A mode may wish to let users search from one record to the next, when no more matches can be found

in the current record. (This capability relates to searching by the user, with the search_read() subroutine,

not the primitive searching functions.)

A mode may set the buffer-specific search_continuation function pointer to a search-continuation

function if it wants this behavior. If it’s nonzero, the searching functions will call this function to advance to

a different record, or to remember or return to a particular record.

Epsilon assumes that the set of possible records have an implicit order to them, forming a list. And it

assumes that a record id, referring to a specific record, may be stored in a character array of length

FNAMELEN.

The code parameter indicates the desired operation. If SCON_RECORD, the search-continuation function

must write a record id for the current record into the array str. If SCON_RESTORE, it must return to the

record identified by the previously-saved id str. These operations should return zero. If SCON_COMPARE, it

must compare the current record with the id saved in str (according to the record order), returning -1, 0, or

1 depending on whether the current record is before, equal to, or after the saved record, respectively.

Any other code means to move to the next or previous record, according to whether the flags

parameter contains the REVERSE bit, and position to its start (or, for reverse searching, end). In this case,

code becomes a count, starting from 1, that indicates the number of record positionings done since the last

user keypress (for use in displaying progress messages). It should return 1 on success, or 0 if there were no

more records (and should remain at the original record in that case).

A search-continuation function may wish to pre-screen records, and skip over those that do not contain

the search string (but is not required to do so). If it chooses to do this, it can use flags and str to call the

do_searching() subroutine; these specify the search being performed.

int col_search(char *str, int col) /* search.e */

int column_color_searching(int flags, char *pat, int startcol, int endcol)

The col_search() subroutine defined in search.e attempts to go to the beginning of the next line

containing a certain string starting in a certain column. It returns 1 if the search is successful, 0 otherwise.

The column_color_searching() subroutine defined in search.e ignores matches unless they start

and end in the specified columns. Either startcol or endcol may be -1, and that column restriction won’t

apply. It takes flags and pat parameters like do_color_searching(), so it can search for regular

expressions, including those that use syntax highlighting colors, restrict matches to whole words, search in

reverse, and so forth. See do_searching() at the start of this section for details on its flag parameter.

432 Chapter 10. Primitives and EEL Subroutines

int line_search(int dir, char *s) /* grep.e */

int prox_line_search(char *s) /* tags.e */

The line_search() subroutine searches in direction dir for a line containing only the text s. It

returns 1 if found, otherwise 0.

The prox_line_search() subroutine searches in the buffer for lines containing exactly the text s. It

goes to the start of the closest such line to point, and returns 1. If there is no matching line, it returns 0.

do_drop_matching_lines(int flags, char *pat, int drop)

The do_drop_matching_lines() subroutine deletes all lines after point in the current buffer but

those that contain the specified search pattern. The search flags say how to interpret the pattern. If drop is

nonzero, the subroutine deletes lines that contain the pattern; if drop is zero it deletes all lines except those

that contain the pattern. Temporarily set the show-status variable to zero to keep it from displaying a line

count summary.

replace_in_readonly_hook(int old_readonly)

replace_in_existing_hook(int old_readonly)

The file-query-replace command calls some hook functions as it goes through its list of buffers or files.

Just before it makes its first change in each buffer (or asks the user whether to make the change, if it’s still in

query mode), it calls either the replace_in_existing_hook() subroutine (if the buffer or file was

already loaded before running the command) or the replace_in_readonly_hook() (if file-query-replace

had to read the file itself). The file-query-replace command temporarily zeroes the readonly-warning

variable; it passes the original value of this variable as a parameter to each hook.

The default version of replace_in_existing_hook() does nothing. The default version of

replace_in_readonly_hook() warns about the file being read-only by calling

do_readonly_warning().

10.1.8 Moving by Lines

int nl_forward()

int nl_reverse()

int move_by_lines(int cnt)

The nl_forward() and nl_reverse() primitives quickly search for newline characters in the

direction you specify. The nl_forward() primitive is the same as search(1, "\n"), while

nl_reverse() is the same as search(-1, "\n"), where \n means the newline character (see page 383).

These primitives do not set matchstart or matchend, but otherwise work the same as the previous

searching primitives, returning 1 if they find a newline and 0 if they don’t.

The move_by_lines() primitive moves forward over cnt lines, like calling nl_forward() that many

times. If cnt is negative, it moves backward, like calling nl_reverse(). It returns 0, unless it hit the end

of the buffer (or narrowing) before moving the full amount; in that case it returns the number of lines still to

go when it stopped. For example, if there are two newlines in the buffer before point, calling

move_by_lines(-10) moves to the start of the buffer and returns -8.

to_begin_line() /* eel.h macro */

to_end_line() /* eel.h macro */

int give_begin_line() /* basic.e */

int give_end_line() /* basic.e */

10.1. Buffer Primitives 433

The eel.h file defines textual macros named to_begin_line() and to_end_line() that make it easy

to go to the beginning or end of the current line. They simply search in the appropriate direction for a

newline character and back up over it if the search succeeds.

The give_begin_line() subroutine returns the buffer position of the beginning of the current line,

and the give_end_line() subroutine returns the position of its end. Neither moves point.

go_line(int num) /* basic.e */

buf_go_line(int buf, int num)

int lines_between(int from, int to, ?int abort_ok)

int count_lines_in_buf(int buf, int abortok)

int buf_position_to_line_number(int buf, int pos)

int all_blanks(int from, int to) /* indent.e */

The EEL subroutine go_line() defined in basic.e uses the move_by_lines() primitive to go to a

certain line in the buffer, counting from 1. go_line(2), for example, goes to the beginning of the second

line in the buffer. The similar buf_go_line() subroutine does the same in the specified buffer.

The lines_between() primitive returns the number of newline characters in the part of the buffer

between from and to. If abort_ok is nonzero, the user can abort from this primitive, otherwise Epsilon

ignores the abort key.

The buf_position_to_line_number() subroutine returns the line number, counting from 1, of a

particular position in the specified buffer.

The count_lines_in_buf() subroutine returns the number of newline characters in the buffer buf. If

abortok is nonzero and the user press the abort key, the subroutine uses the check_abort() primitive to

abort.

The all_blanks() subroutine returns 1 if the characters between from and to are all whitespace

characters (space, tab, or newline), 0 otherwise.

10.1.9 Other Movement Functions

int move_level(int dir, char *findch,

char *otherch, int show, int stop_on_key)

buffer int (*mode_move_level)();

int c_move_level(int dir, int stop_on_key)

int html_move_level(int dir, int stop_on_key)

int default_move_level(int dir, char *findch,

char *otherch)

Several subroutines move through text counting and matching various sorts of delimiters. The

move_level() subroutine takes a direction dir which may be 1 or -1, and two sets of delimiters. The

routine searches for any one of the characters in findch. Upon finding one, it continues searching in the

same direction for the character in the same position in otherch, skipping over matched pairs of these

characters in its search.

For example, if findch was ">])" and dir was -1, move_level() would search backwards for one

of these three characters. If it found a ‘)’ first, it would then select the third character of otherch, which

might be a ‘(’. It would then continue searching for a ‘(’. But if it found additional ‘)’ characters before

reaching that ‘(’, it would need to find additional ‘(’ characters before stopping.

The subroutine returns 1 to indicate that it found a match, and leaves point on the far side of the match

(like commands such as forward-level). If no match can be found, the subroutine returns 0. Additionally, if

434 Chapter 10. Primitives and EEL Subroutines

its parameter show is nonzero, it displays an “Unmatched delimiter” message. When no characters in

findch can be found in the specified direction, it sets point to the far end of the buffer and returns 1. If

stop_on_key is nonzero, the subroutine will occasionally check for user key presses, and abort its search if

the user has pressed a key. It returns -2 in this case and doesn’t change point.

Certain modes define a replacement level matcher that understands more of the syntax of that mode’s

language. They do this by setting the buffer-specific function pointer variable mode_move_level to a

function such as c_move_level(). The move_level() subroutine will call this function instead of doing

its normal processing when this variable is nonzero in the current buffer.

Any such function will receive only dir and stop_on_key parameters. (It should already know which

delimiters are significant in its language.) It should return the buffer position it reached (but not actually

move there), if it found a pair of matched delimiters, or if it reached one end of the buffer without finding

any suitable delimiters. If should return -1 if it detected an unmatched delimiter, or -2 if a keypress made it

abort.

The default_move_level() function is what move_level() calls when no mode-specific function is

available. It takes parameters like move_level(), and returns -1 or a buffer position like

c_move_level(). A mode-specific function may wish to call this function, specifying a set of delimiters

suitable for that language. The html_move_level() subroutine, for example, does just that.

int give_position(int (*cmd)())

The give_position() subroutine runs the subroutine cmd, which (typically) moves to a new position

in the buffer. The give_position() subroutine returns this new position, but restores point to its original

value. For example, give_position(forward_word) returns the buffer position of the end of the current

word. EEL requires that cmd be declared before you call it, via a line like int cmd();, unless it’s defined in

the same file, before the give_position() call.

10.1.10 Sorting Primitives

buffer_sort(char *newbuf, ?int col, int rev)

do_buffer_sort(char *newbuf, int col, int rev)

sort_another(char *buf, int col, int rev)

do_sort_region(int from, int to, int col, int rev)

char show_status;

The EEL primitive buffer_sort() sorts the lines of the current buffer alphabetically. It does not

modify the buffer, but rather inserts a sorted copy into the named buffer (which must be different). It

performs each comparison starting at column col, which is optional and defaults to 0 (the first column). If

the case_fold variable is nonzero, sorting ignores the case of letters. It sorts lines in reverse order if the

optional rev parameter is 1, not 0. (To alter folding rules, see page 518.)

If the variable show_status is nonzero, Epsilon will display progress messages as the sort progresses.

Otherwise, no status messages appear.

The do_buffer_sort() subroutine is similar, but respects the sort-case-fold variable, not

case-fold like buffer_sort().

The sort_another() subroutine takes the name of a buffer and sorts it in place. The parameter col

specifies the column to sort on, and rev, if nonzero, requests a reverse sort.

The do_sort_region() subroutine sorts a portion of the current buffer in place. The from and to

parameters specify the region to sort. The col parameter specifies the column to sort on, and the rev

parameter, if nonzero, requests a reverse sort.

10.1. Buffer Primitives 435

If the user presses the abort key during sorting, Epsilon’s behavior depends upon the value of the

abort_searching variable. If 0, the key is ignored and the sort will run to completion. If ABORT_JUMP,

Epsilon aborts the sort and jumps by calling the check_abort() primitive. If ABORT_ERROR, Epsilon

aborts the sort and returns ABORT_ERROR. Whenever Epsilon aborts a sort, nothing gets inserted in the

newbuf buffer. (For the subroutines that sort in place, the buffer is not changed.) Except when aborted, the

buffer_sort() primitive and all the sorting subroutines described above return 0.

10.1.11 Other Formatting Functions

right_align_columns(char *pat)

The right_align_columns() subroutine locates all lines containing a match for the regular

expression pattern pat. It notes the ending column of each match. (It assumes that pat occurs no more than

one per line.)

Then, if some matches end at an earlier column than others, it adds indentation before each match as

needed, so all matches will end at the same column.

columnize_buffer_text(int buf, int width, int margin)

The columnize_buffer_text() subroutine takes the lines in the buffer buf and reformats them into

columns. It leaves a margin between columns of margin spaces, and chooses the number of columns so that

the resulting buffer is at most width characters wide (unless an original line in the buffer is already wider

than width).

do_buffer_to_hex(char *b, char transp[256], ?int flags)

The do_buffer_to_hex() primitive writes a hex view of the current buffer to the buffer b, creating or

emptying it first. It ignores any narrowing in the original buffer. It uses the 256 character transp array to

help construct the last column of the hex view; each character from the buffer will be replaced by the

character at that offset in the transp array. If the buffer contains Unicode characters with codes higher than

255, they’ll appear as-is.

If a buffer might contain Unicode characters, the primitive uses a display format that leaves room for 16

bits per character; otherwise it uses a format with room for 8 bits per character. The optional flags

argument, if 1, forces 8 bits per character. If any character in the buffer doesn’t fit in 8 bits, only its lower 8

bits will be shown in the hex listing.

10.1.12 Comparing

int compare_buffer_text(int buf1, int pos1,

int buf2, int pos2, int fold)

int buffers_identical(int a, int b)

The compare_buffer_text() primitive compares two buffers, specified by buffer numbers, starting

at the given offsets within each. If fold is nonzero, Epsilon performs case-folding as in searching before

comparing each character, using the case-folding rules of the current buffer. The primitive returns the

number of characters that matched before the first mismatch.

The buffers_identical() subroutine checks to see if two buffers, specified by their buffer numbers,

are identical. It returns nonzero if the buffers are identical, zero if they differ. If neither buffer exists, they’re

considered identical; if one exists, they’re different.

436 Chapter 10. Primitives and EEL Subroutines

do_uniq(int incl_uniq, int incl_dups, int talk)

buf_sort_and_uniq(int buf)

The do_uniq() subroutine defined in uniq.e goes through the current buffer comparing each line to the

next, and deleting each line unless it meets certain conditions.

If incl_uniq is nonzero, lines that aren’t immediately followed by an identical line will be preserved.

If incl_dups is nonzero, the first copy of each line that is immediately followed by one or more identical

lines will be preserved. (The duplicate lines that follow will always be deleted.)

If talk is nonzero, the subroutine will display status messages as it proceeds.

The buf_sort_and_uniq() subroutine sorts the specified buffer and discards duplicate lines in it,

with no status messages.

do_compare_sorted(int b1, int b2, char *only1,

char *only2, char *both)

The do_compare_sorted() subroutine works like the compare-sorted-windows command, but lets

you specify the two buffers to compare, and the names of the three result buffers. Any of the result buffer

names may be NULL, and the subroutine won’t generate data for that buffer.

int tokenize_lines(int buf1, int **lines1, int *len1,

int buf2, int **lines2, int *len2)

int lcs(int *lines1, int len1, int *lines2, int len2, char *outbuf)

These primitives help to compute a minimum set of differences between the lines of two buffers buf1

and buf2. See the implementation of the diff command for an example of their use.

Call the tokenize_lines() primitive first. It begins by counting the lines in each buffer (placing the

results in len1 and len2). Then it uses the realloc() primitive to make room in the arrays passed by

reference as lines1 and lines2, which may be null at the start. Each array will have room for one token

(unique integer) for each line of its buffer. (The arrays may be freed after calling lcs(), or reused in later

calls.)

The tokenize_lines() primitive then fills in the arrays with unique tokens, chosen so that two lines

will have the same token if and only if they’re identical.

The lcs() primitive takes the resulting arrays and line counts, and writes a list of shared line ranges to

the specified buffer, one per line, in ascending order. Each line range consists of a line number for the first

buffer, a line number for the second (both 0-based) and a line count. For instance, a line “49 42 7” indicates

that the seven lines starting at line 49 in the first buffer match the seven lines starting at line 42 in the second

(counting lines from 0).

int lcs_char(int buf1, int from1, int to1,

int buf2, int from2, int to2, char *outbuf)

The lcs_char() primitive is a character-oriented version of the tokenize_lines() and lcs()

primitives described above. It compares ranges of characters in a pair of buffers.

It writes a list of shared character ranges to the specified buffer, one per line, in ascending order. Each

character range consists of a character offset for the first buffer relative to from1, a character offset for the

second buffer relative to from2, and a character count. For instance, a line “49 42 7” in the output buffer

indicates that the seven characters in the range from1 + 47 to from1 + 47 + 7 in the first buffer match

the seven characters in the range from2 + 42 to from2 + 42 + 7 in the second.

10.1. Buffer Primitives 437

int phoneticize_lines(int dest, int len)

The phoneticize_lines() primitive quickly finds sound codes for a list of words. It goes through

the current buffer line by line. Each line should contain a word; non-word characters will be ignored. For

each line, it writes a corresponding line to the dest buffer with a phonetic code for that word, a string of

letters designed so that two words with similar sounds will have the same phonetic code. (It currently uses

the Metaphone algorithm for this purpose.) The len value indicates the maximum length of each phonetic

code to be produced.

10.1.13 Managing Buffers

int create(char *buf)

char *bufnum_to_name(int bnum)

int name_to_bufnum(char *bname)

int zap(char *buf)

buf_zap(int bnum)

int change_buffer_name(char *newname)

The create() primitive makes a new buffer. It takes the name of the buffer to create. If the buffer

already exists, nothing happens. In either case, it returns the buffer number of the buffer.

Some primitives let you specify a buffer by name; others let you specify a buffer by number. Epsilon

tries never to reuse buffer numbers, so EEL functions can look a buffer up by its buffer number to see if a

particular buffer still exists. Functions that accept a buffer number generally start with buf_.

Use the bufnum_to_name() primitive to convert from a buffer number to the buffer’s name. If no such

buffer exists, it returns a null pointer. The name_to_bufnum() primitive takes a buffer name, and gives you

the corresponding buffer number. If no such buffer exists, it returns zero.

The zap() primitive creates a buffer if necessary, but empties it of all characters if the buffer already

exists. So calling zap() always results in an empty buffer. The zap() primitive returns the buffer number of

the buffer, whether or not it needed to create the buffer. The buf_zap() primitive works like zap(), except

the former takes a buffer number instead of a buffer name, and signals an error if no buffer with that number

exists. Unlike zap(), buf_zap() cannot create a buffer. Neither primitive switches to the emptied buffer.

The change_buffer_name() primitive renames the current buffer to the indicated name. If there is

already a buffer with the new name, the primitive returns 0, otherwise the buffer is renamed and the

primitive returns 1.

int exist(char *buf)

int buf_exist(int bnum)

delete_buffer(char *buf)

delete_user_buffer(char *buf)

buf_delete(int bnum)

drop_buffer(char *buf) /* buffer.e */

char *temp_buf() /* basic.e */

int tmp_buf() /* basic.e */

The exist() primitive tells whether a buffer with a particular name exists. It returns 1 if the buffer

exists, 0 if not. The buf_exist() does the same thing, but takes a buffer number instead of a buffer name.

The delete_buffer() primitive removes a buffer with a given name. It also removes all windows

associated with the buffer. The buf_delete() primitive does the same thing, but takes a buffer number.

438 Chapter 10. Primitives and EEL Subroutines

Epsilon signals an error if the buffer does not exist, if it contains a running process, or if one of the buffer’s

windows could not be deleted. If the buffer might have syntax highlighting in it, use the

delete_user_buffer() subroutine instead; it cleans up some data needed by syntax highlighting.

The drop_buffer() subroutine deletes the buffer, but queries the user first like the kill-buffer command

if the buffer contains unsaved changes.

The EEL subroutine temp_buf(), defined in basic.e, uses the exist() primitive to create an unused

name for a temporary buffer. It returns the name of the empty buffer it creates. The tmp_buf() subroutine

creates a temporary buffer like temp_buf(), but returns its number instead of its name.

buffer char *bufname;

buffer int bufnum;

The bufname variable returns the name of the current buffer, and the bufnum variable gives its number.

Setting either switches to a different buffer. If the indicated buffer does not exist, nothing happens. Use this

method of switching buffers only to temporarily switch to a new buffer; use the to_buffer() or

to_buffer_num() subroutines described on page 447 to change the buffer a window will display.

To set the bufname variable, use the syntax bufname = new value;. Don’t use strcpy(), for

example, to modify it.

int buffer_size(char *buf)

int buf_size(int bnum)

int get_buf_point(int buf)

set_buf_point(int buf, int pos)

The buffer_size() and buf_size() subroutines returns the size in characters of the indicated buffer

(specified by its name or number). The get_buf_point() subroutine returns the value of point in the

indicated buffer. The set_buf_point() subroutine sets point in the specified buffer to the value pos.

These are all defined in buffer.e.

10.1.14 Catching Buffer Changes

user buffer short call_on_modify;

on_modify() /* buffer.e */

zeroed buffer (*buffer_on_modify)();

buffer char _buf_readonly;

check_modify(int buf)

If the buffer-specific call_on_modify variable has a nonzero value in a particular buffer, whenever any

primitive tries to modify that buffer, Epsilon calls the EEL subroutine on_modify() first. By default, that

subroutine calls the normal_on_modify() subroutine, which aborts the modification if the buffer-specific

variable _buf_readonly is nonzero, indicating a read-only buffer, and does various similar things.

But if the buffer_on_modify buffer-specific function pointer is nonzero for that buffer, on_modify()

instead calls the subroutine it indicates. That subroutine may wish to call normal_on_modify() itself.

An on_modify() function can abort the modification or set variables. But if it plans to return, it must

not create or delete buffers, or permanently switch buffers.

One of normal_on_modify()’s tasks is to handle read-only buffers. There are several types of these,

distinguished by the value of the _buf_readonly variable, which if nonzero indicates the buffer is

10.1. Buffer Primitives 439

read-only. A value of 1 means the user explicitly set the buffer read-only. The value 2 means Epsilon

automatically set the buffer read-only because its corresponding file was read-only.

A value of 3 indicates pager mode; this is just like a normal read-only buffer, but if the user action

causing the attempt at buffer modification happens to be the result of the 〈Space〉 or 〈Backspace〉 keys,

Epsilon cancels the modification and pages forward or backward, respectively. In other types of read-only

buffers, this happens only if the readonly-pages variable permits it.

The check_modify() primitive runs the on_modify() function on a specified buffer (if

call_on_modify is nonzero in that buffer). You can use this if you plan to modify a buffer later but want

any side effects to happen now. If the buffer is marked read-only, this function will abort with an error

message. If the buffer is in virtual mode and its cursor is positioned in virtual space, Epsilon will insert

whitespace characters to reach the virtual column. Because this can change the value of point, you should

call check_modify() before passing the values of spots to any function.

For example, suppose you write a subroutine to replace the previous character with a ‘+’, using a

statement like replace(point - 1, ’+’);. Suppose point has the value 10, and appears at the end of a

line containing ‘abc’ (in column 3). Using virtual mode, the user might have positioned the cursor to column

50, however. If you used the above statement, Epsilon would call replace() with the value 9. Before

replacing, Epsilon would call on_modify(), which, in virtual mode, would insert tabs and spaces to reach

column 50, and move point to the end of the inserted text. Then Epsilon would replace the character ‘c’ at

buffer position 9 with ‘+’. If you call check_modify(bufnum); first, however, Epsilon inserts its tabs and

spaces to reach column 50, and point - 1 correctly refers to the last space it inserted.

reset_modified_buffer_region(char *tag)

int modified_buffer_region(int *from, int *to, ?char *tag)

Sometimes an EEL function needs to know if a buffer has been modified since the last time it checked.

Epsilon can maintain this information using tagged buffer modification regions.

An EEL function first tells Epsilon to begin collecting this information for the current buffer by calling

the reset_modified_buffer_region() primitive and passing a unique tag name. (Epsilon’s syntax

highlighting uses a modified buffer region named needs-color, for instance.) Later it can call the

modified_buffer_region() primitive, passing the same tag name. Epsilon will set its from and to

parameters to indicate the range of the buffer that has been modified since the first call.

For example, say a buffer contains six characters abcdef when reset_modified_buffer_region()

is called. Then the user inserts and deletes some characters resulting in abxyf. A

modified_buffer_region() would now report that characters in the range 2 to 4 have been changed. If

the buffer contains many disjoint changes, from will indicate the start of the first change, and to the end of

the last.

The modified_buffer_region() primitive returns 0 if the buffer hasn’t been modified since the last

reset_modified_buffer_region() with that tag. In this case from and to will be equal. (They might

also be equal if only deletion of text had occurred, but then the primitive wouldn’t have returned 0.) It

returns 1 if the buffer has been modified. If reset_modified_buffer_region() has never been used

with the specified tag in the current buffer, it returns -1, and sets the from and to variables to indicate the

whole buffer.

The tag may be omitted when calling modified_buffer_region(). In that case Epsilon uses an

internal tag that’s reset on each buffer display. So the primitive indicates which part of the current buffer has

been modified since the last buffer display.

440 Chapter 10. Primitives and EEL Subroutines

10.1.15 Listing Buffers

char *buffer_list(int start)

int buf_list(int offset, int mode)

The buffer_list() primitive gets the name of each buffer in turn. Each time you call this primitive, it

returns the name of another buffer. It begins again when given a nonzero argument. When it has returned the

names of all the buffers since the last call with a nonzero argument, it returns a null pointer.

The buf_list() primitive can return the number of each existing buffer, one at a time, like

buffer_list(). The mode can be 0, 1, or 2, to position to the lowest-numbered buffer in the list, the last

buffer returned by buf_list(), or the highest-numbered buffer, respectively. The offset lets you advance

from these buffers to lower or higher-numbered buffers, by providing a negative or positive offset. Unlike

buffer_list(), this primitive lets you back up or go through the list backwards.

For example, this code fragment displays the names of all buffers, one at a time, once forward and once

backward:

s = buffer_list(1);

do {

say("Forward %d: %s", name_to_bufnum(s), s);

} while (s = buffer_list(0));

i = buf_list(0, 2);

do {

say("Back %d: %s", i, bufnum_to_name(i));

} while (i = buf_list(-1, 1));

say("Done.");

10.2 Display Primitives

10.2.1 Creating & Destroying Windows

window_kill()

window_one()

The window_kill() primitive removes the current window if possible, in the same way as the

kill-window command does. The window_one() primitive eliminates all but the current window, as the

command one-window does.

remove_window(int win)

The remove_window() primitive deletes a window by handle or number. If you delete a tiled window,

Epsilon expands other windows as needed to fill its space. You cannot delete the last remaining tiled

window.

int give_window_space(int dir)

#define BLEFT 0 /* direction codes */

#define BTOP 1

#define BRIGHT 2

#define BBOTTOM 3

10.2. Display Primitives 441

The give_window_space() primitive deletes the current window. It expands adjacent windows in the

specified direction into the newly available space, returning 0. If there are no windows in the specified

direction, it does nothing and returns 1.

window_split(int orientation)

#define HORIZONTAL (0)

#define VERTICAL (1)

The window_split() primitive makes two windows from the current window, like the commands

split-window and split-window-vertically do. The argument to window_split() tells whether to make the

new windows appear one on top of the other (with argument HORIZONTAL) or side-by-side (with argument

VERTICAL). The standard EEL header file, eel.h, defines the macros HORIZONTAL and VERTICAL. The

primitive returns zero if it could not split the window, otherwise nonzero. When you split the window,

Epsilon automatically remembers to call the prepare_windows() and build_mode() subroutines during

the next redisplay.

user short window_handle;

user short window_number;

next_user_window(int dir)

You may refer to a window in two ways: by its window handle or by its window number.

Epsilon assigns a unique window handle to a window when it creates the window. This window handle

stays with the window for the duration of that window’s lifetime. To get the window handle of the current

window, use the window_handle primitive.

The window number, on the other hand, denotes the window’s current position in the window order.

You can think of the window order as the position of a window in a list of windows. Initially the list has only

one window. When you split a window, the two child windows replace it in the list. The top or left window

comes before the bottom or right window. When you delete a window, that window leaves the list. The

window in the upper left has window number 0. Pop-up windows always come after tiled windows in this

order, with the most recently created (and therefore topmost) pop-up window last. The window_number

primitive gives the window number of the current window.

Epsilon treats windows in a dialog much like pop-up windows, assigning each a window number and

window handle. The stacking order of dialogs is independent of their window handles, however. Deleting all

the windows on a dialog makes Epsilon remove the dialog. (Epsilon doesn’t count windows with the

system_window flag set when determining if you’ve deleted the last window.)

To change to a different window, you can set either the window_handle or window_number variables.

Epsilon then makes the indicated window become the current window. Epsilon interprets window_number

modulo the number of windows, so window number -1 refers to the last window.

Many primitives that require you to specify a window will accept either its handle or its number. Use

window_handle to remember a particular window, since its number can change as you add or delete

windows.

You can increment or decrement the window_number variable to cycle through the list of available

windows. But it’s usually better to use the next_user_window() subroutine, passing it 1 to go to the next

window or -1 to go to the previous one. This will skip over system windows.

int number_of_windows()

int number_of_popups()

int number_of_user_windows()

442 Chapter 10. Primitives and EEL Subroutines

int is_window(int win)

#define ISTILED 1

#define ISPOPUP 2

The number_of_windows() primitive returns the total number of windows, and the

number_of_popups() primitive returns the number of pop-up windows. The

number_of_user_windows() subroutine returns the total number of windows, excluding system windows.

The is_window() primitive accepts a window handle. It returns ISTILED if the value refers to a

conventional tiled window, ISPOPUP if the value refers to a pop-up window or a window in a dialog, or 0 if

the value does not refer to a window. Unlike most window functions, it accepts only a window handle, not a

window number.

10.2.2 Window Resizing Primitives

user window short window_height;

user window short window_width;

int text_height()

int text_width()

int window_content_width()

The window_height variable contains the height of the current window in lines, including any mode

line or borders. Setting it changes the size of the window. Each window must have at least one line of height.

The window_width variable contains the width of the current window, counting any borders the window

may have. If you set these variables to illegal values, Epsilon will adjust them to the closest legal values.

The text_height() and text_width() primitives, on the other hand, exclude borders and mode

lines from their calculations, returning only the number of lines or columns of the window available for the

display of text.

If the buffer has been set to display line numbers, text_width() doesn’t count the columns used for

them, but the similar window_content_width() primitive does. With line numbers off, the two return the

same value.

int window_edge(int orien, int botright)

#define TOPLEFT (0)

#define BOTTOMRIGHT (1)

The window_edge() primitive tells you where on the screen the current window appears. For the first

parameter, specify either HORIZONTAL or VERTICAL, to get the column or row, respectively. For the second

parameter, provide either TOPLEFT or BOTTOMRIGHT, to specify the corner. Counting starts at the upper left

corner of the screen, which has 0 for both coordinates.

10.2.3 Preserving Window Arrangements

struct window_info {

short left, top, right, bottom;

short textcolor, hbordcolor;

short vbordcolor, titlecolor;

short borders, other, bufnum;

int point, dpoint;

10.2. Display Primitives 443

/* primitives fill in before this line */

int dcolumn;

short prevbuf;

};

get_window_info(int win, struct window_info *p)

low_window_info(int win, struct window_info *p)

window_create(int first, struct window_info *p)

low_window_create(int first, struct window_info *p)

select_low_window(int wnum, int top, int bot,

int lines, int cols)

Epsilon has several primitives that are useful for recording a particular window configuration and

reconstructing it later.

The get_window_info() subroutine fills a structure with information on the specified window. The

information includes the window’s size and position, its selected colors, and so forth. It uses the

low_window_info() primitive to collect some of the information, then fills in the rest itself by inspecting

the window.

After calling get_window_info() on each tiled window (obtaining a series of structures, each holding

information on one window), you can restore that window configuration using the window_create()

subroutine. It takes a pointer to a structure that get_window_info() filled in, and a flag that must be

nonzero if this is the first window in the new configuration. It uses the low_window_create() primitive to

create the window. The point or dpoint members of the structure may be -1 when you call

window_create() or low_window_create(), and Epsilon will provide default values for point and

window_start in the new window, based on values stored with the buffer. The window-creating functions

remain in the window they create, so you can modify its window-specific variables.

After a series of window_create()’s, you must use the select_low_window() primitive to switch to

one of the created windows (specifying it by window number or handle, as usual).

Using window_create() directly modifies windows, and Epsilon doesn’t check that the resulting

window configuration is legal. For example, you can define a set of tiled windows that leave gaps on the

screen, overlap, or extend past the screen borders. The result of creating an illegal window configuration is

undefined.

The first time you call window_create(), pass it a nonzero flag, and Epsilon will (internally) delete all

tiled windows, and create the first window. Then call window_create() again, as needed, to create the

remaining windows (pass it a zero flag). Finally, you must call the select_low_window() primitive. Once

you begin using window_create(), Epsilon will not be able to refresh the screen correctly until you call

the select_low_window() primitive to exit window-creation. The top and bot parameters specify the

new values of the avoid-top-lines and avoid-bottom-lines variables, and set the variables to the

indicated values while finishing window creation. The lines and cols parameters specify the size of the

screen that was used to construct the old window configuration. All windows defined using

low_window_create() are based on that screen size. When you call select_low_window(), Epsilon

resizes all the windows you’ve defined so that they fit the current screen size.

save_screen(struct screen_info *p)

restore_screen(struct screen_info *p)

The save_screen() subroutine saves Epsilon’s window configuration in a struct screen_info

structure. The first time you call this subroutine on an instance of the screen_info structure, make sure its

wins member is zero. The restore_screen() subroutine restores Epsilon’s window configuration from

such a structure.

444 Chapter 10. Primitives and EEL Subroutines

10.2.4 Pop-up Windows

int add_popup(column, row, width, height, border, bnum)

/* macros for defining a window’s borders */

/* BORD(BTOP, BSINGLE) puts single line on top */

#define BLEFT 0

#define BTOP 1

#define BRIGHT 2

#define BBOTTOM 3

#define BNONE 0

#define BBLANK 1

#define BSINGLE 2

#define BDOUBLE 3

#define BORD(side, val) (((val) & 3) << ((side) * 2))

#define GET_BORD(side, bord) ((bord >> (side * 2)) & 3)

#define LR_BORD(val) (BORD(BLEFT, (val)) + BORD(BRIGHT, (val)))

#define TB_BORD(val) (BORD(BTOP, (val)) + BORD(BBOTTOM, (val)))

#define ALL_BORD(val) (LR_BORD(val) + TB_BORD(val))

The add_popup() primitive creates a new pop-up window. It accepts the column and row of the upper

left corner of the new window, and the width and height of the window (including any borders). The

border parameter contains a code saying what sort of borders the window should have, and the bnum

parameter gives the buffer number of the buffer to display in the window. The primitive returns the handle of

the new window, or -1 if the specified buffer did not exist, so Epsilon couldn’t create the window. If the

pop-up window is to become part of a dialog (see page 555), its size, position and border will be determined

by the dialog, not the values passed to add_popup().

You can define the borders of a window using macros from codes.h. For each of the four sides, you can

specify no border, a blank border, a border drawn with a single line, or a border drawn with a double line,

using the codes BNONE, BBLANK, BSINGLE, or BDOUBLE, respectively. Specify the side to receive the border

with the macros BLEFT, BTOP, BRIGHT, and BBOTTOM. You can make a specification for a given side using

the BORD() macro, writing BORD(BBOTTOM, BDOUBLE) to put a double-line border at the bottom of the

window. Add the specifications for each side to get the complete border code.

You can use other macros to simplify the border specification. Write LR_BORD(BSINGLE) +

TB_BORD(BDOUBLE) to produce a window with single-line borders on the left and right, and double-line

borders above and below. Write ALL_BORD(BNONE) for a window with no borders at all, and the most room

for text.

You can use the GET_BORD() macro to extract (from a complete border code) the specification for one

of its sides. For example, to find the border code for the left-side border of a window with a border value of

bval, write GET_BORD(BLEFT, bval). If the window has a double-line border on that side, the macro

would yield BDOUBLE.

int window_at_coords(int row, int col, ?int screen)

The window_at_coords() primitive provides the handle of the topmost window at a given set of

screen coordinates. The primitive returns -1 if no window occupies that part of the screen. The screen

number parameter can be zero or omitted to refer to the main screen, but it is usually a screen number from

the mouse_screen primitive.

int window_to_screen(int win)

10.2. Display Primitives 445

The window_to_screen() primitive takes a window handle and returns its screen number. Windows

that are part of a dialog box have nonzero screen numbers; in this version other windows always have a

screen number of zero.

int screen_to_window(int screen)

The screen_to_window() primitive takes a screen number, as returned in the variable

mouse_screen, and returns the window handle associated with it. If the screen number is zero, there may

be several windows associated with it; Epsilon will choose the first one. In this version of Epsilon, nonzero

screen numbers uniquely specify a window. It returns -1 if no windows are associated with that screen

number.

user window int window_left;

user window int window_top;

The window_left and window_top primitive variables provide screen coordinates for the current

window. You can set the coordinates of a pop-up window to move the window around. Epsilon ignores

attempts to set these variables in tiled windows.

10.2.5 Pop-up Window Subroutines

view_buffer(char *buf, int last) /* complete.e */

view_buf(int buf, int last) /* complete.e */

Several commands in Epsilon display information using the view_buffer() subroutine. It takes the

name of a buffer and displays it page by page in a pop-up window. The view_buf() subroutine takes a

buffer number and does the same. Both take a parameter last which says whether the command is

displaying the buffer as its last action.

If last is nonzero, Epsilon will create the window and then return. Epsilon’s main command loop will

take care of displaying the pop-up window, scrolling through it, and removing it when the user’s done

examining it. If the user executes a command like find-file while the pop-up window is still on the screen,

Epsilon will remove the pop-up and continue with the command.

If last is zero, the viewing subroutine will not return until the user has removed the pop-up window

(by pressing 〈Space〉 or Ctrl-G, for example). The command can then continue with its processing. The user

won’t be able to execute a prompting command like find-file while the pop-up window is still on the screen.

view_linked_buf(int buf, int last, int (*linker)())

int linker(char *link) /* linker function prototype */

Epsilon uses a variation of view_buf() to display some online help. The variation adds support for

simple hyperlinks. The user can select one of the links in a page of displayed text and follow it to go to

another page, or potentially to perform any other action. The view_linked_buf() subroutine shows a

buffer with links.

The links are delimited with a Ctrl-A character before and a Ctrl-B character after each link. Epsilon’s

non-Windows documentation file edoc is in this format. (See page 534.) The view_linked_buf()

subroutine will modify the buffer it receives, removing and highlighting the links before displaying it.

When the user follows a link, Epsilon will call the function pointer linker passed as a parameter to

view_linked_buf(). The linker function, which may have any name, will receive the link text as a

parameter.

446 Chapter 10. Primitives and EEL Subroutines

/* space at sides of viewed popup */

short _view_left = 2;

short _view_top = 2;

short _view_right = 2;

short _view_bottom = 6;

short _view_border = ALL_BORD(BSINGLE);

char *_view_title; /* title for viewed popup */

int view_loop(int win)

By default, the above subroutines create a pop-up window with no title and a single-line border, almost

filling the screen. The window begins two columns from the left border and stops two columns from the

right, and extends two lines from the top of the screen to six lines from the bottom. You can alter any of

these values by setting the variables _view_title, _view_border, _view_left, _view_top,

_view_right, and _view_bottom. Preserve the original default value using the save_var keyword. For

example, this code fragment shows a buffer in a narrow window near the right edge of the screen labeled

“Results” (surrounding a title with spaces often makes it more attractive):

save_var _view_left = 40;

save_var _view_title = " Results ";

save_var _view_border = ALL_BORD(BDOUBLE);

view_buffer(buf, 1);

A command that displays a pop-up window may want more control over the creation and destruction of

the pop-up window than view_buf() and similar subroutines provide. A command can instead create its

pop-up window itself, and call view_loop() to handle user interaction. The view_loop() subroutine takes

the handle of the pop-up window to work with. The pop-up window may be a part of a dialog. (See the

display_dialog_box() primitive described on page 555.)

The view_loop() subroutine lets the user scroll around in the window and watches for an

unrecognized key (an alphabetic key, for example) or a key that has a special meaning. It returns when the

user presses one of these keys or when the user says to exit. By default, the user can scroll off either end of

the buffer and this subroutine will return. Set the paging-retains-view variable nonzero to prevent this.

The view_loop() subroutine returns an INP_ code from eel.h to indicate which user action made it exit.

See that file for more information. The function that called view_loop() may choose to call view_loop()

again, or to destroy the pop-up window and continue.

error_if_input(int abort) /* complete.e */

remove_final_view() /* complete.e */

If the user is entering a response to some prompt and gives another command that also requires a

response, Epsilon aborts the command to prevent confusion. Such commands should call

error_if_input(), which will abort if necessary. The subroutine also removes a viewed buffer, as

described above, by calling remove_final_view() if necessary. If its abort parameter is nonzero, it will

attempt to abort the outer command as well, if aborting proves necessary.

10.2.6 Window Attributes

int get_wattrib(int win, int code)

set_wattrib(int win, int code, int val)

/* use these codes with get_wattrib() & set_wattrib() */

10.2. Display Primitives 447

#define BLEFT 0

#define BTOP 1

#define BRIGHT 2

#define BBOTTOM 3

#define PBORDERS 4

#define PHORIZBORDCOLOR 5

#define PVERTBORDCOLOR 6

#define PTEXTCOLOR 7

#define PTITLECOLOR 8

The get_wattrib() and set_wattrib() primitives let you examine and modify many of a window’s

attributes, such as its position, size, or color. The win parameter contains the handle or number of the

window to modify, and the code parameter specifies a particular attribute.

For the code parameter, you can specify one of BLEFT, BTOP, BRIGHT, or BBOTTOM, to examine or

change the window’s size or position. They refer to the screen coordinate of the corresponding edge. You

can use PBORDERS to specify a new border code (see the description of add_popup() above). Or you can

set one of the window’s colors: each window has a particular color class it uses for its normal text (outside

of any highlighted regions), its horizontal borders, its vertical borders, and its title text. Use the macros

PTEXTCOLOR, PHORIZBORDCOLOR, PVERTBORDCOLOR, and PTITLECOLOR, respectively, to refer to these. Set

them using a color class expression. (See page 106.) For example, the statement

set_wattrib(win, PTEXTCOLOR, color_class viewed_text);

makes the text in window win appear in the color the user selected for viewed text.

window char system_window;

window char invisible_window;

Setting the window-specific primitive variable system_window to a nonzero value designates the

current window as a system window. The user commands that switch windows will skip over system

windows. Setting the window-specific primitive variable invisible_window to a nonzero value makes a

window whose text Epsilon won’t display (although it will display the border, if the window has one).

Epsilon won’t modify the part of the screen that would ordinarily display the window’s text.

10.2.7 Buffer Text in Windows

to_buffer(char *buf) /* buffer.e */

to_buffer_num(int bnum) /* buffer.e */

window short window_bufnum;

switch_to_buffer(int bnum)

int give_prev_buf() /* buffer.e */

prev_forget_buf(int buf) /* buffer.e */

to_another_buffer(char *buf)

tiled_only() /* window.e */

int in_bufed() /* bufed.e */

quit_bufed() /* bufed.e */

The to_buffer() subroutine defined in buffer.e connects the current window to the named buffer,

while to_buffer_num() does the same, but takes a buffer number. Both work by setting the

448 Chapter 10. Primitives and EEL Subroutines

window_bufnum variable, first remembering the previous buffer displayed in the window so the user can

easily return to it. The window_bufnum variable stores the buffer number of the buffer displayed in the

current window.

Both of these functions check the file date of the new buffer and warn the user if the buffer’s file has

been modified on disk. The switch_to_buffer() subroutine skips this checking.

The give_prev_buf() subroutine retrieves the saved buffer number of the previous buffer displayed

in the current window. If the previous buffer has been deleted, or there is no previous buffer for this window,

it returns the number of another recently-used buffer. If it can’t find any suitable buffer, it returns 0. The

prev_forget_buf() subroutine says that the indicated buffer should be removed from the list of previous

buffers.

The to_another_buffer() subroutine makes sure that buf is not the current buffer. If it is, the

subroutine switches the current window to a different buffer. This subroutine is useful when you’re about to

delete a buffer.

Sometimes the user may issue a command that switches buffers, while in a bufed pop-up window, or

some other type of pop-up window. Issuing to_buffer() would switch the pop-up window to the new

buffer, rather than the underlying window. Such commands should call the tiled_only() subroutine

before switching buffers. This subroutine removes any bufed windows or other unwanted windows, and

returns to the original tiled window. It calls the quit_bufed() subroutine to remove bufed windows. If it

can’t remove some pop-up windows, it tries to abort the command that created them. The quit_bufed()

subroutine uses the in_bufed() subroutine to determine if the current window is a bufed window.

user window int window_start;

user window int window_end;

fix_window_start() /* window.e */

The window_start variable provides the buffer position of the first character displayed in the current

window. Epsilon’s redisplay sets this variable, but you can also set it manually to change what part of the

buffer appears in the window. When Epsilon updates the window after a command, it makes sure that point

is still somewhere on the screen, using the new value for window_start. If not, it alters window_start so

point is visible.

The window_end variable provides the buffer position of the last character displayed in the window.

Epsilon’s redisplay sets this variable. Setting it does nothing.

The fix_window_start() subroutine adjusts window_start, if necessary, so that it occurs at the

beginning of a line.

int get_window_pos(int pos, int *row, int *col)

int window_line_to_position(int row)

The get_window_pos() function takes a buffer position and finds the window row and column that

displays the character at that position. It puts the row and column in the locations that row and col point to.

It returns 0 if it could find the position in the window, or a code saying why it could not.

A return value of 1 means that the position you gave doesn’t appear in the window because it precedes

the first position displayed in the window. If the given position doesn’t appear in the window because it

follows the last position displayed in the window, the function returns 2. A return value of 3 means that the

position “appears” before the left edge of the screen (due to horizontal scrolling), and 4 means that the

position “appears” too far to the right. It doesn’t change the locations that row and col refer to when it

returns 1 or 2.

10.2. Display Primitives 449

The window_line_to_position() primitive takes the number of a row in the current window, and

returns the buffer position of the first character displayed on that row. It returns -1 if the row number

provided is negative or greater than the number of rows in the window.

user int line_in_window;

user int column_in_window;

The line_in_window and column_in_window primitives give you the position of point in the current

window, as set by the last refresh(). Both variables start counting from 0. If you switch windows, Epsilon

will not update these variables until the next refresh().

int window_extra_lines()

build_window()

window_to_fit(int max) /* window.e */

popup_near_window(int new, int old)

When buffer text doesn’t reach to the bottom of a window, Epsilon blanks the rest of the window. The

window_extra_lines() primitive gives the number of blank lines at the bottom of the window that don’t

correspond to any lines in the buffer.

Some of the functions that return information about the text displayed in a window only provide

information as of the last redisplay. Due to buffer changes, their information may now be outdated. The

build_window() primitive reconstructs the current window internally, updating Epsilon’s idea of which

lines of text go where in the window, how much will fit, and so forth. This primitive updates the value of

window_end. It may also modify the display_column and window_start variables if displaying the

window as they indicate doesn’t get to point. The build_window() function also updates the values

returned by the window_line_to_position(), get_window_pos(), and window_extra_lines()

functions.

Use the window_to_fit() subroutine to ensure that a pop-up window is no taller than it needs to be. It

sets the window’s height so that it’s just big enough to hold the buffer’s text, but never more than max lines

tall. The subroutine has no effect on windows that form part of a dialog.

The popup_near_window() subroutine tries to move a pop-up window on the screen so it’s near

another window. It also adjusts the height of the pop-up window based on its contents, by calling

window_to_fit(). The bufed command uses this to position its pop-up buffer list near the tiled window

from which you invoked it.

window_scroll(int lines)

The window_scroll() primitive scrolls the text of the current window up or down. It takes an

argument saying how many lines up to scroll the current window. With a negative argument, this primitive

scrolls the window down. (See page 453 for information on scrolling text left or right.)

10.2.8 Window Titles and Mode Lines

window_title(int win, int edge, int pos, char *title)

#define TITLECENTER (0)

#define TITLELEFT(offset) (1 + (offset))

#define TITLERIGHT(offset) (-(1 + (offset)))

make_title(char *result, char *title, int room)

450 Chapter 10. Primitives and EEL Subroutines

You can position a title on the top or bottom border of a window using the window_title() primitive.

(Also see the set_window_caption() primitive described on page 557.) It takes the window number in

win and the text to display in title. (It makes a copy of the text, so you don’t need to make sure it stays

around after your function returns.) The edge parameter must have the value of BTOP or BBOTTOM,

depending on whether you want the title displayed on the top or bottom border of the window.

Construct the pos parameter using one of the macros TITLELEFT(), TITLECENTER, or TITLERIGHT().

The TITLECENTER macro centers the title in the window. The other two take a number which says how

many characters away from the given border the title should appear. For example, TITLERIGHT(3) puts the

title three characters away from the right-hand edge of the window.

Epsilon interprets the percent character ‘%’ specially when it appears in the title of a window. Follow

the percent character with a character from the following list, and Epsilon will substitute the indicated value

for that sequence:

%c Epsilon substitutes the current column number, counting columns from 0.

%C Epsilon substitutes the current column number, counting columns from 1.

%d Epsilon substitutes the current display column, with a < before it, and a space after. However, if the

display column has a value of 0 (meaning horizontal scrolling is enabled, but the window has not been

scrolled), or -1 (meaning the window wraps long lines), Epsilon substitutes nothing.

%D Epsilon substitutes the current display column, but if the display column is -1, Epsilon substitutes

nothing.

%l Epsilon substitutes the current line number.

%m Epsilon substitutes the text “ More ”, but only if characters exist past the end of the window. If the

last character in the buffer appears in the window, Epsilon substitutes nothing.

%P Epsilon substitutes the percentage of point through the buffer, followed by a percent sign.

%p Epsilon substitutes the percentage of point through the buffer, followed by a percent sign. However, if

the bottom of the buffer appears in the window, Epsilon displays Bot instead. Epsilon displays Top if

the top of the buffer appears, and All if the entire buffer is visible.

%s Epsilon substitutes “* ” if the buffer’s modified flag has a nonzero value, otherwise nothing.

%S Epsilon substitutes “*” if the buffer’s modified flag has a nonzero value, otherwise nothing.

%h Epsilon substitutes the current hour in the range 1 to 12.

%H Epsilon substitutes the current hour in military time in the range 0 to 23.

%n Epsilon substitutes the current minute in the range 0 to 59.

%e Epsilon substitutes the current second in the range 0 to 59.

%a Epsilon substitutes “am” or “pm” as appropriate.

Note: For the current time, use a sequence like %2h:%02n %a for “3:45 pm” or %02H:%02n:%02e for

“15:45:21”.

%% Epsilon substitutes a literal “%” character.

%< Indicates that redisplay may omit text to the left, if all of the information will not fit.

%> Puts any following text as far to the right as possible.

10.2. Display Primitives 451

With any of the numeric sequences, you can include a printf-style field width specifier between the %

and the letter. You can use the same kinds of field width specifiers as C’s printf() function. In column 9,

for example, the sequence %4c expands to “ 9”, %04c expands to “0009”, and %-4c expands to “9 ”.

You can expand title text in the same way as displaying it would, using the make_title() primitive. It

takes the title to expand, a character array where it will put the resulting text, and a width in which the title

must fit. It returns the actual length of the expanded text.

prepare_windows() /* disp.e */

window char _window_flags;

#define FORCE_MODE_LINE 1

#define NO_MODE_LINE 2

#define WANT_MODE_LINE 4

build_mode() /* disp.e */

assemble_mode_line(char *line) /* disp.e */

set_mode(char *mode) /* disp.e */

buffer char *major_mode; /* EEL variable */

user char mode_format[60];

clean_mode(char *mode)

Whenever Epsilon thinks a window’s mode line or title may be out of date, it arranges to call the

prepare_windows() and build_mode() subroutines during the next redisplay. The

prepare_windows() subroutine arranges for the correct sort of borders on each window. This sometimes

depends on the presence of other windows. For example, tiled windows get a right-hand border only if

there’s another window to their right. This subroutine will be called before text is displayed.

By default, prepare_windows() puts a mode line on all tiled windows, but not on any pop-up

windows. You can set flags in the window-specific _window_flags variable to change this. Set

FORCE_MODE_LINE if you want to put a mode line on a pop-up window, or set NO_MODE_LINE to suppress a

tiled window’s mode line. The prepare_windows() subroutine interprets these flags, and alters the

WANT_MODE_LINE flag to tell build_mode() whether or not to put a mode line on the window.

The build_mode() subroutine calls the assemble_mode_line() subroutine to construct a mode line,

and then uses the window_title() primitive to install it.

The assemble_mode_line() subroutine calls the set_mode() subroutine to construct the part of the

mode line between square brackets (the name of the current major mode and a list of minor modes).

While many changes to the mode line require a knowledge of EEL, you can do some simple

customizations by setting the variable mode_format. Edit these variables with set-variable, using the

percent character sequences listed above. For example, if you wanted each mode line to start with a line and

column number, you could add the text “ Line %l Col %c ” to mode_format.

An EEL function can add text to the start of a particular buffer’s mode line by setting the buffer-specific

variable mode_extra. Call the set_mode_message() subroutine to do this. It takes a pointer to the new

text, or NULL to remove the current buffer’s extra text. Internet FTPs use this to display the percent of a file

that’s been received (and similar data).

The set_mode() subroutine gets the name of the major mode from the buffer-specific major_mode

variable, and adds the names of minor modes after it.

You can add new minor modes by defining a function with a name that starts with show_minor_mode_.

It must take one parameter, a character pointer. When called, it should copy the minor mode name to the

character pointer if the mode is in effect.

452 Chapter 10. Primitives and EEL Subroutines

Sometimes Epsilon constructs variable or function names that include the current mode’s name, to

permit a mode to define its own value for some function. For instance, saving a file looks for a variable

named modename-add-final-newline, where modename is the current mode’s name. Since the mode

name may contain characters that aren’t valid in a variable name, functions can call the clean_mode()

subroutine to get a version of the major mode with any invalid characters removed. Only (lowercased)

alphanumerics, _ and - (converted to _) will be copied to mode.

display_more_msg(int win)

The display_more_msg() subroutine makes the bottom border of the window win display a “More”

message when there are characters past the end of the window, by defining a window title that uses the %m

sequence.

10.2.9 Normal Buffer Display

Epsilon provides many primitives for altering the screen contents. This section describes those relating to

the automatic display of buffers that happens after each command, as described below.

refresh()

maybe_refresh()

The refresh() primitive does a standard screen refresh, showing the contents of all Epsilon windows.

The maybe_refresh() primitive calls refresh() only if there is no type-ahead. This is usually preferred

since it lets Epsilon catch up with the user’s typing more quickly. Epsilon calls the latter primitive after each

command executes.

user window char build_first;

user buffer char must_build_mode;

user char full_redraw;

user char all_must_build_mode;

Epsilon normally displays each window line by line, omitting lines that have not changed. When a

command has moved point out of the window, Epsilon must reposition the display point (the buffer position

at which to start displaying text) to return point to the window. However, Epsilon sometimes does not know

that repositioning is required until it has displayed the entire window. When it discovers that point is not in

the window, Epsilon moves the display point to a new position and immediately displays the window again.

Certain commands which would often cause this annoying behavior set the build_first variable to

prevent it.

When the build_first variable is set, the next redisplay constructs each window internally first,

checks that point is in the window, and only then displays it. The variable is then set back to zero. A

build_first redisplay is slower than a normal redisplay, but it never flashes an incorrect window.

Epsilon “precomputes” most of the text of each mode line, so it doesn’t have to figure out what to write

each time it updates the screen. Setting the must_build_mode variable to 1 warns Epsilon that any mode

lines for the current buffer must be rebuilt. The make_mode() subroutine in disp.e sets this to 1, and Epsilon

rebuilds the mode lines of all windows displaying this buffer.

Setting the all_must_build_mode variable to 1 is like setting must_build_mode to 1 for all buffers.

Setting the full_redraw variable rebuilds all mode lines, as well as any precomputed information

Epsilon may have on window borders, screen colors, and so forth.

10.2. Display Primitives 453

It is necessary to set full_redraw when two parameters affecting the display have been changed.

Make the full_redraw variable nonzero if the size of the tab character has changed, or if the display class

of any character has been changed via the _display_class array.

Each time the mode line changes, the make_mode() subroutine calls any function whose name starts

with do_when_make_mode_. Such functions receive no parameters.

screen_messed()

The screen_messed() primitive causes the next refresh() to completely redraw the entire screen.

user window int display_column;

The window-specific variable display_column determines how Epsilon displays long lines. If

negative, Epsilon displays buffer lines too big to fit on one screen line on multiple screen lines, with a \ or

graphic character (see the _display_characters variable described below) to indicate that the line has

been wrapped. If display_column is 0 or positive, Epsilon only displays the part of a line that fits on the

screen. Epsilon also skips over the initial display-column columns of each line when displayed.

Horizontal scrolling works by adjusting the display column.

int next_screen_line(int n)

int prev_screen_line(int n)

The next_screen_line() primitive assumes point is at the beginning of a screen line, and finds the

nth screen line following that one by counting columns. It returns the position of the start of that line.

The prev_screen_line() primitive is similar. It returns the start of the nth screen line before the one

point would be on. It does not assume that point is at the start of a screen line.

If Epsilon is scrolling long lines of text rather than wrapping them (because display_column is

greater than or equal to zero), these primitives go to the beginning of the appropriate line in the buffer, not

the display_column’th column. In this mode, next_screen_line(1) is essentially the same as

nl_forward(), and prev_screen_line(0) is like to_begin_line().

Screen Dimensions

short screen_cols;

short screen_lines;

The screen_cols and screen_lines primitives contain the number of columns and lines on

Epsilon’s main display (the OS window’s size, or the current terminal’s size, as appropriate). They are set

when Epsilon starts up, using values provided by the operating system (or, for the Windows version, by the

registry). Don’t set these variables directly. Use the resize_screen() primitive described below.

short want_cols;

short want_lines;

The want_cols and want_lines primitives contain the values the user specified through the -vc and

-vl switches, respectively, described on page 16. If these variables are 0, it means the user did not explicitly

specify the number of lines or columns to display.

454 Chapter 10. Primitives and EEL Subroutines

term_init() /* video.e */

term_cmd_line() /* video.e */

term_mode(int active) /* video.e */

Epsilon’s standard startup code calls the subroutine term_init() when you start Epsilon, and

term_cmd_line() when it wants to change Epsilon’s window size to match what the user specified on the

command line. (It changes sizes based on the command line after it restores any saved session.) The

term_mode() subroutine controls switching when you exit Epsilon or run a subprocess. Its argument is 1

when entering Epsilon again (when a shell() call returns, for example) and 0 when exiting.

resize_screen(int lines, int cols)

Use the resize_screen() primitive to tell Epsilon to display a different number of lines or columns.

It scales all the windows to the new screen dimensions, and then sets the screen_lines and screen_cols

variables to the new screen size.

Character Display

buffer char *_display_class;

user buffer short tab_size;

char *_echo_display_class;

Modifying the character array _display_class lets you alter the way Epsilon displays characters.

There is one position in the array for each of the 256 possible characters in a buffer. The code at each

position determines how Epsilon displays the character when it appears in a buffer. This code is a display

code.

Epsilon lets each character occupy one or more screen positions. For example, the Control-A character

is usually shown in two characters on the screen as “^A”. The number of columns the 〈Tab〉 character

occupies depends on the column it starts in. Epsilon uses the display codes 0 through 6 to produce the

various multi-character representations it is capable of, as described below.

Besides these multi-character display codes, Epsilon provides a way to have one character display as

another. If the display code of a character is not one of the special display codes 0 through 6, Epsilon

interprets the display code as a graphics character. This graphics character becomes the single-column

representation.

For example, if the display code for ‘A’ is ‘B’ (that is, if the value of _display_class[’A’] is the

character ‘B’), wherever an ‘A’ appears in the buffer, a ‘B’ will appear on the screen when it is displayed.

The character is still really an ‘A’, however: only searches for ‘A’ will find it, an ‘A’ will be written if you

save the file, and so forth. This facility is especially useful for supporting national character sets.

If a display code is from 0 to 6, it has a special meaning. By default, all characters have such a display

code. These numbers have been given names in the file codes.h, and we’ll use the names in this discussion

for clarity.

Epsilon displays a character with display code BNORMAL as the character itself. If character 65, the letter

’A’, has display code BNORMAL it is the same as if it had display code 65.

Epsilon displays a character with display code BTAB as a tab. The character is displayed as the number

of blanks necessary to reach the next tab stop. The buffer-specific primitive variable tab-size sets the

number of columns from one tab stop to the next. By default its value is eight.

A character with display code BNEWLINE goes to the start of the next line when displayed, as newline

does normally.

10.2. Display Primitives 455

Epsilon displays a character with display code BC as a control character. It is displayed as the ^

character, followed by the original character exclusive-or’ed with 64, and with the high bit stripped. BM and

BMC are similar, with the prefix being M- and M-^, respectively.

Finally, Epsilon displays a character with display code BHEX as a hexadecimal number in the form

‘xB7’. Specifically, the representation has the letter ’x’, then the two-character hexadecimal character code.

You can change many of the characters Epsilon uses for its representations of newlines, tabs, hex characters,

and so forth; see below.

By default, the tab character has code BTAB, the newline character has code BNEWLINE, and the other

control characters have code BC. Control characters with the eighth bit set have code BMC. All other

characters have code BNORMAL.

The variable _display_class is actually a buffer-specific pointer to the array of display codes.

Normally, all these pointers refer to the same array, contained in the variable _std_disp_class defined in

cmdline.e. You can create other arrays if you wish to have different buffers display characters in different

ways. Whenever you change the _display_class variable, build_first must be set to make the change

take effect, as described above.

When displaying text in the echo area, Epsilon uses the display class array pointed to by the

_echo_display_class variable. It can have the same values as _display_class.

char _display_characters[];

buffer char *buffer_display_characters;

It is possible to change the characters Epsilon uses to display certain parts of the screen such as the

border between windows. Epsilon gets such characters from the _display_characters array. This array

contains the line-drawing characters that form window borders, the characters Epsilon uses in some of the

display modes set by set-show-graphic, the characters it uses to construct the scroll bar, and the characters

Epsilon replaces for the graphical mouse cursor it normally uses in DOS. The set-display-characters

command may be used to set these characters.

If the buffer-specific variable buffer_display_characters is non-null in a buffer, Epsilon uses it in

place of the _display_characters variable whenever it displays that buffer. You can use this to provide a

special window border, scroll bar, or similar for a particular buffer. Epsilon’s change-show-spaces

command uses this variable, too.

int expand_display(char *to, char *from)

The expand_display() primitive expands characters to the multicharacter representations they would

have if displayed on the screen. It returns the length of the result.

Character Widths and Columns

int display_width(int ch, int col)

move_to_column(int col)

int column_to_pos(int col)

The number of characters that fit on each screen line depends on the display codes of the characters in

the line. Epsilon moves characters with multi-character representations as a unit to the next screen line when

they don’t fit at the end of the previous one (except in horizontal scrolling mode). Tab characters also vary in

width depending upon the column they start in. There are several primitives that count screen columns using

display class information.

456 Chapter 10. Primitives and EEL Subroutines

The display_width() primitive is the simplest. It returns the width a character ch would have if it

were at column col. The move_to_column() primitive moves to column col in the current line, or to the

end of the line if it does not reach to column col. The column_to_pos() subroutine accepts a column

number but doesn’t move point; instead it returns the buffer position of that column.

int horizontal(int pos)

int current_column()

int get_column(int pos) /* indent.e */

int get_indentation(int pos) /* indent.e */

int give_position_at_column(int p, int col)

to_column(int col) /* indent.e */

indent_to_column(int col) /* indent.e */

insert_to_column(int start, int end) /* indent.e */

indent_like_tab() /* indent.e */

The horizontal() primitive returns the number of columns from point to position pos. Point doesn’t

change. It must be before pos. The primitive returns -1 if there is a character of display code BNEWLINE

between point and pos. This primitive assumes that point is in column 0.

The current_column() primitive uses the horizontal() primitive to return the number of the

current column.

The get_column() subroutine returns the column number of a given buffer position. The

get_indentation() subroutine returns the indentation of the line containing position pos.

The give_position_at_column() subroutine returns the buffer position of the character at column

col on the line containing position p; the column may be -1 to retrieve the position of the end of p’s line.

The to_column() subroutine indents so that the character immediately after point winds up in column

col. It replaces any spaces and tabs before point with the new indentation. It doesn’t modify any characters

after point.

The indent_to_column() subroutine indents so that the next non-whitespace character on the line

winds up in column col. It replaces any spaces and tabs before or after point. The older

insert_to_column() function inserts spaces and tabs in a simpler way, and must be told what starting

column to assume. In most cases indent_to_column() is a better choice.

The indent_like_tab() subroutine indents like inserting a 〈Tab〉 character at point would. However,

it respects the indent-with-tabs variable and avoids using tabs when the variable is zero. It also converts

spaces and tabs immediately before point so that they match indent-with-tabs and use the minimum

number of characters.

force_to_column(int col) /* indent.e */

The force_to_column() subroutine tries to move to column col. If the line doesn’t reach to that

column, the function indents out to the column. If the column occurs inside a tab character, the function

converts the tab to spaces.

user window short cursor_to_column;

to_virtual_column(int col) /* basic.e */

int virtual_column() /* basic.e */

int virtual_mark_column() /* basic.e */

10.2. Display Primitives 457

The window-specific cursor_to_column variable lets you position the cursor in a part of a window

where there are no characters. It’s normally -1, and the cursor stays on the character after point. If it’s

non-negative in the current window, Epsilon puts the cursor at the specified column in the window instead.

Epsilon resets cursor_to_column to -1 whenever the buffer changes, or point moves from where it was

when you last set cursor_to_column. (Epsilon only checks these conditions when it redisplays the

window, so you can safely move point temporarily.)

Similarly, the window-specific mark_to_column variable lets you position the mark in a part of a

window where there are no characters. Epsilon uses this variable when it displays a region that runs to the

mark’s position, and swaps the variable with cursor_to_column when you exchange the point and mark.

It’s normally -1, so Epsilon highlights up to the actual buffer position of the mark. If it’s non-negative in the

current window, Epsilon highlights up to the specified column instead. Epsilon resets mark_to_column to

-1 just as described above for cursor_to_column.

The to_virtual_column() subroutine positions the cursor to column col on the current line. It tries

to simply move to the correct position in the buffer, but if no buffer character begins at that column, it uses

the cursor_to_column variable to get the cursor to the right place.

The virtual_column() subroutine provides the column the cursor would appear in: either the value

of the cursor_to_column variable, or (if it’s negative) the current column. Similarly, the

virtual_mark_column() subroutine provides the column for the mark, taking mark_to_column into

account.

tab_convert(int from, int to, int totabs)

hack_tabs(int offset)

int maybe_indent_rigidly(int rev)

int standard_tab_cmd(int (*func)(), int indent, int flags)

The tab_convert() subroutine converts tabs to spaces in the specified region when its parameter

totabs is zero. When totabs is nonzero, it converts spaces to tabs.

The hack_tabs() subroutine converts tabs to spaces in the offset columns following point. If

offset is negative, the function converts tabs in the columns preceding point.

Commands bound to 〈Tab〉 often call the maybe_indent_rigidly() subroutine. If a region’s been

highlighted, this subroutine indents it using the indent-rigidly command and then returns nonzero. Otherwise,

it returns zero. If its parameter rev is nonzero, the subroutine unindents; a command bound to Shift-〈Tab〉
often provides a nonzero rev, but for commands on 〈Tab〉 this is typically zero.

The standard_tab_cmd() subroutine packages a lot of standard functionality often found on the

〈Tab〉 key for a mode. A mode’s command for the 〈Tab〉 key can call it, passing it the mode’s indenter

function (see below).

If there’s a highlighted region, it calls maybe_indent_rigidly() and returns 1. Otherwise, if the

cursor is past the current line’s indentation, it indents to the next level, where the indent parameter supplies

the number of columns to indent for each level, returning 2. (Epsilon uses the tab-size if indent is zero

or negative.)

Next, if the user’s pressed 〈Tab〉 twice or more in a row, it indents one level more and returns 3;

otherwise it calls the indenting function and returns 4. But if the indenting function supplies no indentation

(placing the line at the left margin), there was no indentation on the line before, and the 1 bit in the flags

argument is provided, the function adds one level of indentation and returns 5.

buffer int (*indenter)(); /* EEL variable */

user buffer int auto_indent; /* EEL variable */

prev_indenter() /* indent.e */

458 Chapter 10. Primitives and EEL Subroutines

zeroed int indenter_action; // Bits for why we’re indenting.

#define IACT_AUTO_INDENT 1

#define IACT_AUTO_FILL 2

#define IACT_COMMENT 4

#define IACT_FILL_COMMENT 8

#define IACT_AUTO_FILL_COMMENT 16

#define IACT_REINDENT_PREV 32

The normal-character command provides a hook for automatic line indentation when it inserts the

newline character. If the buffer-specific variable auto-indent is nonzero, the normal-character command

will call the function pointed to by the variable indenter, a buffer-specific function pointer, after inserting

a newline character. By default, it calls the prev_indenter() subroutine, which indents to the same

indentation as the previous line.

Various other functions call a buffer’s indenter function (if nonzero) at certain times.

Whenever Epsilon calls a buffer’s indenter function, it sets the indenter_action variable to a value

that indicates why it’s indenting, so modes can vary indentation behavior based on context. The value

IACT_AUTO_INDENT indicates the user pressed 〈Enter〉 in a buffer with auto-indenting enabled, as above.

The value IACT_AUTO_FILL indicates Epsilon broke a long line due to auto-filling, and it’s now

indenting the new line. The commenting commands indent-for-comment and set-comment-column use the

value IACT_COMMENT when indenting comments.

The fill-comment command uses the value IACT_FILL_COMMENT when creating new lines for the

comment. (In some modes it doesn’t use the indenter when creating new lines.) Auto-filling of long

comment lines uses the value IACT_AUTO_FILL_COMMENT.

The value IACT_REINDENT_PREV indicates the user pressed 〈Enter〉, and a mode-specific setting caused

Epsilon to reindent the existing line. See the default-reindent-previous-line variable.

The possible values of indenter_action are arranged as bits, so a function can use a bitmask to select

particular sets of conditions.

10.2.10 Displaying Status Messages

int say(char *format, ...)

int sayput(char *format, ...)

The say() primitive displays text in the echo area. It takes a printf-style format string, and zero or more

other parameters, as described on page 461. The sayput() primitive is similar, but it positions the cursor at

the end of the string. Each returns the number of characters displayed.

int note(char *format, ...)

int noteput(char *format, ...)

int unseen_msgs()

int unseen_msgs_time()

wait_for_unseen_msgs()

drop_pending_says()

short expire_message;

When you use the say(), sayput(), or error() primitives (error()’s description appears on page

514) to display a message to the user, Epsilon ensures that it remains on the screen long enough for the user

10.2. Display Primitives 459

to see it (the see-delay variable controls just how long) by delaying future messages. Messages that must

remain on the screen for a certain length of time are called timed messages.

The note() and noteput() primitives work like say() and sayput(), respectively, but their

messages can be overwritten immediately. These untimed messages should be used for “status” messages

that don’t need to last (“95% done”, for example).

Epsilon copies the text of each timed message to the #messages# buffer. It doesn’t copy untimed

messages (but see the show_text() primitive below).

The unseen_msgs() primitive returns the number of unexpired timed messages. When the user presses

a key, and there are unseen messages, Epsilon immediately displays the most recent message waiting to be

displayed, and discards all pending timed messages.

The unseen_msgs_time() primitive returns the time remaining for the current timed message. It

returns 0 if there are no timed messages, or -1 if the current timed message has an infinite delay (and thus

won’t be replaced until the user presses a key).

The wait_for_unseen_msgs() subroutine delays until all timed messages have been displayed.

Epsilon calls it before exiting. If one of the messages has an infinite delay set, it displays that message for

several seconds and then returns regardless. Since only a key press can advance past a message with an

infinite delay, it also reads and discards keys while displaying such messages.

The drop_pending_says() primitive makes Epsilon discard any timed messages that have not yet

been displayed. It also makes the current message be untimed (as if it were generated by note(), not

say()), so that the next say(), note(), or similar will appear immediately. It returns 0 if there were no

timed messages, or 1 if there were (or the current message had not yet expired).

An EEL function sometimes needs to display some text in the echo area that is only valid until the user

performs some action. For instance, a command that displays the number of characters in the buffer might

wish to clear that count if the user inserts or deletes some characters. After displaying text with one of the

primitives above, an EEL function may set the expire_message variable to 1 to tell Epsilon to clear that

text on the next user key.

int show_text(int column, int time, char *fmt, ...)

The show_text() primitive is the most general command for displaying text in the echo area. Like the

other display primitives, it takes a printf-style format string, and returns the number of characters it

displayed.

When Epsilon displays text in the echo area, you can tell it to begin at a particular column, and Epsilon

will subdivide the echo area into two sections. You can then display different messages in each area

independently of one another. When it’s necessary to display a very long message, Epsilon will combine the

sections again and use the full display width. There are never more than two sections in the echo area.

In detail, the show_text() primitive tells Epsilon to begin displaying text in the echo area at the

specified column, where the leftmost column is column 0. Epsilon then clears the rest of that echo area

section, but doesn’t modify the other section.

Whenever you specify a column greater than zero in show_text(), Epsilon will subdivide the echo

area at that column. It will clear any text to the right of the newly-displayed text, but not any text to its left.

Epsilon will recombine the sections of the echo area under two conditions: whenever you write text

starting in column 0 that begins to overwrite the next section, and whenever you write the empty string "" at

column 0. When Epsilon recombines sections, it erases the entire echo area before writing the new text.

Specifying a column of -1 acts just like specifying column 0, making Epsilon display the text at the left

margin, but it also tells Epsilon to position the cursor right after the text.

460 Chapter 10. Primitives and EEL Subroutines

The time says how long in hundredths of a second Epsilon must display the message before moving on

and displaying the next message, if any. As with any timed message, when the user presses a key, Epsilon

immediately displays the last message waiting, skipping through any pending messages. A value of 0 for

time means the message doesn’t have to remain for any fixed length of time. A value of -1 means that

Epsilon may not go on to the next message until it receives a keystroke; such messages will never time out.

Most of the other echo area display primitives are equivalent to some form of show_text(), as shown

in the following table:

note("abc") show_text(0, 0, "abc")

say("abc") show_text(0, see_delay, "abc")

noteput("abc") show_text(-1, 0, "abc")

sayput("abc") show_text(-1, see_delay, "abc")

Just as Epsilon copies timed messages created with say() or sayput() to the #messages# buffer, the

text from a show_text() call will be copied if its time is nonzero. Epsilon treats a time of 1 (hundredth of

a second) the same as zero (it’s untimed), but still copies it to the #messages# buffer. A column of -2 has a

special meaning; Epsilon copies the resulting text to the #messages# buffer if time is nonzero, but doesn’t

display it at all.

delayed_say(int flags, int before, int after, char *fmt, ...)

The delayed_say() primitive tells Epsilon to display some text later. It’s intended for operations that

may take some time. EEL code may display a message provisionally before starting some potentially

lengthy operation, telling Epsilon to display it only after a certain amount of time has elapsed, and then

cancel the pending message when it finishes. The message will only appear if the operation actually took a

long time.

The before parameter says how long to wait, in hundredths of a second, before displaying the

message, which is built using the printf-style format string fmt and any following parameters. If the

resulting message is zero-length, it simply cancels any delayed say message that has not yet been displayed.

If the before time elapses and the message hasn’t been canceled, Epsilon displays it, ensuring it isn’t

overwritten by a following message for at least after hundredths of a second. Epsilon saves the message in

the #messages# buffer if after is nonzero. If flags is 1, Epsilon positions the cursor after the message;

otherwise it doesn’t.

int mention(char *format, ...)

user char mention_delay;

The mention() primitive acts like sayput(), but displays its string only after Epsilon has paused

waiting for user input for mention_delay tenths of a second. It doesn’t cause Epsilon to wait for input, it

just arranges things so that if Epsilon does wait for input and the required delay elapses, the message is

displayed and the wait continues. Writing to the echo area with say() or the like cancels any pending

mention(). By default, mention_delay is 0.

int muldiv(int a, int b, int c)

The muldiv() primitive takes its arguments and returns the value a ∗ b/c, performing this computation

using 64-bit arithmetic. It’s useful in such tasks as showing “percentage complete” while operating on a

large buffer. Simply writing point * 100 / size() in EEL would use 32-bit arithmetic, as EEL always

does, and on large buffers (over about 20 megabytes) the result would be wrong.

10.2. Display Primitives 461

10.2.11 Printf-style Format Strings

Primitives like say() along with several others take a particular pattern of arguments. The first argument is

required. It is a character pointer called the format string. The contents of the format string determine what

other arguments are necessary.

Characters in the format string are copied to the echo area except where a percent character ‘%’ appears.

The percent begins a sequence which interpolates the value of an additional argument into the text that will

appear in the echo area. The sequence has the following pattern, in which square brackets [] enclose

optional items:

% [’] [-] [number] [. number] character

In this pattern number may be either a string of digits or the character ‘*’. If the latter, the next

argument provided to the primitive must be an int, and its value is used in place of the digits.

The meaning of the sequence depends on the final character:

c The next argument must be an int. (As explained previously, a character argument is changed to an int

when a function is called, so it’s fine here too.) The character with that ASCII code is inserted in the

displayed text. For example, if the argument is 65 or ’A’, the letter A appears, since the code for A is

65.

d The next argument must be an int. A sequence of characters for the decimal representation of that number

is inserted in the displayed text. For example, if the argument is 65 the characters ‘6’ and ‘5’ are

produced. With the ' modifier, values of more than four digits are shown with commas, as in

12,345,678.

x The next argument must be an int. A sequence of characters for the hexadecimal (base 16) representation

of that number is inserted in the displayed text. For example, if the argument is 65 the characters ‘4’

and ‘1’ are produced (since the hexadecimal number 0x41 is equal to 65 in base 10). No minus sign

appears with this representation.

o The next argument must be an int. A sequence of characters for the octal representation of that number is

inserted in the displayed text. For example, if the argument is 65 the three characters “101” are

produced (since the octal number 101 is equal to 65 in base 10). No minus sign appears with this

representation.

s The next argument, which must be a string, is copied to the displayed text.

q The next argument, which must be a string, is copied to the displayed text, but quoted for inclusion in a

regular expression. In other words, any characters from the original string that have a special meaning

in regular expressions are copied with a percent character (‘%’) before them. See page 63 for

information on regular expressions.

r The next argument (which must be a string containing a file name in absolute form) is copied to the

displayed text, after being converted to relative form. Epsilon calls the relative() primitive,

described on page 490, to do this.

f The next argument must be a string, typically the name of a file. This sequence is just like %s except when

used in a primitive that displays text in the echo area, such as say(), and the entire text to be

displayed is too wide to fit in the available room. In that case, Epsilon calls the

abbreviate_file_name() subroutine defined in disp.e to abbreviate the file name so the entire

message fits in the available width. If the displayed message is also recorded in the #messages#

buffer, where no width restriction applies, the unabbreviated form of the message will be used.

462 Chapter 10. Primitives and EEL Subroutines

k The next argument must be a number. Epsilon interprets it as a key code or Unicode character code, and

interpolates the name of that key or character. If a number starting with zero appears after the %

character, Epsilon uses the short form of the key name, if any. See the key_value() primitive to

convert in the opposite direction, converting text (in the short form only) back to a key’s numeric code.

p The next argument must be a number. Epsilon interprets it as a color class, and any following text appears

in that color. This only works on those primitives that insert text into a buffer; the numeric argument is

ignored in a sprintf() or say() or similar.

e The next argument must be a number. Epsilon interprets it as an Epsilon error code, one that Epsilon

might store in the errno variable or return directly from certain primitives, and interpolates text

describing the error.

The first number, if present, is the width of the field the argument will be printed in. At least that many

characters will be produced, and more if the argument will not fit in the given width. If no number is

present, exactly as many characters as are required will be used.

The extra space will normally be put before the characters generated from the argument. If a minus sign

is present before the first number, however, the space will be put at the end instead.

If the first number begins with the digit 0, the extra space will be filled with zeros instead of spaces. A

minus sign before the first number is ignored in this case.

The second number, if present, is the maximum number of characters from the string that will be

displayed. For example, each of these lines displays the text, “Just an example”:

say("Just %.2s example", "another");

say("Just %.*s example", 7-5, "another");

It may be tempting to substitute a string variable for the first parameter of say(). For example, when

writing a function that displays its argument msg and pauses, it may seem natural to write say(msg);. This

will work fine unless msg contains a ‘%’ character. In that case, you will probably get an error message. Use

say("%s", msg); instead.

user char in_echo_area;

The in_echo_area variable controls whether the cursor is positioned at point in the buffer, or in the

echo area at the bottom of the screen. The sayput() primitive sets this variable, say() resets it, and it is

reset after each command.

10.2.12 Other Display Primitives

term_write(int col, int row, char *str, int count,

int colorclass, int clear)

term_write_attr(int col, int row, int chartowrite,

int attrtowrite)

term_clear()

term_position(int col, int row)

The following primitives provide low-level screen control. The term_clear() primitive clears the

screen. The term_position() primitive positions the cursor to the indicated row and column. The

10.2. Display Primitives 463

term_write() primitive puts characters directly on the screen. It puts count characters from str on the

screen at the row and column in the specified colorclass. If clear is nonzero, it clears the rest of the

line. The term_write_attr() primitive writes a single character at the specified location on the screen.

Unlike term_write(), which takes a color class, this primitive takes a raw foreground/background color

attribute pair. This primitive does nothing in Epsilon for Windows or under the X11 windowing system. For

all these primitives, row and col start at 0, and the coordinate 0,0 refers to the upper left corner of the

screen. If a keyboard macro is running, the term_ primitives are ignored.

fix_cursor() /* EEL subr. */

user int normal_cursor;

user int overwrite_cursor;

user int virtual_insert_cursor;

user int virtual_overwrite_cursor;

#define CURSOR_SHAPE(top, bot) ((top) * 1000 + (bot))

#define GUI_CURSOR_SHAPE(height, width, offset) \

((offset * 1000 + (height)) * 1000 + (width))

int cursor_shape;

During screen refresh, Epsilon calls the EEL subroutine fix_cursor() to set the shape of the cursor.

The subroutine chooses one of four variables depending upon the current modes, and copies its value into

the cursor_shape variable, which holds the current cursor shape code. The Windows and X11 versions set

the gui_cursor_shape variable in a similar way, from a different set of four variables. All these variables

use values constructed by the GUI_CURSOR_SHAPE() or CURSOR_SHAPE() macros. See page 105 for details

on these variables.

windows_set_font(char *title, int fnt_code)

The windows_set_font() primitive displays a Windows font selection dialog, allowing the user to

pick a different font. It takes two parameters. Title specifies the title of the dialog box to display. The

fnt_code says whether to set Epsilon’s main font (FNT_SCREEN), the font for printing (FNT_PRINTER), or

the font for Epsilon’s dialogs (FNT_DIALOG). It’s only available in the Windows GUI version of Epsilon. See

the has_feature variable. The Unix version of Epsilon runs a separate program for its font dialog.

int using_oem_font(int screen)

char using_new_font;

The using_oem_font() primitive returns a nonzero value if the specified screen’s font uses the OEM

character set, rather than the ANSI/Windows character set. It takes a screen number. This primitive always

returns 0 under Unix. The primitive variable using_new_font will be nonzero whenever some screen’s

font has been changed since the end of the last screen refresh, or when a new screen has been created, for

example by displaying a dialog.

10.2.13 Highlighted Regions

Epsilon can display portions of a buffer in a different color than the rest of the buffer. We call each such

portion a region. The most familiar region is the one between point and mark. Epsilon defines this region

automatically each time you create a new buffer. (Also see the description of character coloring on page

467.)

Epsilon can display a region in several ways. The most common method corresponds to the one you see

when you set the mark (by typing Ctrl-@) and then move around: Epsilon highlights each of the characters

464 Chapter 10. Primitives and EEL Subroutines

between point and mark. If you use the mark-rectangle command on Ctrl-X # to define a rectangular region,

the highlighting appears on all columns between point and mark, on all lines between point and mark. The

pop-up windows of the completion facility illustrate a third type of highlighting, where complete lines

appear highlighted. The header file codes.h defines these types of regions as (respectively) REGNORM,

REGRECT, and REGLINE. Epsilon won’t do any highlighting for a region that has type 0.

A fourth type of highlighting, REGINCL, is similar to REGNORM, but includes an additional character at

the end of the region. If a REGNORM region runs between position 10 and position 20 in the buffer, Epsilon

would highlight the 10 characters between the two positions. But if the region were a REGINCL region, it

would include 11 characters: the characters at positions 10 and 20, and all the characters between.

int add_region(spot from, spot to, int color,

int type, ?int handle)

remove_region(int handle)

int modify_region(int handle, int code, int val)

window char _highlight_control;

You can define new regions with add_region(). It takes a pair of spots, a color class expression such

as color_class highlight, a region display type (as described above), and, optionally, a numeric

“handle”. It returns a nonzero numeric handle which you can use to refer to the region later. You can

provide the spots in either order, and you may give the same spot twice (for example, in conjunction with

REGLINE, to always highlight a single line). See page 106 for basic information on color classes, and page

400 for details on the syntax of color class expressions).

When you omit the handle parameter to add_region() (or provide a handle of zero) add_region()

assigns an unused handle to the new region. You can also provide the handle of an existing region, and

add_region() will assign the same handle to the new region. Any changes you make to one region by

using modify_region() will now apply to both, and a single remove_region() call will remove both.

You can link any number of regions in the same buffer in this way. The special handle value 1 refers to the

region between point and mark that Epsilon creates automatically.

The remove_region() primitive takes a region handle, and deletes all regions with that handle. The

handle may belong to a region in another buffer. Epsilon signals an error if the handle doesn’t refer to any

region.

The modify_region() primitive retrieves or sets some of the attributes of one or more regions. It

takes a region handle, a modify code (one of the MR... codes below), and a new value. If you provide a

“new value” that’s out of range (such as -2, out of range for all modify codes), Epsilon will not change that

attribute of the region, but will simply return its value. If you provide a valid new value, Epsilon will set that

attribute of the region, and will return its previous value.

When several regions share the same handle, it’s possible they will have different attribute settings. In

this case, which region’s attribute Epsilon returns is undefined. If you specify a new value for an attribute, it

will apply to all regions with that handle.

The modify code MRCOLOR may be used to get or change a region’s color class. The modify code

MRTYPE may be used to get or change a region’s display type, such as REGRECT. The codes MRSTART and

MREND may be used to set the two spots of a region; however, Epsilon will not return the spot identifier for a

region, but rather its current buffer position.

You can force a region’s starting and ending positions to specific columns using the modify codes

MRSTARTCOL and MRENDCOL. For example, if a region runs from point to mark, and you set its MRSTARTCOL

to 3, the region will start at column 3 of whatever line point is on. A column setting of -1 here makes

Epsilon use the actual column value of the spot; no column will be forced.

You can set up a region to be “controlled” by any numeric global variable. Epsilon will display the

region only if the variable is nonzero. This is especially useful because the variable may be window-specific.

10.2. Display Primitives 465

Since regions are associated with buffers, this is needed so that a buffer displayed in two windows can have

a region that appears in only one of them.

The standard region between point and mark is controlled by the window-specific character variable

_highlight_control. By default, other regions are not controlled by any variable. The modify code

MRCONTROL may be used with modify_region() to associate a controlling variable with a region. Provide

the global variable’s name table index (obtainable through find_index()) as the value to set.

A region may be given an auto-delete property using the MRAUTODEL macro. Pass a value of 1 to enable

auto-deleting, 0 to disable it. When you delete an auto-deleting region, it automatically deletes the two spots

assigned to it. By default, no region is auto-deleting. The spots used for an auto-deleting region should not

be shared with other regions, or system spots like point_spot or mark_spot.

set_region_type() /* disp.e */

int region_type() /* disp.e */

highlight_on() /* disp.e */

highlight_off() /* disp.e */

int is_highlight_on() /* disp.e */

Several subroutines let you conveniently control highlighting of the standard region between point and

mark. To set the type of the region, call the subroutine set_region_type() with the region type code, one

of REGNORM, REGRECT, REGLINE, or REGINCL. This doesn’t automatically turn on highlighting. Call

highlight_on() to turn on highlighting, or highlight_off() to turn it off.

The region_type() subroutine returns the type of the current region, whether or not it’s currently

highlighted. The is_highlight_on() subroutine returns the type of the current region, but only if it’s

highlighted. It returns 0 if highlighting is off.

There are several subroutines that help you write functions that work with different types of regions. If

you’ve written a function that operates on the text of a normal Epsilon region, add the following lines at the

beginning of your function to make it work with inclusive regions and line regions as well:

save_spot point, mark;

fix_region();

When the user has highlighted an inclusive or line region, the fix_region() subroutine will reposition

point and mark to form a normal Epsilon region with the same characters. (For example, in the case of a

line region, Epsilon moves point to the beginning of the line.) The function also swaps point and mark so

that point comes first (or equals mark, if the region happens to be empty). This is often convenient.

This procedure assumes your function doesn’t plan to modify point or mark, just the characters

between them, and it makes sure that point and mark remain in the same place. If your function needs to

reposition the point or mark, try omitting the save_spot line. Your function will be responsible for

determining where the point and mark wind up.

A function needs to do more work to operate on rectangular regions. If it’s built to operate on all the

characters in a region, without regard to rectangles or columns, the simplest approach may be to extract the

rectangle into a temporary buffer, modify it there, and then replace the rectangle in the original buffer.

Several Epsilon subroutines help you do this. For a concrete example, let’s look at the function

fill_rectangle(), defined in format.e. The fill-region command calls this function when the current

region is rectangular.

// Fill paragraphs in rectangle between point and mark

// to marg columns (relative to rectangle’s width if <=0).

466 Chapter 10. Primitives and EEL Subroutines

fill_rectangle(marg)

{

int width, orig = bufnum, b = tmp_buf();

width = extract_rectangle(b, 0);

save_var bufnum = b;

mark = 0;

margin_right = marg + (marg <= 0 ? width : 0);

do_fill_region();

xfer_rectangle(orig, width, 1);

buf_delete(b);

}

The function begins by allocating a temporary buffer using tmp_buf(). Then it calls the

extract_rectangle() subroutine to copy the rectangle into the temporary buffer. This function returns

the width of the rectangle it copied. The call from fill_rectangle() passes the destination buffer number

as the first parameter. Then fill_rectangle() switches to the temporary buffer and reformats the text.

Finally, the subroutine copies the text back into its rectangle by calling xfer_rectangle() and deletes the

temporary buffer. If the operation you want to perform on the text in the rectangle depends on any

buffer-specific variables, be sure to copy them to the temporary buffer.

Now let’s look at the two rectangle-manipulating subroutines fill_rectangle() calls in more detail.

extract_rectangle(int copybuf, int remove)

The extract_rectangle() subroutine operates on the region between point and mark in the current

buffer. It treats the region as a rectangle, whether or not region_type() returns REGRECT. It can perform

several different actions, depending upon its parameters. If copybuf is nonzero, the subroutine inserts a

copy of the rectangle into the buffer with that buffer number. The buffer must already exist.

If remove is 1, the subroutine deletes the characters inside the rectangle. If remove is 2, the subroutine

replaces the characters with spaces. If remove is 0, the subroutine doesn’t change the original rectangle.

The subroutine always leaves point at the upper left corner of the rectangle and mark at the lower right.

It return the width of the rectangle.

xfer_rectangle(int dest, int width, int overwrite)

The xfer_rectangle() subroutine inserts the current buffer as a rectangle of the given width into

buffer number dest, starting at dest’s current point. If overwrite is nonzero, the subroutine copies on top

of any existing columns. Otherwise it inserts new columns. In the destination buffer, it leaves point at the

top left corner of the new rectangle, and mark at the bottom right. The point remains at the same position in

the original buffer.

rectangle_standardize()

Functions that manipulate rectangles can sometimes use the rectangle_standardize() subroutine

to simplify their logic. In a rectangular region, point may be at any one of the four corners of the rectangle.

This subroutine moves point and mark so they indicate the same region, but with point at the lower right and

mark at the upper left. It’s like the rectangular region equivalent of the fix_region() subroutine.

do_shift_selects()

10.2. Display Primitives 467

Commands bound to cursor keys typically select text when you hold down the shift key. They do this by

calling do_shift_selects() as they start. This routine looks at the current state of the shift key and

whether or not highlighting is already on, and turns highlighting on or off as needed, possibly setting point.

make_line_highlight() /* complete.e */

remove_line_highlight() /* complete.e */

The make_line_highlight() subroutine uses the add_region() primitive to create a region that

highlights the current line of the current buffer. When Epsilon puts up a menu of options, it uses this

function to keep the current line highlighted. The remove_line_highlight() subroutine gets rid of such

highlighting.

10.2.14 Character Coloring

You can set the color of individual characters using the set_character_color() primitive. At first

glance, this feature may seem similar to Epsilon’s mechanism for defining highlighted regions. Both let you

specify a range of characters and a color to display them with. But each has its own advantages.

Region highlighting can highlight the text in different ways: as a rectangle, expanded to entire lines, and

so forth, while character coloring has no similar options. You can define a highlighted region that moves

around with the point, the mark, or any other spot. Character coloring always remains with the characters.

But when there are many colored regions, using character coloring is much faster than creating a

corresponding set of highlighted regions. If you define more than a few dozen highlighted regions, Epsilon’s

screen refreshes will begin to slow down. Character coloring, on the other hand, is designed to be very fast,

even when there are thousands of colored areas. Character coloring is also easier to use for many tasks,

since it doesn’t require the programmer to allocate spots to delimit the ends of the colored region, or delete

them when the region is no longer needed.

One more difference is the way you remove the coloring. For highlighted regions, you can turn off the

coloring temporarily by calling modify_region(), or eliminate the region entirely by calling

remove_region(). To do either of these, you must supply the region’s handle, a value returned when the

region was first created. On the other hand, to remove character coloring, you can simply set the desired

range of characters to the special color -1. A program using character coloring doesn’t need to store a series

of handles to remove or modify the coloring.

Epsilon’s code coloring functions are built on top of the character coloring primitives described in this

section. See the next section for information on the higher-level functions that make code coloring work.

set_character_color(int pos1, int pos2, int color)

The set_character_color() primitive makes Epsilon display characters between pos1 and pos2

using the specified color class. Epsilon discards any previous color settings of characters in that range.

A color class of -1 means the text will be “uncolored”. To display uncolored text, Epsilon uses the

standard color class text. When a buffer is first created, every character is uncolored.

When you insert text in a buffer, it takes on the color of the character immediately after it, or in the case

of the last character in the buffer, the character immediately before it. Characters inserted in an empty buffer

are initially uncolored. Copying text from one buffer to another does not automatically transfer the color;

Epsilon treats the new characters the same as any other inserted text. You can use the buf_xfer_colors()

subroutine to copy text from one buffer to another and retain its coloring. See page 423.

Epsilon maintains the character colors set by this primitive independently of the highlighted regions

created by add_region(). The modify_region() primitive will never change what

468 Chapter 10. Primitives and EEL Subroutines

get_character_color() returns, and similarly the set_character_color() primitive never changes

the attributes of a region you create with add_region(). When Epsilon displays text, it combines

information from both sources to determine the final color of each character.

When displaying a buffer, Epsilon uses the following procedure when determining which color class to

use for a character:

• Make a list of all old-style highlighted regions that contain the character, and the color classes used

for each.

• Add the character’s color as set by set_character_color() to this list.

• Remove color classes of -1 from the list.

Next, Epsilon chooses a color class from the list:

• If the list of color classes is empty, use the text color class.

• Otherwise, if the list contains the highlight color class, use that.

• Otherwise, use the color class from the old-style highlighted region with the highest region number. If

there are no old-style highlighted regions in the list, the list must contain only one color class, so use

that.

• Finally, if we wound up selecting the text color class, and the text_color variable isn’t equal to

color_class text, use the color class in the text_color variable instead of the color_class

text.

Notice that when a region using the highlight color class overlaps another region, the highlight

color class takes precedence.

buf_set_character_color(int buf, int from, int to, int color)

The buf_set_character_color() subroutine is a convenience function. It simply runs

set_character_color() in the specified buffer buf, passing it the remaining parameters.

short get_character_color(int pos, ?int *startp, ?int *endp)

The get_character_color() primitive returns the color class for the character at the specified buffer

position, as set by set_character_color(), or -1 if the character is uncolored, and will be displayed

using the window’s default color class.

You can also use the primitive to determine the extent of a range of characters all in the same color. If

the optional pointer parameters startp and endp are non-null, Epsilon fills in the locations they point to

with buffer positions. These specify the largest region of the buffer containing characters the same color as

the one at pos, and including pos. For example, if the buffer contains a five-character word that has been

colored blue, the buffer is otherwise uncolored, and pos refers to the second character in the word, then

Epsilon will set *startp to pos - 1 and *endp to pos + 4.

set_tagged_region(char *tag, int from, int to, short val)

short get_tagged_region(char *tag, int pos, ?int *from, int *to)

10.2. Display Primitives 469

The character coloring primitives above are actually built from a more general facility that allows you to

associate a set of attributes with a buffer range.

Each set of attributes consists of a tag (a unique string like "my-tag") and, for each character in the

buffer, a number that represents the attribute. Each buffer has its own set of tags, and each tag has its own

list of attributes, one for each character. (Epsilon stores the numbers in a way that’s efficient when many

adjacent characters have the same number, but nothing prevents each character from having a different

attribute.)

The set_tagged_region() primitive sets the attribute of the characters in the range from to to, for

the specified tag.

The get_tagged_region() primitive gets the attribute of the character at position pos in the buffer. If

you provide pointers from and to, Epsilon will fill these in to indicate the largest range of characters

adjacent to pos that have the same attribute as pos. Characters whose attributes have never been set for a

given tag will have the attribute -1.

Epsilon’s character color primitives set_character_color() and get_character_color() use a

built-in tagged region with a tag name of "colors".

10.2.15 Code Coloring Internals

Epsilon’s code coloring routines use the character coloring primitives above to do code coloring for various

languages like C, TeX, and HTML. There are some general purpose code coloring functions that manage

code coloring and decide what sections of a buffer need to be colored. Then, for each language, there are

functions that know how to color text in that language.

The general purpose section maintains information on what parts of each buffer have already been

colored. It divides each buffer into sections that are already correctly colored, and sections that may not be

correctly colored. When the buffer changes, it moves its divisions so that the modified text is no longer

marked “correctly colored”. Whenever Epsilon displays part of a buffer, this part of code coloring recolors

sections of the buffer as needed, and marks them so they won’t be colored again unless the buffer changes.

Epsilon only displays the buffer after the appropriate section has been correctly colored. This part also

arranges to color additional sections of the buffer whenever Epsilon is idle, until the buffer has been

completely colored.

The other part of code coloring does the actual coloring of C, TeX, and HTML buffers. You can write

new EEL functions to tell Epsilon how to color other languages, and use the code coloring package’s

mechanisms for remembering which parts of the buffer have already been colored, and which need to be

recolored. This section describes how to do this. (Also see page 564.)

buffer int (*recolor_range)();

// how to color part of this buffer

buffer int (*recolor_from_here)();

// how to find a good starting pos

int color_c_range(int from, int to)

// how to color part of C buffer

int color_c_from_here(int safe)

// how to find starting pos in C buffer

buffer char coloring_flags;

#define COLOR_DO_COLORING 1

#define COLOR_IN_PROGRESS 2

#define COLOR_MINIMAL 4

#define COLOR_INVALIDATE_FORWARD 8

470 Chapter 10. Primitives and EEL Subroutines

#define COLOR_INVALIDATE_BACKWARD 16

#define COLOR_INVALIDATE_RESETS 32

#define COLOR_RETAIN_NARROWING 64

#define COLOR_IGNORE_INDENT 128

int must_color_through;

You must first write two functions and make the buffer-specific function pointers refer to them, in each

buffer you want to color. For C/C++/EEL buffers, the c-mode command takes care of setting the function

pointers. It also contains the lines

if (want_code_coloring)

when_setting_want_code_coloring();

to actually turn on code coloring for the buffer if necessary.

The first function, which must be stored in the buffer-specific recolor_range variable, does the actual

coloring of a part of the buffer. It takes two parameters from and to specifying the range of the buffer that

needs coloring. It colors at least the specified range, but it may go past to and color more of the buffer. It

returns the buffer position it reached, indicating that all characters between from and its return value are

now correctly colored. In C buffers, the recolor_range function is named color_c_range().

The recolor_range function may decide to mark some characters in the range “uncolored”, by calling

set_character_color() with a color class of -1. Or it may assign particular color classes to all parts of

the range to be colored. But either way, it should make sure all characters in the given range are correctly

colored. Typically, a function begins by setting all characters between from and to to a default color class,

then searching for elements which should be colored differently. Be sure that if you extend the range past

to, you color all the characters between to and your new stopping point.

Epsilon remembers which parts of the buffer require coloring by using a tagged region (see page 469)

named “needs-color”. A coloring routine may decide, while parsing a buffer, that some later or earlier

section of the buffer requires coloring; if so, it can set the needs-color attribute of that section to -1 to

indicate this, and Epsilon will recolor that section of the buffer the next time it’s needed. Or it can declare

that some other section of the buffer is already properly colored by setting that section’s attribute to 0. It

may also decide to examine the must_color_through variable, a buffer position marking the end of the

region that really requires coloring right now. (Ordinarily, Epsilon expands this region to include entire color

blocks.)

When the buffer’s modified, some of its coloring becomes invalid, and must be recomputed the next

time it’s needed. Normally Epsilon invalidates a few lines surrounding the changed section. Some language

modes tell Epsilon to automatically invalidate more of the buffer by setting flags in the buffer-specific

coloring_flags variable. (Other flags in this variable aren’t normally set by language modes; code

coloring uses them for bookkeeping purposes.)

COLOR_INVALIDATE_FORWARD indicates that after the user modifies a buffer, any syntax highlighting

information after the modified region should be invalidated. COLOR_INVALIDATE_BACKWARD indicates that

syntax highlighting information before the modified region should be invalidated.

COLOR_INVALIDATE_RESETS tells Epsilon that whenever it invalidates syntax highlighting in a region,

it should also set the color of all text in that region to the default of -1. COLOR_RETAIN_NARROWING

indicates that coloring should respect any narrowing in effect (instead of looking outside the narrowed area

to parse the buffer in its entirety). COLOR_IGNORE_INDENT says that a simple change of indentation

shouldn’t cause any recoloring. Languages with no column-related highlighting rules may set this for better

performance.

For many languages, starting to color at an arbitrary place in the buffer requires a lot of unnecessary

work. For example, the C language has comments that can span many lines. A coloring function must know

10.2. Display Primitives 471

whether it’s inside a comment before it can begin coloring. Similarly, a coloring function that began looking

from the third character in the C identifier id37 might decide that it had seen a numeric constant, and

incorrectly color the buffer.

To simplify this problem, the coloring routines ensure that coloring begins at a safe place. We call a

buffer position safe if the code coloring function can color the buffer beginning at that point, without

looking at any earlier characters in the buffer.

When Epsilon calls the function in recolor_range, the value of from is always safe. Epsilon expects

the function’s return value to be safe as well; it must be OK to continue coloring from that point. For C, this

means the returned value must not lie inside a comment, a keyword, or any other lexical unit. Moreover,

inside the colored region, any boundary between characters set to different color classes must be safe. If the

colored region contains a keyword, for example, Epsilon assumes it can begin recoloring from the start of

that keyword. (If this isn’t true for a particular language, its coloring function can examine the buffer itself

to determine where to begin coloring.)

When Epsilon needs to color more of the buffer, it generally starts from a known safe place: either a

value returned by the buffer’s recolor_range function, or a boundary between characters of different

colors. But when Epsilon first begins working on a part of the buffer that hasn’t been colored before, it must

determine a safe starting point. The second function you must provide, stored in the recolor_from_here

buffer-specific function pointer, picks a new starting point. In C buffers, the recolor_from_here function

is named color_c_from_here().

The buffer’s recolor_from_here function looks backward from point for a safe position and returns

it. This may involve a search back to the start of the buffer. If Epsilon knows of a safe position before point

in the buffer, it passes this as the parameter safe. (If not, Epsilon passes 0, which is always safe.) The

function should respect the value of the color-look-back variable to limit searching on slow machines.

Epsilon provides two standard recolor_from_here functions that coloring extensions can use. The

recolor_by_lines() subroutine is good for buffers where coloring is line-based, such as dired buffers. In

such buffers the coloring needed for a line doesn’t depend at all on the contents of previous lines. The

recolor_from_top() subroutine has just the opposite effect; it forces Epsilon to start from the beginning

of the buffer (or an already-colored place). This may be all that’s needed if a mode’s coloring function is

very simple and quick.

Epsilon runs the code coloring functions while it’s refreshing the screen, so running the EEL debugger

on code coloring functions is difficult, since the debugger itself needs to refresh the screen. The best way to

debug such functions is to test them out by calling them explicitly, using test-bed functions like these:

command debug_color_region()

{

fix_region();

set_character_color(point, mark, color_class default);

point = color_algol_range(point, mark);

}

command debug_from_here()

{

point = color_algol_from_here(point);

}

The first command above tries to recolor the current region, and moves past the region it actually

colored. It begins by marking the region with a distinctive color (using the default color class), to help catch

missing coloring. The second command helps you test your from_here function. It moves point backwards

to the nearest safe position. Once you’re satisfied that your new code-coloring functions work correctly, you

can then set the recolor_range and recolor_from_here variables to refer to them.

472 Chapter 10. Primitives and EEL Subroutines

buffer int (*when_displaying)();

recolor_partial_code(int from, int to)

char first_window_refresh;

add_buffer_when_displaying(int buf, int (*func)())

delete_buffer_when_displaying(int buf, int (*func)())

default_when_displaying(int from, int to)

drop_all_colored_regions()

drop_coloring(int buf)

Epsilon calls the EEL subroutine pointed to by the buffer-specific function pointer when_displaying

as it displays a window on the screen. It calls this subroutine once for each window, after determining which

part of the buffer will be displayed, but before putting text for that window on the screen.

Epsilon sets the first_window_refresh variable prior to calling the when_displaying subroutine

to indicate whether or not this is the first time a particular buffer has been displayed during a particular

screen refresh. When a buffer appears in more than one window, Epsilon sets this variable to 1 before calling

the when_displaying subroutine during the display of the first window, and sets it to zero before calling

that subroutine during the display of the remaining windows. Epsilon sets the variable to 1 if the buffer only

appears in one window. The value is valid only during a call to the buffer’s when_displaying subroutine.

In a buffer with code coloring turned on, the when_displaying variable points to a subroutine named

recolor_partial_code(). Epsilon passes two values to the subroutine that specify the range of the buffer

that was modified since the last time the buffer was displayed. The standard recolor_partial_code()

subroutine provided with Epsilon uses this information to discard any saved coloring data for the modified

region of the buffer in the data structures it maintains. It then calls the two language-specific subroutines

described at the beginning of this section as needed to color parts of the buffer.

You can tell Epsilon to run a function at display time by calling the

add_buffer_when_displaying() subroutine. It arranges for the specified function to be called after code

coloring has been done when displaying any window showing the specified buffer. The function will be

called with no parameters. The delete_buffer_when_displaying() removes the specified function

from that buffer’s list of functions to be called at display time.

The recolor_partial_code() subroutine calls the default_when_displaying() function, which

calls each such function set by add_buffer_when_displaying(). In most buffers without code coloring

turned on, the when_displaying variable points to the default_when_displaying() function directly.

Other functions assigned to when_displaying should call default_when_displaying() too.

The drop_all_colored_regions() subroutine discards coloring information collected for the

current buffer. The next time Epsilon needs to display the buffer, it will begin coloring the buffer again. The

drop_coloring() subroutine is similar, but lets you specify the buffer number. It also discards some data

structures, so it’s more suitable when the buffer is about to be deleted.

10.2.16 Colors

user int selected_color_scheme;

short _our_mono_scheme;

short _our_color_scheme;

short _our_gui_scheme;

short _our_unixconsole_scheme;

short *get_color_scheme_variable()

window short window_color_scheme;

buffer short buffer_color_scheme;

10.2. Display Primitives 473

Epsilon stores color choices in color scheme variables. A color scheme specifies the color combination

to use for each defined color class.

Epsilon’s standard color schemes are defined in the file stdcolor.e. See page 407 for the syntax of color

definitions. You can also create additional color schemes without loading an EEL file by using the

new_variable() primitive, providing NT_COLSCHEME as the second parameter. Epsilon stores color

schemes in its name table, just like variables and commands, so a color scheme may not have the same name

as a variable or other name table entry. (Color classes, on the other hand, have their own unique “name

space”.)

The selected_color_scheme primitive variable contains the name table index of the color scheme to

use. Setting it changes the current color scheme. Each time Epsilon starts up, it sets this variable from one of

four other variables: _our_gui_scheme under Epsilon for Windows or in Epsilon for Unix under X11,

_our_unixconsole_scheme if Epsilon for Unix is running in console mode and the

USE_DEFAULT_COLORS environment variable is set (so that Epsilon inherits the colors of its xterm),

_our_mono_scheme if Epsilon is running on a monochrome display, or _our_color_scheme otherwise.

When you use set-color to select a different color scheme, Epsilon sets one of these variables, as well as

selected_color_scheme. The get_color_scheme_variable() subroutine returns a pointer to one of

these variables, the one containing a color scheme index that’s appropriate for the current environment. By

default, these four variables refer to the color schemes standard-gui, xterm-color, standard-mono

and standard-color, respectively.

If the window-specific variable window_color_scheme is nonzero in a window, Epsilon uses its value

in place of the selected_color_scheme variable when displaying that window. Epsilon uses this when

displaying borderless windows, so that each window has an entirely different set of color class settings. Also

see the variable text_color.

Similarly, if the buffer-specific variable buffer_color_scheme is nonzero in a buffer, Epsilon uses its

value instead of either window_color_scheme or selected_color_scheme.

user char monochrome;

The monochrome variable is nonzero if Epsilon believes it is running on a monochrome display.

Epsilon tries to determine this automatically, but the -vmono and -vcolor flags override this. See page 16.

set_color_pair(int colorclass, int fg, int bg, ?int scheme)

int get_foreground_color(int colorclass, ?int raw)

int get_background_color(int colorclass, ?int raw)

The set_color_pair() primitive lets you set the colors to use for a particular color class within the

current color scheme (or, if the optional scheme argument is nonzero, in that scheme). The first parameter is

a color_class expression (see page 400); the next two parameters are 32-bit numbers that specify the

precise color to use. Use the MAKE_RGB() macro to construct suitable numbers. See page 407.

The get_foreground_color() and get_background_color() primitives let you retrieve the colors

specified for a given color class. Normally they return a specific foreground or background color, after

Epsilon has applied its rules for defaulting color specifications. (See page 407.) Specify a nonzero raw

parameter, and Epsilon will return the color class’s actual setting. It may include one of the bits

ETRANSPARENT, ECOLOR_COPY, or ECOLOR_UNKNOWN.

The ETRANSPARENT macro is a special code that may be used in place of a background color. It tells

Epsilon to substitute the background color of the "text" color class in the current color scheme. You can

also use it for a foreground color, and Epsilon will substitute the foreground color of the "text" color class.

The ECOLOR_UNKNOWN macro in a foreground color indicates there’s no color information in the current

scheme for the specified color class.

474 Chapter 10. Primitives and EEL Subroutines

The ECOLOR_COPY macro in a foreground color tells Epsilon that one color class is to borrow the

settings of another. The index of other color class replaces the color in the lower bits of the value; use the

COLOR_STRIP_ATTR() macro to extract it.

Regardless of whether the raw parameter is used, a retrieved foreground color may include any of the

font style bits EFONT_BOLD, EFONT_UNDERLINED, or EFONT_ITALIC.

When Epsilon looks up the foreground and background settings of a color class, it uses this algorithm.

First it checks if the foreground color contains the ECOLOR_UNKNOWN code. If so, it tries to retrieve first

a class-specific default, and then a scheme-specific default. First it looks for that color class in the

"color-defaults" color scheme. This scheme is where Epsilon records all color class specifications that

are declared outside any particular color scheme. If a particular color pair is specified as a default for that

class, Epsilon uses that. If the color class has no default, Epsilon switches to the color class named

"default" in the original color scheme and repeats the process.

Either the default setting for the color class or the original setting for the color class may use the

ECOLOR_COPY macro. If so, then Epsilon switches to the indicated color class and repeats the above process.

In the event that it detects a loop of color class cross-references or otherwise can’t resolve the colors, it picks

default colors.

Finally, if the resulting foreground or background colors use the ETRANSPARENT bit, Epsilon substitutes

the foreground or background color from the "text" color class.

int define_color_class(char *name, b32 fg, b32 bg)

The define_color_class() primitive creates a new color class. If name is the name of an existing

color class, it simply sets its colors to the specified foreground and background pair, like

set_color_pair(). Otherwise, it creates a new color class by that name, initialized to the specified colors.

If name is NULL or "", it creates an anonymous color class. The resulting color class always uses the

specified foreground and background colors, and the set-color command can’t be used to customize it.

int alter_color(int colorclass, int color)

int rgb_to_attr(int rgb)

int attr_to_rgb(int attr)

The alter_color() primitive is an older way to set colors. When the argument color is -1, Epsilon

simply returns the color value for the specified color class. Any other value makes the color class use that

color. Epsilon then returns the previous color for that color class. (In Epsilon for Windows or under the X11

windowing system, this function will return color codes, but ignores attempts to set colors. Use

set_color_pair() to do this.)

The colors themselves (the second parameter to alter_color()) are specified numerically. Each

number contains a foreground color, a background color, and an indication of whether blinking or

extra-bright characters are desired.

The alter_color() function uses 4-bit color attributes to represent colors. The foreground color is

stored in the low-order 4 bits of the 8-bit color attribute, and the background color is in the high-order 4 bits.

Epsilon uses a pair of 32-bit numbers to represent colors internally, so alter_color() converts between

the two representations as needed.

The functions rgb_to_attr() and attr_to_rgb() can be used to perform the same conversion. The

rgb_to_attr() function takes a 32-bit RGB value and finds the nearest 4-bit attribute, using Epsilon’s

simple internal rules, while attr_to_rgb() converts in the other direction.

int orig_screen_color()

10.3. File Primitives 475

In some environments, Epsilon records the original color attribute of the screen before writing text to it.

The orig_screen_color() primitive returns this color code. If the restore-color-on-exit variable is

nonzero, Epsilon sets the color class it uses after you exit (color_class after_exiting) to this color.

See page 106.

int number_of_color_classes()

char *name_color_class(int colclass)

The number_of_color_classes() primitive returns the number of defined color classes. The

name_color_class() primitive takes the numeric code of a color class (numbered from 0 to

number_of_color_classes() - 1) and gives the name. For example, if the expression color_class

mode_line has the value 3, then the expression name_color_class(3) gives the string "mode-line". It

returns NULL for anonymous color classes created by define_color_class().

Each window on the screen can use different color classes for its text, its borders, and its titles (if any).

When a normal, tiled window is created, Epsilon sets its color selections from the color classes named text,

horiz_border, vert_border, and mode_line. When Epsilon creates a pop-up window, it sets the

window’s color selections from the color classes text, popup_border, and popup_title. See page 106

for a description of the other predefined color classes.

user window int text_color;

The text_color primitive contains the color class of normal text in the current window. You can get

and set the other color classes for a window using the functions get_wattrib() and set_wattrib().

10.3 File Primitives

10.3.1 Reading Files

int file_read(char *file, int transl)

The file_read() primitive reads the named file into the current buffer, replacing the text that was

there. It returns an error code if an error occurred, or 0 if the read was successful. The transl parameter

specifies the line translation to be done on the file. The buffer’s translation-type variable will be set to

its value. If transl is FILETYPE_AUTO, Epsilon will examine the file as it’s read and set

translation-type to an appropriate translation type.

int new_file_read(char *name, int transl,

struct file_info *f_info,

int start, int max,

?int lowstart, int highstart)

The new_file_read() primitive reads a file like file_read() but provides more options. The

f_info parameter is a pointer to a structure, which Epsilon fills in with information on the file’s write date,

file type, and so forth. The structure has the same format as the check_file() primitive uses (see page

485). If the f_info parameter is null, Epsilon doesn’t get such information.

When Epsilon reads the file, it starts at offset start and reads at most max characters. You can use this

to read only part of a big file. If start or max are negative, they are (individually) ignored: Epsilon starts at

the beginning, or reads the whole file, respectively. The start parameter refers to the file before Epsilon

strips 〈Return〉’s, while max counts the characters after stripping.

476 Chapter 10. Primitives and EEL Subroutines

If either lowstart or highstart are nonzero, Epsilon combines them to make a 64-bit number and

uses that as the initial offset instead of start, so that portions of very large files may be read, even when the

whole file is too large for Epsilon.

int do_file_read(char *s, int transl) /* files.e */

buffer char _read_aborted;

int read_file(char *file, int transl) /* files.e */

int find_remote_file(char *file, int transl)

file_convert_read(int flags)

do_readonly_warning()

update_readonly_warning(struct file_info *p)

Instead of calling the above primitives directly, extensions typically call one of several subroutines, all

defined in files.e, that do things beyond simply reading in the file. Each takes the same two parameters as

file_read(), and returns either 0 or an error code.

The do_file_read() subroutine records the file’s date and time, so Epsilon can later warn the user

that a file’s been modified on disk, if necessary. If the user aborted reading the file, do_file_read() sets

the _read_aborted variable to 1; it uses the value 2 if an error occurred reading the file. Epsilon then

warns the user if he tries to save the partial file. This subroutine also handles reading URLs by calling the

find_remote_file() subroutine, and character set translations such as OEM translations (see page 481)

by calling file_convert_read().

The read_file() subroutine calls do_file_read(), then displays either an error message, if a read

error occurred, or the message “New file.” It also handles calling do_readonly_warning() when it detects

a read-only file, or update_readonly_warning() otherwise. (The latter can turn off a buffer’s read-only

attribute, if the file is no longer read-only.)

int find_in_other_buf(char *file, int transl) /* files.e */

call_mode(char *file) /* files.e */

The find_in_other_buf() subroutine makes up a unique buffer name for the file, based on its name,

and then calls read_file(). It then goes into the appropriate mode for the file, based on the file’s

extension, by calling the call_mode() subroutine. (See page 80.)

int find_it(char *fname, int transl) /* files.e */

int std_find_it(char *fname) /* files.e */

int ask_find_it(char *fname) /* files.e */

int get_default_translation_type(char *fname) /* files.e */

int look_file(char *fname) /* buffer.e */

The find_it() subroutine first looks in all existing buffers for the named file, just as the find-file

command would. If it finds the file, it simply switches to that buffer. (It also checks the copy of the file on

disk, and warns the user if it’s been modified.) If the file isn’t already in a buffer, it calls

find_in_other_buf(), and returns 0 or its error code. The find_it() subroutine uses the look_file()

subroutine to search through existing buffers for the file.

While find_it() requires you to pass the appropriate translation type, the std_find_it() and

ask_find_it() subroutines supply this themselves. The std_find_it() subroutine always uses the

default translation type for a file with the given name. The ask_find_it() subroutine usually does the

same, but if the calling command was invoked with a numeric prefix argument, it prompts the user for the

translation rules. The get_default_translation_type() subroutine returns the default translation type

for a given file name.

10.3. File Primitives 477

The look_file() subroutine, defined in buffer.e, returns 0 if no buffer has the file. Otherwise, it

returns 1 and switches to the buffer by setting bufnum.

int do_find(char *file, int transl) /* files.e */

Finally, the do_find() subroutine is at the top of this tree of file-reading functions. It checks to see if

its “file name” parameter is a directory. If it is (or if it’s a file pattern with wildcard characters), it calls

dired_one() to run dired on the pattern. If it’s a normal file, do_find() calls find_it().

int err_file_read(char *file, int transl) /* files.e */

Use the err_file_read() subroutine when you want to read a file that must exist, but you don’t want

all the extras that higher-level functions provide: checking file dates, choosing a buffer, setting up for

read-only files, and so forth. It calls file_read() to read the file into the current buffer, and displays an

error message if the file couldn’t be read for any reason. It returns the error code, or 0 if there were no errors.

short abort_file_io;

By default, primitives that read and write files respond to the user pressing the abort key by asking

whether they should abort the input/output operation. An EEL program can select a different behavior by

using save_var to set the primitive variable abort_file_io. The default setting, ABORT_ASK, asks the

user whether to abort the operation. If he says no, the operation continues. If he says yes, the primitive

returns an error code, EREADABORT for reading primitives or EWRITEABORT for writing primitives. The

setting ABORT_ERROR omits asking the user; it immediately returns an error code if the user aborts. The

setting ABORT_IGNORE tells Epsilon to ignore the abort key and continue. The setting ABORT_JUMP makes

pressing the abort key abort the current function by calling the check_abort() primitive, again without

prompting first. (See page 514.)

10.3.2 Writing Files

int file_write(char *file, int transl)

The file_write() primitive attempts to write the current buffer to the named file. It returns 0 if the

write was successful, or an error code if an error occurred. The transl parameter specifies the line

translation to be done while writing the file. See the description of translation-type below.

int new_file_write(char *name, int transl,

struct file_info *f_info,

int start, int max,

?int lowstart, int highstart)

#define FILE_IO_ATSTART -1

#define FILE_IO_NEWFILE -2

#define FILE_IO_TEMPFILE -3

char *get_tempfile_name()

The new_file_write() primitive writes a file, like file_write(), but provides more options. The

f_info parameter is a pointer to a structure, which Epsilon fills in with information on the file’s write date,

file type, and so forth, just after it finishes writing the file. The structure has the same format as the

478 Chapter 10. Primitives and EEL Subroutines

check_file() primitive uses (see page 485). If the f_info parameter is null, Epsilon doesn’t gather such

information.

Different values for the start parameter change Epsilon’s behavior. In the usual case, pass the value

FILE_IO_ATSTART. That makes Epsilon open or create the file normally and start writing at its beginning,

replacing its existing contents.

A start value of FILE_IO_NEWFILE makes the new_file_write() call fail if the file already exists.

You can set the file_write_newfile variable nonzero when calling the higher-level writing functions

described below to ensure that new_file_write() receives this value.

A start value of FILE_IO_TEMPFILE makes Epsilon ignore the specified file name and pick an

unused file name for a temporary file, in a directory designated for temporary files. The

get_tempfile_name() primitive returns a pointer to the most recent temporary file created in this way (in

a static buffer that will be reused for the next temporary file name).

With any of the above start codes, whatever Epsilon writes replaces the previous contents of the file.

If start is greater than or equal to zero, though, Epsilon only rewrites a section of the existing file, starting

at the offset specified by start, and the rest of the file’s data will not change.

If either lowstart or highstart are nonzero, Epsilon combines them to make a 64-bit number and

uses that as the value of start, so that portions of very large files may be written, even when the whole file

is too large for Epsilon.

If the max parameter is non-negative, Epsilon writes only the specified number of characters. (Epsilon

counts the characters before adding any 〈Return〉 characters or performing any encoding; the count is of

characters in the current buffer.) If max is negative, Epsilon writes the entire buffer to the file.

The file-writing primitives use the abort-file-io variable to decide what to do if the user presses the

abort key; see page 477.

int do_save_file(int backup, int checkdate,

int getdate) /* files.e */

The do_save_file() subroutine saves the current buffer like the save-file command, but lets you skip

some of the things save-file does. Set the backup parameter to 0 if you don’t want a backup file created,

even if want-backups is nonzero. Set checkdate to 0 if you don’t want Epsilon to check that the file on

disk is unchanged since it was read. Set getdate to 0 if you don’t want Epsilon to update its notion of the

file’s date, after the file has been written.

The function returns 0 if the write was successful, 1 if an error occurred, or 2 if the function asked the

user to confirm a questionable write, and the user decided not to write the file after all.

int ask_save_buffer()

int warn_existing_file(char *s)

A command can call the ask_save_buffer() subroutine before deleting a buffer with unsaved

changes. It asks the user if the buffer should be saved before it’s deleted, and returns non-zero if the user

asked that the buffer be saved. The caller is responsible for actually saving the file.

Before writing to a user-specified file, a command may call the warn_existing_file() subroutine.

This will check if the file already exists and warn the user that it will be overwritten. The subroutine returns

zero if the file didn’t exist, or if the user said to go ahead and overwrite it, or nonzero if the user said not to

overwrite it.

10.3. File Primitives 479

10.3.3 Line Translation

Epsilon normally deals with files with lines separated by the 〈Newline〉 character. Windows, DOS and OS/2,

however, generally separate one line from the next with a 〈Return〉 character followed by a 〈Newline〉
character. For this reason, Epsilon normally removes all 〈Return〉 characters from a file when it’s read from

disk, and places a 〈Return〉 character before each 〈Newline〉 character when a buffer is written to disk, in

these environments. But Epsilon has several other line translation methods:

The FILETYPE_BINARY translation type tells Epsilon not to modify the file at all when reading or

writing.

The FILETYPE_MSDOS translation type tells Epsilon to remove 〈Return〉 characters when reading a file,

and insert a 〈Return〉 character before each 〈Newline〉 when writing a file.

The FILETYPE_UNIX translation type tells Epsilon not to modify the file at all when reading or writing.

It’s similar to FILETYPE_BINARY (but Epsilon copies buffer text to the system clipboard in a different way).

The FILETYPE_MAC translation type tells Epsilon to convert 〈Return〉 characters to 〈Newline〉 characters

when reading a file, and to convert 〈Newline〉 characters to 〈Return〉 characters when writing a file.

The FILETYPE_AUTO translation type tells Epsilon to examine the contents of a file as it’s read, and

determine the proper translation type using a heuristic. Epsilon then reads the file using that translation type,

and sets translation-type to the new value. Normally this value is only used when reading a file, not

when writing one. If you try to write a file and specify a translation type of FILETYPE_AUTO, it will behave

the same as FILETYPE_MSDOS (except in Epsilon for Unix, where it’s the same as FILETYPE_UNIX.

user buffer int translation_type; /* EEL variable */

#define FORCED_TRANS (8)

#define MAKE_TRANSLATE(e, t, f) (((e) << 4) | ((t) & 7) \

| ((f) ? FORCED_TRANS : 0))

#define GET_ENCODING(t) ((t) >> 4)

#define GET_LINE_TRANSLATE(t) ((t) & 7)

#define SET_TRANSLATE(t, trans) (((t) & ~7) | ((trans) & 7))

#define SET_ENCODING(t, e) (((t) & 15) | ((e) << 4))

The buffer-specific variable translation-type includes the current buffer’s translation type as one of

the above codes, combined with an encoding number that specifies the current buffer’s encoding. Most

functions for reading or writing a file take such a value as a transl parameter.

You can combine one of the above translation codes with an encoding number using the

MAKE_TRANSLATE() macro. It takes a translation code t, an encoding code e, and a code f which, if

nonzero, indicates that the resulting translation value was explicitly specified by the user in some way, not

auto-detected.

Use the macros GET_ENCODING() and GET_LINE_TRANSLATE() to extract the encoding code or the

line translation code, respectively, from a translation type value.

Use the macros SET_ENCODING() and SET_TRANSLATE() to combine an existing translation type

value t with a new encoding code or line translation code, respectively.

user int default_translation_type;

user int new_buffer_translation_type;

int give_line_translate(char *fname)

int ask_line_translate()

get_fallback_translation_type()

buffer int fallback_translation_type;

480 Chapter 10. Primitives and EEL Subroutines

A user can set the default-translation-type variable to one of the above translation codes to force

Epsilon to use a specific translation when it reads an existing file. If this variable is set to its default value of

FILETYPE_AUTO, Epsilon examines the file to determine a translation method. Setting this variable to any

other value forces Epsilon to use that line translation method for all files. (The variable can specify only an

encoding, or only a line translation, or both.)

When Epsilon creates a new buffer, it sets the buffer’s translation-type variable to the value of the

new-buffer-translation-type variable. Epsilon does the same when you try to read a file that doesn’t

exist. You can set this variable if you want Epsilon to examine existing files to determine their translation

type, but create new files with a specific translation type. By default this variable is set to FILETYPE_AUTO,

so the type for new buffers becomes FILETYPE_UNIX in Epsilon for Unix, and FILETYPE_MSDOS elsewhere.

The give_line_translate() subroutine defined in files.e helps to select the desired translation

method and encoding. Many commands that read a user-specified file call it. If a numeric prefix argument

was not specified, it returns the default translation type, often the value of the

default-translation-type variable. (See that variable for details.) But if a numeric prefix argument

was specified, it prompts the user for the desired translation type and encoding.

The ask_line_translate() subroutine is similar, but doesn’t take a file name, and won’t use any

setting that might override the default-translation-type variable. New EEL code should use

give_line_translate() instead.

The get_fallback_translation_type() primitive returns the translation type code Epsilon would

assign when reading an empty file, or when writing a buffer whose translation type code was set to

FILETYPE_AUTO. It returns FILETYPE_UNIX under Unix and FILETYPE_MSDOS on other platforms, but may

be overridden for the current buffer by setting the buffer-specific fallback_translation_type variable.

10.3.4 Character Encoding Conversions

char *encoding_to_name(int enc)

int encoding_from_name(char *name)

When Epsilon reads or writes a file, it converts text between the Unicode character representation it

uses internally and one of various file encodings. Epsilon represents each possible encoding with a number.

These numbers may change from one version of Epsilon to the next, so if an encoding setting must be

recorded somehow, it should be recorded by name, not by number. Certain specific encodings will not

change their codes: the encoding “auto-detect” is always numbered 0, and the encoding “raw” is always

numbered 1.

The encoding_from_name() primitive returns the number of an encoding given its name. It returns

-1 pointer if the encoding name is unknown.

The encoding_to_name() primitive returns the name of an encoding given its number. It returns a

NULL pointer if the encoding number is unknown. Many encodings have more than one name, but this

primitive treats each name as a separate encoding, even if it’s an alias of another encoding.

int file_convert_write(char *file, int trans,

struct file_info *f_info)

int save_remote_file(char *fname, int trans,

struct file_info *finfo)

buffer char *(*file_io_converter)();

char *oem_file_converter(int func)

zeroed char *(*new_file_io_converter)();

zeroed buffer char file_write_newfile;

10.3. File Primitives 481

The do_save_file() subroutine uses the file_convert_write() subroutine to actually write the

file. Like new_file_write(), it takes a file name, a line translation code as described under

translation-type, and a structure which Epsilon will fill with information on the file’s write date, file

type, and so forth. See do_save_file() above for details.

Unlike primitives such as new_file_write(), the file_convert_write() subroutine knows how to

handle URL files by calling the save_remote_file() subroutine.

In addition to the built-in conversion codes described above, Epsilon also supports user-defined EEL

conversion routines. These are currently used only for DOS/OEM files read using the find-oem-file command

and similar. The file_convert_write() subroutine handles writing these. It looks for a buffer-specific

variable file_io_converter. This variable can be null, for no special translation, or it can contain a

function pointer. For OEM files, for example, it points to the subroutine oem_file_converter().

Any such subroutine will be called with a code indicating the desired action. The codes are defined in

eel.h. The code FILE_CONVERT_READ tells the subroutine to translate the text in the current buffer as

appropriate when reading a file. The code FILE_CONVERT_WRITE tells the subroutine to translate the buffer

as appropriate when writing a file.

Before actually performing a conversion, Epsilon will call the subroutine to ask if the conversion is safe

(reversible), by passing the FILE_CONVERT_ASK in addition to one of the above flags. A conversion is

reversible, and therefore safe, if the conversion followed by the opposite conversion (for instance, ANSI =>

OEM => ANSI) yields the original text. If the conversion isn’t safe, the subroutine should ask the user for

permission to proceed.

The converter should then return a null pointer to cancel the read or write operation, or any other value

to let it proceed. You can add the FILE_CONVERT_QUIET flag, and the converter won’t ask the user for

confirmation, merely return a value indicating whether the conversion would be safe.

Whenever the FILE_CONVERT_ASK flag isn’t present, the subroutine should return the name of its minor

mode—Epsilon will display this in the mode line. The OEM converter returns " OEM".

When creating a new buffer, file-reading subroutines initialize the file_io_converter variable by

copying the value of new_file_io_converter. Commands like find-oem-file temporarily set this variable

to effect reading a file with OEM translation.

The file_convert_write() subroutine performs one more function. It checks the variable

file_write_newfile. If this variable is nonzero, it arranges things so the attempt to write a file will fail

with an error code if the file already exists, by passing the FILE_IO_NEWFILE code to new_file_write().

int perform_unicode_conversion(int buf, int from, int to,

int flags, char *encoding)

The perform_unicode_conversion() primitive converts between 16-bit Unicode characters and

various 8-bit encodings such as UTF-8. It converts characters in the range from...to in the specified buffer

buf in place.

By default, the primitive converts from 16-bit Unicode characters to the named 8-bit encoding. The

CONV_TO_16 flag makes it convert in the opposite direction, from the specified 8-bit encoding to 16-bit

characters.

The primitive returns the code EBADENCODE if it doesn’t recognize the encoding name. It returns

ETOOBIG when converting from 8-bit characters if one of the characters is outside the range 0–255. It

returns 0 on success. The primitive moves point to the end of the buffer.

If the specified encoding has a defined signature (a byte order mark), and an entire buffer was

converted, not just part of one, Epsilon adds the signature when converting to the encoding, and removes the

signature, if there is one, when converting from the encoding.

482 Chapter 10. Primitives and EEL Subroutines

int buffer_flags(int buf)

Internally, Epsilon stores the text of a buffer with 8 bits for each character, unless it contains some

characters outside the range 0–255. In that case it uses 16 bits for each character. A buffer that once

contained such characters but no longer does may still be stored as 16 bits per character. Epsilon

transparently handles all needed translations between the two formats (for instance, when you copy text

from one buffer to another), but it’s occasionally useful to tell which format Epsilon is using.

The buffer_flags() primitive returns a bit mask. Check the bit represented by the BF_UNICODE

macro; if it’s present, the specified buffer buf is stored in 16-bit format internally. If buf is omitted or zero,

the primitive checks the current buffer.

10.3.5 More File Primitives

user buffer short modified;

int get_buf_modified(int buf)

set_buf_modified(int buf, int val)

int unsaved_buffers()

zeroed buffer char save_without_prompt;

int is_unsaved_buffer()

int buffer_unchanged()

char *get_file_read_kibitz()

Epsilon maintains a variable that tells whether the buffer was modified since it was last saved to a file.

The buffer-specific variable modified is set to 1 each time the current buffer is modified. It is set to 0 by the

file_read(), file_write(), new_file_read(), and new_file_write() primitives, if they complete

without error.

The get_buf_modified() and set_buf_modified() subroutines let you get or set the value of this

variable for some other buffer buf.

The unsaved_buffers() subroutine defined in files.e returns 1 if there are any modified buffers. It

doesn’t count empty buffers, or those with no associated file names. If an EEL program creates a buffer that

has an associated file name and is marked modified, but still doesn’t require saving, it can set the

buffer-specific variable discardable_buffer nonzero to indicate that the current buffer doesn’t require

any such warning. An EEL program can set the buffer-specific save_without_prompt variable nonzero

for a buffer to have it silently saved without prompting, whenever Epsilon checks for unsaved buffers.

The unsaved_buffers() subroutine calls the is_unsaved_buffer() subroutine to check on an

individual buffer. It tells if the current buffer shouldn’t be deleted, and checks for the discardable_buffer

variable as well as the buffer-not-saveable variable and other special kinds of buffers.

The buffer_unchanged() primitive returns a nonzero value if the current buffer has been modified

since the last call of the refresh() or maybe_refresh() primitives. It returns zero if the buffer has not

changed since that time. Epsilon calls maybe_refresh() to display the screen after each command.

The get_file_read_kibitz() primitive returns an explanatory message from the last time the

current buffer was read, indicating why Epsilon chose a particular line translation. See the

file-read-kibitz variable.

user buffer char *filename;

set_buffer_filename(char *file)

get_buffer_filename(char *fname)

10.3. File Primitives 483

The file reading and writing functions are normally used with the file name associated with each buffer,

which is stored in the buffer-specific filename variable. To set this variable, use the syntax filename =

new value;. Don’t use strcpy(), for example, to modify it.

The set_buffer_filename() subroutine defined in files.e sets the file name associated with the

current buffer. However, unlike simply setting the primitive variable filename to the desired value, this

function also modifies the current buffer’s name to match the new file name, takes care of making sure the

file name is in absolute form, and updates the buffer’s access “timestamp”. The bufed command uses this

timestamp to display buffers sorted by access time.

Some buffers such as dired buffers have an associated file name, but since they aren’t copies of files,

they don’t store it in the filename variable. Call the get_buffer_filename() subroutine to copy the

current buffer’s associated file name to fname, whether it’s stored in filename or not.

user int errno;

file_error(int code, char *file, char *unknown)

char no_popup_errors;

File primitives that fail often place an error code in the errno variable. The file_error() primitive

takes an error code and a file name and displays to the user a textual version of the error message. It also

takes a message to print if the error code is unknown.

Under MS-Windows, the file_error() primitive pops up a message box to report the error. If EEL

code sets the no_popup_errors variable nonzero, Epsilon will display such messages in the echo area

instead, as it does under other operating systems.

int do_insert_file(char *file, int transl) /* files.e */

int write_part(char *file, int transl, int start, int end)

The do_insert_file() subroutine inserts a file into the current buffer, like the insert-file command.

The write_part() subroutine writes only part of the current buffer to a file. Each displays an error

message if the file could not be read or written, and returns either an error code or 0.

locate_window(char *buf, char *file) /* buffer.e */

int buf_in_window(int bnum)

int is_buf_in_window(int bnum)

is_buffer_in_window(char *buf)

int count_windows_with_buf(int buf, int flags)

The locate_window() subroutine defined in window.e tries to display a given file or buffer by

changing windows. If either of the arguments is an empty string "" it will be ignored. If a buffer with the

specified name or a buffer displaying the specified file is shown in a window, the subroutine switches to that

window. Otherwise, it makes the current window show the indicated buffer, if any.

The buf_in_window() primitive finds a window that displays a given buffer, and returns its window

handle. It returns -1 if no window displays that buffer.

The is_buf_in_window() subroutine is similar, but excludes system windows. The

is_buffer_in_window() subroutine takes a buffer name instead of a buffer number. They both return the

handle of a non-system window displaying that buffer, or -1 if none.

The count_windows_with_buf() primitive returns the number of windows displaying the buffer. The

flag bit 1 makes it skip system windows.

484 Chapter 10. Primitives and EEL Subroutines

int delete_file(char *file)

The delete_file() primitive deletes a file. It returns 0 if the deletion succeeded, and -1 if it failed.

The errno variable has a code describing the error in the latter case.

int rename_file(char *oldfile, char *newfile)

The rename_file() primitive changes a file’s name. It returns zero if the file was successfully

renamed, and nonzero otherwise. The errno variable has a code describing the error in the latter case. You

can use this primitive to rename a file to a different directory, but you cannot use it to move a file to a

different disk.

int copyfile(char *oldfile, char *newfile)

The copyfile() primitive makes a copy of the file named oldfile, giving it the name newfile,

without reading the entire file into memory at once. The copy has the same time and date as the original.

The primitive returns zero if it succeeds. If it fails to copy the file, it returns a nonzero value and sets errno

to indicate the error.

int make_backup(char *file, char *backupname)

The make_backup() primitive does whatever is necessary to make a backup of a file. It takes the name

of the original file and the name of the desired backup file, and returns 0 if the backup was made. Otherwise,

it puts an error code in errno and returns a nonzero number. The primitive may simply rename the file, if

this can be accomplished without losing any special attributes or permissions the original file has. If

necessary, Epsilon copies the original file to its backup file.

int get_file_read_only(char *fname)

int set_file_read_only(char *fname, int val)

int set_file_opsys_attribute(char *fname, int attribute)

The get_file_read_only() primitive returns 1 if the file fname has been set read-only, 0 if it’s

writable, or -1 if the file’s read-only status can’t be determined (perhaps because the file doesn’t exist). The

set_file_read_only() primitive sets the file fname read-only (if val is nonzero) or writable (if val is

zero). It returns 0 if an error occurred, otherwise nonzero.

Under Unix, set_file_read_only() sets the file writable for the current user, group and others, as

modified by the current umask setting (as if you’d just created the file). Other permission bits aren’t

modified.

The set_file_opsys_attribute() primitive sets the raw attribute of a file. The precise meaning of

the attribute depends on the operating system: under Unix this sets the file’s permission bits, while in other

environments it can set such attributes as Hidden or System. The primitive returns nonzero if it succeeds.

See the opsysattr member of the structure set by check_file() to retrieve the raw attribute of a file.

int is_directory(char *str)

int is_pattern(char *str)

The is_directory() primitive takes a string, and asks the operating system if a directory by that

name exists. If so, is_directory() returns 1; otherwise, it returns 0. Also see the check_file()

primitive on page 485, and the remote_file_type() subroutine on page 492.

10.3. File Primitives 485

The is_pattern() primitive takes a string, and tells whether it forms a file pattern with wildcards that

may match several files. It returns 2 if its file name argument contains the characters * or ?. These

characters are always wildcard characters and never part of a legal file name. The function returns 1 if its file

name argument contains any of the following characters: left square-bracket, left curly-bracket, comma, or

semicolon. These characters can sometimes be part of a valid file name (depending upon the operating

system and file system in use), but are also used as file pattern characters in Epsilon. It returns 3 if the file

name contains both types of characters, and it returns 0 if the file name contains none of these characters.

user char file_pattern_wildcards;

#define FPAT_COMMA (1)

#define FPAT_SEMICOLON (2)

#define FPAT_SQUARE_BRACKET (4)

#define FPAT_CURLY_BRACE (8)

#define FPAT_ALL (FPAT_COMMA | FPAT_SEMICOLON \

| FPAT_SQUARE_BRACKET | FPAT_CURLY_BRACE)

You can control which of the characters []{}, ; Epsilon will consider a wildcard character in file patterns

by setting the file-pattern-wildcards variable. This affects the do_dired(), is_pattern(),

file_match(), dired_standardize(), check_file(), and is_directory() primitives. Each bit in

the variable enables a different set of characters.

FPAT_COMMA enables the , character, FPAT_SEMICOLON enables the ; character,

FPAT_SQUARE_BRACKET enables recognizing [] sequences, and FPAT_CURLY_BRACE lets Epsilon

recognize {} sequences. The default value enables all these characters.

10.3.6 File Properties

int check_file(char *file, ?struct file_info *f_info)

The check_file() primitive gets miscellaneous information on a file or subdirectory from the

operating system. It returns codes defined by macros in codes.h. If its argument file denotes a pattern that

may match multiple files, it returns CHECK_PATTERN. (Use the file_match() primitive described on page

550 to retrieve the matches.) If file names a directory or a file, it returns CHECK_DIR or CHECK_FILE,

respectively. If file names a device, it returns CHECK_DEVICE. If file has the form of a URL, not a

regular file, it returns CHECK_URL.

Under operating systems that support it, check_file() returns CHECK_PIPE for a named pipe and

CHECK_OTHER for an unrecognized special file. Otherwise, it returns 0.

If f_info has a non-null value, check_file() fills the structure it points to with information on the

file or directory, except when it returns 0 or CHECK_URL. The structure has the following format (defined in

eel.h):

struct file_info { /* used by check_file() */

int fsize; /* file size in bytes */

int fsize_high; /* file size can be over 32 bits */

int opsysattr; /* system dependent attribute */

int raw_file_date_high;

/* opsys-dependent date: high 32 bits */

int raw_file_date_low; /* low 32 bits */

short year;

short month; /* 1-12 */

486 Chapter 10. Primitives and EEL Subroutines

short day; /* 1-31 */

short hour; /* 0-23 */

short minute; /* 0-59 */

short second; /* 0-59 */

byte attr; /* epsilon standardized attribute */

byte check_type; /* file/directory/device code */

};

#define ATTR_READONLY 1

#define ATTR_DIRECTORY 2

The check_type member contains the same value as check_file()’s return code. The attr member

contains two flags: ATTR_READONLY if the file cannot be written, or ATTR_DIRECTORY if the operating

system says the file is actually a directory. The opsysattr member contains a raw attribute code from the

operating system: the meaning of bits here depends on the operating system, and Epsilon doesn’t interpret

them. (See the set_file_opsys_attribute() primitive to set raw attribute codes for a file.)

Epsilon also provides the timestamp of a file, in two formats. The interpreted format (year, month, etc.)

uses local time, and is intended to match the file timestamp shown in a directory listing. By contrast, in most

cases the raw timestamp (in seconds) won’t be affected by a change in time zones, the arrival of daylight

savings time, or similar things, as the interpreted format will be. Under some operating systems Epsilon

doesn’t provide a raw timestamp; these two fields will be zero in that case.

For the second parameter to check_file(), make sure you provide a pointer to a struct

file_info, not the actual structure itself. You can omit this parameter entirely if you only want the

function’s return value.

unique_filename_identifier(char *fname, int id[3])

unique_file_ids_match(int a[3], int b[3])

The unique_filename_identifier() primitive takes a file name and fills the id array with a set of

values that uniquely describe it. Two file names with the same array of values refer to the same file. (This

can happen under Unix due to symbolic or hard links.) If the primitive sets id[0] to zero, no unique

identifier was found; comparisons between two file names, one or both of which return id[0]==0, must

assume that the names might or might not refer to the same file. At this writing only Epsilon for Unix

supports this feature; in other versions, unique_filename_identifier() will always set id[0] to zero.

The unique_file_ids_match() subroutine compares two id arrays from

unique_filename_identifier(), returning nonzero if they indicate the two file names supplied to

unique_filename_identifier() refer to the same file, and zero if they do not, or Epsilon cannot

determine this.

int compare_dates(struct file_info *a,

struct file_info *b)

format_date(char *msg, int year, int month,

int day, int hour, int minute,

int second)

format_file_date(char *s, struct file_info *p)

The compare_dates() subroutine defined in filedate.e can be used to compare the dates in two

file_info structures. It returns 0 if they have the same date and time, nonzero if they differ.

The format_date() subroutine takes a date and converts it to text form, using the format specified by

the date-format variable. The format_file_date() subroutine takes a file_info structure and

converts it to text form by calling format_date().

10.3. File Primitives 487

int check_dates(int save) /* filedate.e */

The check_dates() subroutine defined in filedate.e compares a file’s time and date on disk with the

date saved when the file was last read or written. If the file on disk has a later date, it warns the user and asks

what to do. Its parameter should be nonzero if Epsilon was about to save the file, otherwise zero. The

function returns nonzero if the user said not to save the file.

The following example command uses check_file() to display the current file name and its date in

the echo area.

#include "eel.h"

command show_file_date()

{

struct file_info ts;

if (check_file(filename, &ts))

say("%s: %d/%d/%d", filename,

ts.month, ts.day, ts.year);

}

10.3.7 Low-level File Primitives

int lowopen(char *file, int mode)

The following primitives provide low-level access to files. The lowopen() primitive takes the name of

a file and a mode code. It returns a “file handle” for use with the other primitives. The mode may be 0 for

reading only, 1 for writing only, or 2 for both. If the file doesn’t exist already, the primitive will return an

error, unless you use mode 3. Mode 3 creates or empties the file first, and permits reading and writing.

int lowread(int handle, byte *buf, int count)

int lowwrite(int handle, byte *buf, int count)

The lowread() primitive tries to read the specified number of bytes, putting them in the byte array

buf, and returns the number of bytes it was able to read. A value of 0 indicates the file has ended. The

lowwrite() primitive tries to write the specified number of bytes from the byte array buf, and returns the

number it was able to write. A return value different from count may indicate that the disk is full. See page

522 for functions to help translate between bytes and characters.

int lowseek(int handle, int offset, int mode)

int lowclose(int handle)

The lowseek() primitive repositions within the file. If the mode is 0, it positions to the offsetth byte in

the file, if 1 to the offsetth byte from the previous position, and if 2 to the offsetth byte from the end. The

primitive returns the new offset within the file. Finally, the lowclose() primitive closes the file. All these

routines return -1 if an error occurred and set errno with its code.

int lowaccess(char *fname, int mode)

#define LOWACC_R 4 /* file is readable. */

#define LOWACC_W 2 /* file is writable. */

#define LOWACC_X 1 /* file is executable. */

488 Chapter 10. Primitives and EEL Subroutines

The lowaccess() primitive takes a file name and a code indicating whether the file’s read access, write

access or execute access should be tested, or zero if only the file’s existence need be checked. It returns 0 if

the file is accessible for the specified purpose (can be read, can be written, can be executed, exists), or -1 if

not.

10.3.8 Directories

getcd(char *dir)

int chdir(char *dir)

The getcd() primitive returns the current directory, placing it in the provided string. For Windows, the

format is C:\harold\work.

The chdir() primitive sets the current directory. (Under Windows, it sets the current drive as well if its

argument refers to a drive. For example, invoking chdir("A:\letters"); sets the current drive to A, then

sets the current directory for drive A to \letters. chdir("A:"); sets only the current drive.)

The result for this primitive is 0 if the attempt succeeded, and -1 if it failed. The errno variable is set

with a code showing the type of error in the latter case.

put_directory(char *dir) /* files.e subr. */

int get_buffer_directory(char *dir)

The put_directory() subroutine copies the directory part of the file name associated with the current

buffer into dir. Normally the directory name will end with a path separator character like ‘/’ or ‘\’. If the

current buffer has no associated file name, dir will be set to the empty string.

The get_buffer_directory() subroutine gets the default directory for the current buffer in dir. In

most cases this is the directory part of the buffer’s filename variable, but special buffers like dired buffers

have their own rules. The subroutine returns nonzero if the buffer had an associated directory. If the buffer

has no associated directory, the subroutine puts Epsilon’s current directory in dir and returns 0.

user char *process_current_directory;

Epsilon stores the concurrent process’s current directory in the process_current_directory

variable. Setting this variable switches the concurrent process to a different current directory. To set this

variable, use the syntax process_current_directory = new value;. Don’t use strcpy(), for

example, to modify it.

Under Windows 95/98/ME, Epsilon only transmits current directory information to or from the process

when the process stops for console input. Under later versions of Windows, Epsilon tries to detect the

process’s current directory from EEL code and set this variable. See the variable

use-process-current-directory for more details. Under Unix, Epsilon tries to retrieve the process’s

current directory whenever you access this variable, but setting it has no effect.

int mkdir(char *dir)

int rmdir(char *dir)

The mkdir() subroutine makes a new directory with the given name, and the rmdir() subroutine

removes an empty directory with the given name. Each primitive returns 0 on success and -1 on failure, and

sets errno in the latter case, as with chdir().

10.3. File Primitives 489

get_customization_directory(char *dir)

When Epsilon starts, it locates its customization directory, as described on page 13. The

get_customization_directory() primitive copies the name of this directory to dir. The directory

name always ends with a path separator character, either ‘\’ or ‘/’.

Dired Subroutines

int dired_one(char *files) /* dired.e */

int create_dired_listing(char *files)

int make_dired(char *files)

int do_remote_dired(char *files)

int do_dired(char *files)

int is_dired_buf() /* dired.e */

The dired_one() subroutine takes a file name pattern as its argument and acts just like the dired

command does, making a dired buffer, filling it and putting it in dired mode. It puts its pattern in a standard

form and chooses a suitable buffer name, then calls the create_dired_listing() subroutine. This

function prepares the buffer and displays suitable messages, then calls make_dired().

The make_dired() subroutine handles FTP dired requests by calling do_remote_dired(), and

passes local dired requests to the do_dired() primitive to fill the buffer with directory information.

Each of these routines takes a file name with wildcard characters such as * and ?, and inserts in the

current buffer exactly what the dired command does (see page 130). Each returns 0 normally, and 1 if there

were no matches.

By default, the do_dired() primitive ignores the abort key. To permit aborting a long file match, set

the primitive variable abort_file_matching using save_var to tell Epsilon what to do when the user

presses the abort key. See page 551 for details.

The is_dired_buf() subroutine returns 1 if the current buffer is a dired buffer, otherwise 0.

dired_standardize(char *files)

standardize_remote_pathname(char *files)

remote_dirname_absolute(char *dir)

drop_dots(char *path)

Sometimes there are several interchangeable ways to write a particular file pattern. For example,

/dir1/dir2/* always makes the same list of files as /dir1/dir2/ or /dir1/dir2. The

dired_standardize() primitive converts a dired pattern to its simplest form, in place. In the example, the

last pattern is considered the simplest form.

The standardize_remote_pathname() subroutine is similar, but operates on FTP and SCP URLs. It

calls several other subroutines to help.

The remote_dirname_absolute() subroutine converts a relative remote pathname to an absolute one

in place. It performs an FTP or SCP operation to get the user’s home directory, then inserts it into the given

pathname.

The drop_dots() subroutine removes . and interprets .. in a pathname, modifying it in place. It

removes any .. components at the start of a path.

490 Chapter 10. Primitives and EEL Subroutines

detect_dired_format()

zeroed buffer char dired_format;

#define DF_UNIX 1

#define DF_SIMPLE 2

#define DF_OLDNT 3

#define DF_VMS 4

int get_dired_item(char *prefix, int func)

The dired command supports several different formats for directory listings. Besides the standard

format it uses for local directory listings, as generated by the do_dired() primitive, it understands the

directory listings generated by FTP servers that run on Unix systems (and the many servers on other

operating systems that use the same format), as well as several others.

The detect_dired_format() subroutine determines the proper format by scanning a dired buffer,

and sets the dired_format variable as appropriate. A value of 0 indicates the default, local directory

format. The other values represent other formats.

Various subroutines in dired use the get_dired_item() subroutine to help locate format-specific

functions or variables, to do tasks that depend on the particular format. The subroutine takes a prefix like

“dired-isdir-” and looks for a function named dired_isdir_unix() (assuming the dired_format

variable indicates Unix). It returns the name table index of the function it found, if there is one, or zero

otherwise.

If its parameter func is nonzero, it looks only for functions; if zero, it looks only for variables. You can

use an expression like (* (int (*)()) i)() to call the function (assuming i is the value returned by

get_dired_item()), or an expression like get_str_var(i) to get the value of a variable given its index.

10.3.9 Manipulating File Names

absolute(char *file, ?char *dir)

relative(char *abs, char *rel, ?char *dir)

int is_relative(char *fname)

Because the current directory can change, through use of the chdir() primitive described above,

Epsilon normally keeps file names in absolute pathname form, with all the defaults in the name made

explicit. It converts a file name to the appropriate relative pathname whenever it displays the name (for

example, in the mode line).

The absolute() primitive takes a pointer to a character array containing a file name. It makes the file

name be an absolute pathname, with all the defaults made explicit. For example, if the default drive is B:,

the current directory is /harold/papers, the path_sep variable is ‘\’ and the 80 character array fname

contains “proposal”; calling absolute() with the argument fname makes fname contain

“B:\harold\papers\proposal”.

The primitive relative() does the reverse. It takes a file name in absolute form and puts an equivalent

relative file name in a character array. Unlike absolute(), which modifies its argument in place,

relative() makes a copy of the argument with the changes. If the default drive is B:, the current directory

is \harold and the 80 character array abs contains B:\harold\papers\proposal, calling relative(abs,

rel); puts “papers\proposal” in the string array rel. You can also get a relative file name by using the %r

format specifier in any Epsilon primitive that accepts a printf-style format string.

The relative() and absolute() primitives each take an optional additional argument, which names

a directory. The absolute() primitive assumes that any relative file names in its first argument are relative

to the directory named by the second argument. (If the second argument is missing or null, the primitive

10.3. File Primitives 491

assumes that relative file names are relative to the current directory.) Similarly, if you provide a third

argument to the relative() primitive, it makes file names relative to the specified directory, instead of the

current directory.

Note that in EEL string or character constants, the \ character begins an escape sequence, and you must

double it if the character \ is to appear in a string. Thus the Windows file name \harold\papers must appear

in an EEL program as the string "\\harold\\papers".

The is_relative() primitive returns nonzero if the file name looks like a relative pathname, not an

absolute pathname. (It’s not intended for use with URLs.)

char *get_tail(char *file, ?int dirok)

The get_tail() primitive takes a string containing a file name and returns a pointer to a position in

the string after the name of the last directory. For example, suppose that file is the string

“/harold/papers/proposal”. Then

get_tail(file, 0)

would return a pointer to “proposal”. Since the pointer returned is to the original string, you can use this

primitive to modify that string. Using the above example, a subsequent

strcpy(get_tail(file, 0), "sample");

would make file contain the string “/harold/papers/sample”. The dirok argument says what to do with a

file name ending with a separator character ‘\’ or ‘/’. If dirok is nonzero the primitive returns a pointer to

right after the final separator character. If dirok is zero, however, the primitive returns a pointer to the first

character of the final directory name. (If file contains no directory name, the primitive returns a pointer to

its first character when dirok is zero.)

char *get_extension(char *file)

The get_extension() primitive returns a pointer to the final extension of the file name given as its

argument. For example, an invocation of

get_extension("text.c")

would return a pointer to the “.c” part, and get_extension("text") would return a pointer to the null

character at the end of the string. Like get_tail(), you can use this primitive to modify the string.

int is_path_separator(int ch)

The is_path_separator() primitive tells if a character is one of the characters that separate directory

or drive names in a file name. It returns 1 if the character is ‘\’ or ‘/’, 2 if the character is ‘:’, otherwise 0.

Under Unix, it returns 1 if the character is ‘/’, otherwise 0.

user char path_sep;

The path_sep variable contains the character for separating directory names. It is ‘\’ under Windows,

‘/’ under Unix.

add_final_slash(char *fname)

drop_final_slash(char *fname)

492 Chapter 10. Primitives and EEL Subroutines

The add_final_slash() primitive adds a path separator character like / or \ to the end of fname, if

there isn’t one already. The drop_final_slash() primitive removes the last character of fname if it’s a

path separator. These primitives never count : as a path separator.

abbreviate_file_name(char *file, int room)

The abbreviate_file_name() subroutine defined in disp.e modifies the filename file so it’s no

more than room characters long, by replacing sections of it with an ellipsis (...). If file is no more than

room characters long to begin with, it won’t be changed. Values of room less than 10 will be treated as 10.

int is_remote_file(char *fname)

char url_services[50] = "ftp|http|telnet|scp|ssh";

int remote_file_type(char *fname)

The is_remote_file() primitive tells whether fname looks like a valid URL. It returns 1 if fname

starts with a service name like ftp://, http://, or telnet://, or 2 if fname appears to be an Emacs-style remote

file name like /hostname:filename. It uses the url_services variable to determine which service names are

valid; this must be a series of |-separated names.

The remote_file_type() subroutine is somewhat similar; it tries to determine if a file fname refers

to a remote directory, a file pattern, or some other sort of thing. It returns 1 if fname doesn’t have the format

of a remote file (so it might be a local file), 2 if its syntax is invalid, 3 if it’s a remote file that specifies a

service other than ftp or scp, 4 if there’s no file name after its host name, 5 if it uses wildcards, 6 if it ends in

a path separator, or 7 if it uses ~ to name a user’s home directory and has no file name following that.

If none of these cases apply, the subroutine contacts the remote system to test whether fname refers to a

directory or a file, and returns 8 if it’s a directory, otherwise 0. (A value of 0 doesn’t indicate there’s

necessarily a file by that name, just that there is no directory by that name.)

get_executable_directory(char *dir)

get_executable_file(char *dest, char *prog, int quoted)

The get_executable_directory() function stores the full pathname of the directory containing the

Epsilon executable into dir. The get_executable_file() function uses this; it writes into dest the full

pathname of a file prog in the same directory as Epsilon’s executable. If quoted is nonzero, the file name is

inside a pair of quote characters, for use in a command line.

look_up_tree(char *res, char *file, char *dir, char *stop)

int is_in_tree(char *file, char *tree) /* files.e subr. */

The look_up_tree() subroutine searches for file in the given directory dir, its parent directory, and

so forth, until it finds a file named file or reaches the root directory. If it finds such a file, it returns nonzero

and puts the absolute pathname of the file into the character array res. If it doesn’t find a file with the given

name, it returns zero and leaves res set to the last file it looked for. If file is an absolute pathname to begin

with, it puts the same file name in res, and returns nonzero if that file exists. If dir is a null pointer,

look_up_tree() begins at the current directory. If stop is non-null, the function only examines child

directories of the directory stop. The function stops as soon as it reaches a directory other than stop or one

of its subdirectories. This function assumes that all its parameters are in absolute pathname form.

The is_in_tree() subroutine returns nonzero if the pathname file is in the directory specified by

dir or one of its subdirectories. Both of its parameters must be in absolute pathname form.

10.3. File Primitives 493

user char path_list_char;

The path_list_char variable contains the character separating the directory names in a configuration

variable like EPSPATH. It is normally ‘;’, except under Unix, where it is ‘:’.

build_filename(char *result, char *pattern, char *file)

The build_filename() subroutine constructs file names from name templates (see page 115). It

copies pattern to result, replacing the various % template codes with parts of file, which it obtains by

calling primitives such as get_tail() and get_extension(). The expand_string_template()

subroutine on page 521 provides a more generalized facility to do this.

int fnamecmp(char *f1, char *f2) /* buffer.e */

int filename_rules(char *fname)

The fnamecmp() subroutine compares two file names like the strcmp() primitive, returning 0 if

they’re equal, a positive number if the first comes before the second, or a negative number otherwise.

However, it does case-folding on the file names first if this is appropriate for the particular file systems.

The filename_rules() primitive asks the operating system if a certain file system is case-sensitive or

case-preserving, and returns other information too. It takes the name of any file or directory (which doesn’t

have to exist) on the file system, and returns a code whose values are represented by macros defined in

codes.h. See page 119 for more information on how Epsilon determines the appropriate code for each file

system.

The FSYS_CASE_IGNORED code indicates a non-case-preserving file system like DOS. The

FSYS_CASE_PRESERVED code indicates a case-preserving file system like NTFS or VFAT. The

FSYS_CASE_SENSITIVE code indicates a case-sensitive file system like Unix. The FSYS_CASE_UNKNOWN

code indicates that Epsilon couldn’t determine anything about the file system.

The function also returns a bit flag FSYS_SHORT_NAMES, valid whenever any code but

FSYS_CASE_UNKNOWN is returned, that indicates whether only 8+3 names are supported. Use the mask

macro FSYS_CASE_MASK to strip off this bit: for example, the expression

(filename_rules(f) & FSYS_CASE_MASK) == FSYS_CASE_SENSITIVE

is nonzero if the file system is case-sensitive.

The primitive also may return a bit indicating the type of drive a file is located on, if Epsilon can

determine this. FSYS_NETWORK indicates the file is on a different computer and is being accessed over a

network. FSYS_CDROM indicates the file is on a CD-ROM disk. FSYS_REMOVABLE indicates the file is on a

removable medium like a floppy disk or Zip disk. And FSYS_LOCAL indicates the file is on a local

(non-network) hard disk. At most one of the these bits will be present.

Epsilon for Unix returns FSYS_CASE_SENSITIVE for all files, even if they happen to lie on a file system

that might use different rules natively. It can’t detect the type of drive a file is on either.

int ok_file_match(char *s) /* complete.e */

The ok_file_match() subroutine checks a file name to see if the ignore_file_extensions

variable should exclude it from completion. It returns 0 if the file name should be excluded, or 1 if the file

name is acceptable.

494 Chapter 10. Primitives and EEL Subroutines

char *lookpath(char *file, ?int curdir)

char *look_on_path(char *file, int flags, char *path, ?int skip)

The lookpath() primitive looks in various standard Epsilon directories for a readable file with the

supplied name. As soon as Epsilon locates the file, it returns the file’s name. If it can’t find the file, it returns

a null pointer. See page 12 for more information on Epsilon’s searching rules. The look_on_path()

primitive is similar, but you can specify the path to use, and it offers some additional flexibility. These

primitives will be described together.

First (for either primitive), if the specified file name is an absolute pathname, Epsilon simply checks to

see if the file exists, and returns its name if it does, or a null pointer otherwise.

Next, if you call lookpath() with its optional parameter curdir nonzero (or if you call

look_on_path() with the flag PATH_ADD_CUR_DIR), Epsilon looks for the file in the current directory. If

curdir is zero or omitted (or PATH_ADD_CUR_DIR isn’t specified), Epsilon skips this step (unless the file

name explicitly refers to the current directory, like “.\filename”).

The lookpath() primitive next looks for the file as explained on page 12, looking along your

EPSPATH, or a default one.

Similarly, look_on_path() searches the provided path, which is in the same format as an EPSPATH,

a list of directory names separated by semicolons for Windows, colons for Unix. The PATH_ADD_EXE_DIR

bit makes it search in the executable’s directory, like -w32 does for lookpath(). The

PATH_ADD_EXE_PARENT bit makes it search the executable’s parent directory. It does both of these

additional checks, when enabled, in the above order and just before searching the given path.

By default, look_on_path() only searches for files with the specified name. Add the

PATH_PERMIT_DIRS flag if you want it to also return directories with that name. With the

PATH_PERMIT_WILDCARDS flag, you can use a file pattern like *.c as the file name. The primitive will

return the first matching file name.

If you supply look_on_path() with an optional skip parameter of n, it will skip over the first n

matches it finds (so long as its parameter is a relative pathname). You can use this to reject a file and look for

the next one on a path.

The value returned by each of these functions is only valid until the next time you call one of them.

Copy the returned file name if you want to preserve it.

convert_to_8_3_filename(char *fname, ?int from8_3)

Under Windows, the convert_to_8_3_filename() primitive modifies the given file name by

converting all long file names in fname to their short “8.3” file name aliases. Each component of a short file

name has no more than eight characters, a dot, and no more than three more characters. For example, the file

name “c:\Windows\Start Menu\Programs\Windows Explorer.lnk” might be translated to an equivalent file

name of “c:\Windows\STARTM˜1\Programs\WINDOW˜1.LNK”. If the optional from8_3 argument is

nonzero, Epsilon translates in the reverse direction. Non-Windows versions of Epsilon will not modify the

file name.

10.3.10 Internet Primitives

int telnet_host(char *host, int port, char *buf)

telnet_send(int id, char *text)

do_telnet(char *host, int port, char *buf)

buffer int telnet_id;

int telnet_server_echoes(int id)

10.3. File Primitives 495

Epsilon provides various commands that use Internet FTP, Telnet and similar protocols. This section

documents how some parts of this interface work.

All Internet-related functions that retrieve text in the background and insert it in a buffer do so at the

buffer’s type_point, just like Epsilon’s process functions.

First, Epsilon provides the primitives telnet_host() and telnet_send() for use with the Telnet

protocol. The telnet_host() function establishes a connection to a host on the specified port, and using

the indicated buffer. It returns an identification code. The telnet_send() function can use this code to

send text to the host. To kill the telnet job, call telnet_send() and pass NULL as the text. Commands

normally call the telnet_host() function through the do_telnet() subroutine, which records the telnet

identification code in the buffer-specific telnet_id variable, and does other housekeeping tasks.

The telnet_server_echoes() primitive accepts a telnet identification code as above, and returns 1 if

the server on that connection is currently set to echo characters sent to it, or 0 if it is not.

int finger_user(char *user, char *host, char *buf)

int http_retrieve(char *resource, char *host, int port,

char *auth, char *buf, int flags)

char *http_force_headers;

int download_file_to_disk(char *url, char *fname, int sz)

show_url(char *url)

try_show_url(char *url)

The finger_user() primitive uses the Finger protocol to retrieve information on a particular user (if

the host is running a Finger server). It takes the user name, the host, and the name of a buffer in which to put

the results.

The http_retrieve() primitive uses the HTTP protocol to retrieve a page from a web site. It takes a

resource name (the final part of a URL), a host, port, an authorization string (for password-protected pages)

and destination buffer name, plus a set of flags. The HTTP_RETRIEVE_WAIT flag tells the function not to

return until the transfer is complete. Without this flag the function begins the transfer and lets it continue in

the background. The HTTP_RETRIEVE_ONLY_HEADER flag tells the function to retrieve only the header of

the web page, not the body. Without this flag Epsilon will retrieve both; the first blank line retrieved

separates the two.

If the http_force_headers variable is non-null and non-empty, http_retrieve() uses its contents

for the HTTP request it sends to the remote system. It should contain a complete, valid HTTP request. But if

it starts with a + character, then Epsilon simply adds the rest of its contents to each HTTP request. It should

contain a series of header lines, each terminated by \r\n.

The download_file_to_disk() subroutine retrieves the document from the specified url, then

writes it to the disk file named fname. It returns 0 on success, 1 if retrieving the file failed, or an error code

from writing the file. (A 404 or other numeric error when retrieving a web page is treated as a success, as

long as it returns a page of some sort. Check the HTTP Headers buffer for the error code if needed.) The sz

parameter should be the file’s expected size; if nonzero, the subroutine displays progress messages.

The show_url() subroutine displays the specified URL in a web browser, aborting with an error if it

couldn’t. The similar try_show_url() subroutine displays the URL in a browser, returning zero if it

couldn’t, nonzero if it could. A success code indicates merely that Epsilon was able to find a browser, not

that the specified page exists.

int is_remote_buffer(int buf)

buffer char *buffer_url;

496 Chapter 10. Primitives and EEL Subroutines

The is_remote_buffer() subroutine returns nonzero if the specified buffer has a telnet or ssh session

running, or whose file name refers to a remote file (one accessed via scp or ftp).

In buffers with a telnet or ssh session, Epsilon sets the buffer-specific buffer_url variable to the URL

used to create it. This is so it can restart the session later if necessary.

int ftp_op(char *buf, char *log, char *host, int port,

char *usr, char *pwd, char *file, int op)

int do_ftp_op(char *buf, char *host, char *port,

char *usr, char *pwd, char *file, int op)

The ftp_op() primitive uses the FTP protocol to send or retrieve files or get directory listings. It takes

the destination or source buffer name, the name of a log buffer, a host computer name and port number, a

user name and password, a file name, and an operation code that indicates what function it should perform

(see below).

The do_ftp_op() subroutine is similar to ftp_op(), but it chooses the name of an appropriate FTP

Log buffer, instead of taking the name of one as a parameter. Also, it arranges for the appropriate

ftp_activity() function (see below) to be called, arranges for character-coloring the log buffer, and

initializes the ftp_job structure that Epsilon uses to keep track of each FTP job.

The FTP_RECV operation code retrieves the specified file and the FTP_SEND code writes the buffer to the

specified file name. The FTP_LIST code retrieves a file listing from the host of files matching the specified

file pattern or directory name. The FTP_MISC code indicates that the file name actually contains a series of

raw FTP commands to execute after connecting and logging in, separated by newline characters. Epsilon

will execute the commands one at a time.

You can combine one of the above codes with some bit flags that modify the operation. Use the

FTP_OP_MASK macro to mask off the bit flags below and extract one of the operation codes above.

Normally ftp_op() returns immediately, and each of these operations is carried out in the background.

Add the code FTP_WAIT to any of the above codes, and the subroutine will not return until the operation

completes.

The FTP_ASCII bit flag modifies the FTP_RECV and FTP_SEND operations. It tells Epsilon to perform

the transfer in ASCII mode. By default, all FTP operations use binary mode, and Epsilon performs any

needed line translation itself. But this doesn’t work on some host systems (VMS systems, for example). See

the ftp-ascii-transfers variable for more information.

The FTP_USE_CWD bit flag modifies how Epsilon uses the file name provided for operations like

FTP_RECV, FTP_SEND, and FTP_LIST. By default, Epsilon sends the file name to the host as-is. For

example, if you try to read a file dirname/another/myfile, Epsilon sends an FTP command like RETR

dirname/another/myfile. Some hosts (such as VMS) use a different format for directory names than

Epsilon’s dired directory editor understands. So with this flag, Epsilon breaks a file name apart, and

translates a request to read a file such as dirname/another/myfile into a series of commands to change

directories to dirname, then to another, and then to retrieve the file myfile. The FTP_PLAIN_LIST bit

flag makes FTP_LIST operations send a LIST command; without it, they send a LIST -a command so the

remote system includes hidden files. The ftp-compatible-dirs variable controls these bits.

int url_operation(char *file, int op)

The url_operation() subroutine parses a URL and begins an Internet operation with it. It takes the

URL and an operation code as described above for ftp_op(). If the code is FTP_RECV, then the URL may

indicate a service type of telnet://, http://, or ftp://, but if the code is FTP_SEND or FTP_LIST, the service

type must be ftp://. It can modify the passed URL in place to put it in a standard form. It calls one of the

functions do_ftp_op(), http_retrieve(), or do_telnet() to do its work.

10.3. File Primitives 497

ftp_misc_operation(char *url, char *cmd)

The ftp_misc_operation() subroutine uses the do_ftp_op() subroutine to perform a series of raw

FTP commands. It takes an ftp:// URL (ignoring the file name part of it) connects to the host, logs in, and

then executes each of the newline-separated FTP commands in cmd. Dired uses this function to delete or

move a group of files.

buffer int (*when_net_activity)();

net_activity(int activity, int buf, int from, int to)

As Epsilon performs Internet functions, it calls an EEL function to advise it of its progress. The

buffer-specific variable when_net_activity contains a function pointer to the function to call. Epsilon

uses the value of this variable in the destination buffer (or, in the case of the NET_LOG_WRITE and

NET_LOG_DONE codes below, the log buffer). If the variable is zero in a buffer, Epsilon won’t call any EEL

function as it proceeds.

The EEL function will always be called from within a call to getkey() or delay(), so it must save

any state information it needs to change, such as the current buffer, the position of point, and so forth, using

save_var. The subroutine net_activity() shown above indicates what parameters the function should

take—there’s not actually a function by that name.

The activity parameter indicates the event that just occurred. A value of NET_RECV indicates that

Epsilon has just received some characters and inserted them in a buffer. The buf parameter tells which

buffer is involved. The from and to values indicate the new characters. A value of NET_DONE means that

the net job running in buffer buf has finished. The above are the only activity codes generated for HTTP,

Telnet, or Finger jobs.

FTP jobs have some more possible codes. NET_SEND indicates that another block of text has been sent.

In this case, from indicates that number of bytes sent already from buffer buf, and to indicates the total

number of bytes to be sent. The code NET_LOG_WRITE indicates that some more text has been written to the

log buffer buf, in the range from...to. Finally, the code NET_LOG_DONE indicates that the FTP operation has

finished writing to the log buffer. It occurs right after a NET_DONE call on FTP jobs.

ftp_activity(int activity, int buf, int from, int to)

finger_activity(int activity, int buf, int from, int to)

telnet_activity(int activity, int buf, int from, int to)

buffer int (*buffer_ftp_activity)();

The file epsnet.e defines the when_net_activity functions shown above, which provide status

messages and similar things for each type of job. The ftp_activity() subroutine also calls a subroutine

itself, defined just like these functions, through the buffer-specific variable buffer_ftp_activity. The

dired command uses this to arrange for normal FTP activity processing when retrieving directory listings,

but also some processing unique to dired.

int gethostname(char *host, ?int method)

The gethostname() primitive sets host to the computer’s host name and returns 0. If it can’t for any

reason, it returns 1 and sets host to “?”.

The method parameter controls which type of host name Epsilon retrieves. By default, it uses the

machine’s locally-configured host name. A value of 3 makes it instead retrieve the host’s fully qualified

domain name using DNS. Values of 1 or 2 make it do this only under Windows or Unix, respectively.

Retrieving the DNS name in some network configurations can cause on-demand auto-dialing or delays if the

machine’s DNS server isn’t accessible.

498 Chapter 10. Primitives and EEL Subroutines

Parsing URLs

prepare_url_operation(char *file, int op, struct url_parts *parts)

get_password(char *res, char *host, char *usr)

int parse_url(char *url, struct url_parts *p)

int divide_url(char *url, struct url_parts *p)

Several subroutines handle parsing URLs into their component parts. These parts are stored in a

url_parts structure, which has fields for a URL’s service (http, ftp, and so forth), host name, port, user

name if any, password if any, and the “file name”: the final part of a URL, that may be a file name, a web

page name or something else. Since an empty user name or password is legal, but is different from an

omitted one, there are also fields to specify if each of these is present.

The prepare_url_operation() subroutine parses a URL and fills one of these structures. It

complains if it doesn’t recognize the service name, or if the service is something other than FTP but the

operation isn’t reading. The operation code is one of those used with the ftp_op() subroutine described on

page 496. For example, it complains if you try to perform an FTP_LIST operation with a telnet:// URL. It

also prompts for a password if necessary, and saves the password for later use, by calling the

get_password() subroutine.

The get_password() subroutine gets the password for a particular user/host combination. Specify the

user and host, and the subroutine will fill in the provided character array res with the password. The first

time it will prompt the user for the information; it will then store the information and return it without

prompting in future requests. The subroutine is careful to make sure the password never appears in a state

file or session file. To discard a particular remembered password, pass NULL as the first parameter. The next

time get_password() is asked for the password of that user on that host, it will prompt the user again.

The prepare_url_operation() subroutine calls the parse_url() subroutine to actually parse the

URL into a url_parts structure. The latter returns zero if the URL is invalid, or nonzero if it appears to be

legal.

The divide_url() subroutine is similar to parse_url(), but doesn’t divide the host section into its

component parts. Like parse_url(), it returns zero if the URL is invalid, or nonzero if it appears to be

legal.

For example, given the URL scp://bob:secret%2Fcode@example.com:1022/path/to/file,

both divide_url() and parse_url() set the service member of the url_parts structure to “scp” and

the fname member to “path/to/file”.

But divide_url() then sets the host member to “bob:secret%2Fcode@example.com:1022”,

whereas parse_url() sets host to “example.com”, port to “1022”, usr to “bob”, and pwd to

“secret/code”, also setting the have_password and have_usr members nonzero since the URL

specified both. Notice that parse_url() decodes any %-escaped sequences in the user name or password

sections, changing %2F to / in this example.

int split_string(char *part1, char *cs, char *part2)

int reverse_split_string(char *part1, char *cs, char *part2)

The parse_url() subroutine uses two helper subroutines. The split_string() subroutine divides a

string part1 into two parts, by searching it for one of a set of delimiter characters cs. It finds the first

character in part1 that appears in cs. Then it copies the remainder of part1 to part2, and removes the

delimiter character and the remainder from part1. It returns the delimiter character it found. If no delimiter

character appears in part1, it sets part2 to "" and returns 0. The reverse_split_string() subroutine

is almost identical; it just searches through part1 from the other end, and splits the string at the last

character in part1 that appears in cs.

10.4. Operating System Primitives 499

char *get_url_file_part(char *url, int sep)

The get_url_file_part() subroutine helps to parse URLs. It takes a URL and returns a pointer to a

position within it where its file part begins. For example, in the URL

http://www.lugaru.com/why-lugaru.html, the subroutine returns a pointer to the start of “why”. If

sep is nonzero, the subroutine instead returns a pointer to the / just before “why”. If its parameter is not a

URL, the subroutine returns a pointer to its first character.

10.3.11 Tagging Internals

This section describes how to add tagging support to Epsilon for other languages. Epsilon already knows

how to find tags in C and EEL files, and in assembly languages files.

tag_suffix_ext() /* example function */

tag_suffix_none()

tag_suffix_default()

tag_mode_c()

When Epsilon wants to add tags for a file, it first looks at the file’s extension and constructs a function

name of the form tag_suffix_ext(), where ext is the extension. It tries to call this function to tag the file.

If the file has no extension, it tries to call tag_suffix_none().

If there is no function with the appropriate name, Epsilon looks for a function based on the current

buffer’s mode. It constructs a function name of the form tag_mode_mode(), where mode is the value of the

major_mode variable in the current buffer. If there is no mode-based function either, Epsilon calls

tag_suffix_default() instead.

Thus, to add tagging for a language that uses file names ending in .xyz, define a function named

tag_suffix_xyz(). Or if such files (and perhaps files with other extensions) use mode named “Xyz”,

define a function named tag_mode_xyz(). In most cases, a mode-based name is more convenient.

add_tag(char *func, int pos)

The tagging function will be called with point positioned at the start of the buffer to be tagged. (Epsilon

preserves the old value of point.) It should search through the buffer, looking for names it wishes to tag. To

add a tag, it should call the subroutine add_tag(), passing it the tag name and the offset of the first

character of the name within the file. You can use the tagging functions for C and assembler as examples to

write your own tagging functions. They are in the source file tags.e.

The pluck-tag command uses a regular expression pattern to parse an identifier in the buffer. By default,

it uses the pattern in the variable tag-pattern-default. A mode can define a variable like

tag-pattern-perl or tag-pattern-c to make Epsilon use a different pattern. (For instance, the pattern

for C mode says that identifiers can include :: to specify a class name.)

Epsilon constructs a variable name, like tag-pattern-perl, from the current mode’s name. If a

variable by that name exists, pluck-tag uses it in place of tag-pattern-default.

10.4 Operating System Primitives

10.4.1 System Primitives

char *getenv(char *name)

putenv(char *name)

char *verenv(char *name)

500 Chapter 10. Primitives and EEL Subroutines

Use the getenv() primitive to return entries from the environment. The primitive returns a null pointer

if no environment variable name exists. For example, after the Windows command “set waldo=abcdef”,

the expression getenv("waldo") will return the string “abcdef”.

The putenv() primitive puts strings in the environment. Normally environment entries have the form

“NAME=definition”. This primitive manipulates Epsilon’s copy of the environment, which is passed on to

any program that Epsilon runs, but it doesn’t affect the environment you get when you exit from Epsilon.

The value of the argument to putenv() is evaluated later, when you actually invoke some other program

from within Epsilon. For this reason, it is important that the argument to putenv() not be a local variable.

Use putenv(strkeep(value)); to conveniently preserve the setting.

The verenv() primitive gets configuration variables. Epsilon for Windows looks in the system registry.

Under Unix it retrieves the variables from the environment, like getenv().

Regardless of the operating system, this primitive looks for alternate, version-specific forms of the

specified configuration variable. For example, in version 7.0 of Epsilon, verenv("MYVAR") would return

the value of a variable named MYVAR70, if one existed. If not, it would try the name MYVAR7. If neither

existed, it would return the value of MYVAR (or a null pointer if none of these variables were found). See

page 10 for complete information on configuration variables.

short opsys;

#define OS_DOS 1 /* DOS or Windows */

#define OS_OS2 2 /* OS/2 */

#define OS_UNIX 3 /* Unix */

#define OS_WINDOWS OS_DOS /* Synonym for clarity */

The opsys variable tells which operating system version of Epsilon is running, using the macros shown

above and defined in codes.h. The primitive returns the same value for DOS and Windows; use is_win32

below to distinguish these.

short is_gui;

#define IS_WIN32S 1 /* (not supported) */

#define IS_NT 2

#define IS_WIN95 3

#define IS_WIN31 4 /* historical only */

The is_gui variable lets an EEL program determine if it’s running in a version of Epsilon that provides

general-purpose dialogs. The variable is nonzero only in the Windows GUI version. The values IS_WIN32S,

IS_NT, and IS_WIN95 indicate that the 32-bit version of Epsilon is running, and occur when the 32-bit

version runs under Windows 3.1, Windows NT/2000/XP and later Windows versions, and Windows

95/98/ME, respectively.

short is_unix;

#define IS_UNIX_TERM 1

#define IS_UNIX_XWIN 2

The is_unix variable is nonzero if Epsilon for Unix is running. It’s set to the constant IS_UNIX_XWIN

if Epsilon is running as an X11 program, or IS_UNIX_TERM if Epsilon is running as a terminal program.

short is_unix_flavor;

#define IS_UNIX_LINUX 1

#define IS_UNIX_BSD 2

#define IS_UNIX_MACOS 3

10.4. Operating System Primitives 501

The is_unix_flavor variable is nonzero if Epsilon for Unix is running. It’s set to the constant macro

IS_UNIX_LINUX in the Linux version, IS_UNIX_BSD in the FreeBSD version, and IS_UNIX_MACOS in the

Mac OS version.

short is_win32;

#define IS_WIN32_GUI 1

#define IS_WIN32_CONSOLE 2

The is_win32 variable is nonzero if a version of Epsilon for 32-bit Windows is running, either the GUI

version or the Win32 console version. The constant IS_WIN32_GUI represents the former. The constant

IS_WIN32_CONSOLE represents the latter.

int has_feature;

Epsilon provides the has_feature variable so an EEL function can determine which facilities are

available in the current environment. Bits represent possible features. Often these indicate whether a certain

primitive is implemented.

FEAT_ANYCOLOR Epsilon can use all RGB colors, not just certain ones.

FEAT_GUI_DIALOGS display_dialog_box() is implemented.

FEAT_FILE_DIALOG common_file_dlg() is implemented.

FEAT_COLOR_DIALOG comm_dlg_color() is implemented.

FEAT_SEARCH_DIALOG find_dialog() is implemented.

FEAT_FONT_DIALOG windows_set_font() is implemented.

FEAT_SET_WIN_CAPTION set_window_caption() is implemented.

FEAT_OS_PRINTING print_window() is implemented.

FEAT_WINHELP win_help_string() and similar are implemented.

FEAT_WINHELP_NATIVE The WinHelp program is always available.

FEAT_OS_MENUS win_load_menu() and similar are implemented.

FEAT_ANSI_CHARS Does this system normally use ANSI fonts, not DOS/OEM?

FEAT_EEL_RESIZE_SCREEN Does EEL code control resizing the screen?

FEAT_INTERNET Are Epsilon’s Internet functions available?

FEAT_SET_FONT Can EEL set the font via variables?

FEAT_MULT_CONCUR Does Epsilon support multiple concurrent processes?

FEAT_DETECT_CONCUR_WAIT Can Epsilon learn that a concurrent process waits for input?

FEAT_EEL_COMPILE eel_compile() is implemented.

FEAT_LCS_PRIMITIVES lcs() and related are implemented.

FEAT_PROC_SEND_TEXT process_send_text() is implemented.

FEAT_UNICODE 16-bit Unicode characters are supported.

Figure 10.1: Bits in the has-feature variable.

The FEAT_WINHELP and FEAT_WINHELP_NATIVE bits differ on systems that don’t include WinHelp

support by default, but have it as an installable option (Windows Vista through Windows 8.1). For these, the

first bit but not the second is present. Starting in Windows 10, neither bit is present.

#define MAX_CHAR 65535

502 Chapter 10. Primitives and EEL Subroutines

The MAX_CHAR macro indicates the largest character code that can appear in a buffer.

ding()

maybe_ding(int want) /* disp.e */

user int want_bell; /* EEL variable */

user short beep_duration;

user short beep_frequency;

The ding() primitive produces a beeping sound, usually called the bell. It is useful for alerting the user

to some error. Instead of calling ding() directly, however, EEL commands should call the maybe_ding()

subroutine defined in disp.e instead. It calls ding() only if the variable want_bell is nonzero, and its

parameter is nonzero. Pass one of the bell_on_ variables listed on page 109 as the parameter. The sound

that ding() makes is controlled by the beep-duration and beep-frequency variables. See page 109.

int clipboard_available()

int buffer_to_clipboard(int buffer_number, int flags,

int clipboard_format)

int clipboard_to_buffer(int buffer_number, int flags,

int clipboard_format)

#define CLIP_CONVERT_NEWLINES 1

#define CLIP_ADD_FORMAT 2

copy_line_to_clipboard(char *line, int flags)

The clipboard_available() primitive tells whether Epsilon can access the system clipboard in this

environment. It returns nonzero if the clipboard is available, or zero if not. Epsilon for Windows can always

access the clipboard. Epsilon for Unix can access the clipboard when it runs as an X11 program.

The buffer_to_clipboard() primitive copies the indicated buffer to the clipboard. A

clipboard_format of zero means use the default format; otherwise, it specifies a particular Windows

clipboard format code. If you provide CLIP_CONVERT_NEWLINES in the flags argument, Epsilon will add

a 〈Return〉 character before each 〈Newline〉 character it puts on the clipboard. This is the normal format for

clipboard text. Without this flag, Epsilon will put an exact copy of the buffer on the clipboard. With the

CLIP_ADD_FORMAT flag, Epsilon will add the specified data to the clipboard without clearing its current

contents first. The new data should use a different format code that the clipboard’s current contents, and the

additional format will be added. Only Epsilon for Windows recognizes this flag.

The clipboard_to_buffer() primitive replaces the contents of the given buffer with the text on the

clipboard. The clipboard_format parameter has the same meaning as above. If

CLIP_CONVERT_NEWLINES is used, Epsilon will strip all 〈Return〉 characters from the clipboard text before

putting it in the buffer.

The copy_line_to_clipboard() subroutine copies a single line to the clipboard, also displaying it.

Mode-specific functions called by the copy-include-file-name command often use it. Passing a flag of 1

makes it add a newline after the provided text; a flag of 2 makes it skip displaying a message indicating what

it copied.

signal_suspend()

In Epsilon for Unix, the signal_suspend() primitive suspends Epsilon’s job. Use the shell’s fg

command to resume it. When Epsilon runs as an X11 program, this primitive minimizes Epsilon instead.

10.4. Operating System Primitives 503

10.4.2 Window System Primitives

windows_maximize()

windows_minimize()

windows_restore()

windows_foreground()

int windows_state()

int screen_to_window_id(int screen)

In Epsilon for Windows, and in Unix under X11, the windows_maximize(), windows_minimize(),

and windows_restore() primitives perform the indicated action on the main Epsilon screen. The

windows_foreground() primitive tries to make Epsilon the foreground window. (Under X11, some

window managers may not let Epsilon do this. Also see the server-raises-window variable.)

The windows_state() primitive returns a code indicating the state of Epsilon’s main window. The

value WINSTATE_MINIMIZED indicates the window has been minimized or iconified. The value

WINSTATE_MAXIMIZED indicates the window has been maximized. Zero indicates the window is in some

other state.

The screen_to_window_id() primitive returns the system’s window id (for X11) or window handle

(for Windows) corresponding to a particular screen number. For Windows, specify a screen number of -1 to

retrieve the window handle of the frame window that contains Epsilon’s menu bar, title bar and so forth. It

returns 0 if there is no screen with that number.

int drag_drop_result(char *file)

drag_drop_handler()

do_resume_client()

short reject_client_connections;

Epsilon uses the drag_drop_result() primitive to retrieve the names of files dropped on an Epsilon

window using drag and drop, after receiving the event key WIN_DRAG_DROP. Pass the primitive a character

array big enough to hold a file name. The primitive will return a nonzero value and fill the array with the

first file name. Call the primitive again to retrieve the next file name. When the function returns zero, there

are no more file names.

Epsilon uses this same method to retrieve server messages or DDE messages. When such a message

arrives from another program, Epsilon parses the message as if it were a command line and then adds each

file name to its list of drag-drop results. Epsilon for Unix doesn’t support file drag and drop or DDE, only

server messages from another copy of Epsilon.

When Epsilon returns the WIN_DRAG_DROP key, it also sets some mouse variables to indicate the source

of the files that can be retrieved through drag_drop_result(). It sets mouse_screen, mouse_x,

mouse_y, and similar variables to indicate exactly where the files were dropped. If the message arrived via

DDE or due to -add or -wait, then mouse_screen will be -1.

The drag_drop_result() primitive returns 2 to indicate -wait was used to send the file name; 1

otherwise. If -wait was used in a client instance of Epsilon, the do_resume_client() primitive may be

used to signal waiting clients that the user has finished editing the desired file and they may now resume.

The drag_drop_handler() subroutine in mouse.e handles the WIN_DRAG_DROP key. Don’t bind this

key to a subroutine with a different name; Epsilon requires that the WIN_DRAG_DROP key be bound to a

function named drag_drop_handler() for correct handling of drag-drop.

A function may set the reject_client_connections variable to keep Epsilon from accepting any

files or other messages from other clients, via either server messages or DDE. (Files may still be dropped on

504 Chapter 10. Primitives and EEL Subroutines

Epsilon.) The 1 bit keeps Epsilon from accepting these messages. Other instances of Epsilon that use the

-add flag will not see an instance of Epsilon where this bit has been set.

The 2 bit in reject_client_connections lets Epsilon accept and queue such messages, but doesn’t

deliver them. Epsilon won’t return the WIN_DRAG_DROP key as long as this bit is set, but will remember the

list of queued files and deliver them once this bit has been cleared.

int dde_open(char *server, char *topic)

int dde_execute(int conv, char *msg, int timeout)

int dde_close(int conv)

Epsilon provides some primitives that you can use to send a DDE Execute message to another program

under Windows.

First call dde_open() to open a conversation, providing the name of a DDE server and the topic name.

It returns a conversation handle, or 0 if it couldn’t open the conversation for any reason.

To send each DDE message, call dde_execute(). Pass the conversation handle from dde_open(), the

DDE Execute message text to send, and a timeout value in milliseconds (10000, the recommended value,

waits 10 seconds for a response). The primitive returns nonzero if it successfully sent the message.

Finally, call dde_close() when you’ve completed sending DDE Execute messages, passing the

conversation handle. It returns nonzero if it successfully closed the connection.

WinHelp Interface

These Windows-only functions support HtmlHelp files and (for older Windows versions that include it)

WinHelp files.

int win_help_contents(char *file)

The win_help_contents() primitive displays the contents page of the specified Windows help file. If

the file parameter is "", it uses Epsilon’s help file, displaying help on Epsilon. The function returns a

nonzero value if it was successful.

int win_help_string(char *file, char *key)

The win_help_string() primitive looks up the entry for key in the specified Windows help file. If

the key parameter is "", it shows the list of possible keywords. If the file parameter is "", it uses Epsilon’s

help file, displaying help on Epsilon. The function returns a nonzero value if it was successful.

windows_help_from(char *file, int show_contents)

The windows_help_from() subroutine wraps the above two subroutines. If there’s a suitable

highlighted region, it calls win_help_string() to display help on the keyword text in the highlighted

region. Otherwise, it either displays the help file’s contents topic (if show_contents is nonzero), or the

help file’s keyword index. The windows_help_from() subroutine also handles tasks like displaying an

error if the user isn’t running Epsilon for Windows.

10.4. Operating System Primitives 505

The Menu Bar

int win_load_menu(char *file)

win_display_menu(int show)

The win_load_menu() primitive makes Epsilon read the specified menu file (normally gui.mnu),

replacing all previous menu definitions. See the comments in the gui.mnu file for details on its format. The

win_display_menu() primitive makes Epsilon display its menu bar, when its show parameter is nonzero.

When show is zero, the primitive makes Epsilon remove the menu bar from the screen.

int win_menu_popup(char *menu_name)

The win_menu_popup() primitive pops up a context menu, as typically displayed by the right mouse

button. The menu name must match one of the menu tags defined in the file gui.mnu, usually the tag

"_popup".

invoke_menu(int letter)

The invoke_menu() primitive acts like typing Alt-letter in a normal Windows program. For example,

invoke_menu('e') pulls down the Edit menu. Invoke_menu(' ') pulls down the system menu. And

invoke_menu(0) highlights the first menu item, but doesn’t pull it down, like tapping and releasing the Alt

key in a typical Windows program. (Also see the variable alt-invokes-menu.)

The Tool Bar

toolbar_create()

toolbar_destroy()

toolbar_add_separator()

toolbar_add_button(char *icon, char *help, char *cmd)

Several primitives let you manipulate the tool bar. They only operate in the Windows GUI version. The

toolbar_create() primitive creates a new, empty tool bar. The toolbar_destroy() primitive hides the

tool bar, deleting its contents. The toolbar_add_separator() primitive adds a blank space between

buttons to the end of the tool bar.

The toolbar_add_button() primitive adds a new button to the end of the tool bar. The cmd

parameter contains the name of an EEL function to run. The help parameter says what “tool tip” help text

to display, if the user positions the mouse cursor over the button. The icon parameter specifies which icon

to use. In this version, it must be one of these standard names:

STD_CUT STD_PRINTPRE VIEW_DETAILS

STD_COPY STD_PROPERTIES VIEW_SORTNAME

STD_PASTE STD_HELP VIEW_SORTSIZE

STD_UNDO STD_FIND VIEW_SORTDATE

STD_REDOW STD_REPLACE VIEW_SORTTYPE

STD_DELETE STD_PRINT VIEW_PARENTFOLDER

STD_FILENEW VIEW_LARGEICONS VIEW_NETCONNECT

STD_FILEOPEN VIEW_SMALLICONS VIEW_NETDISCONNECT

STD_FILESAVE VIEW_LIST VIEW_NEWFOLDER

506 Chapter 10. Primitives and EEL Subroutines

Run the commands show-standard-bitmaps or show-view-bitmaps to see what they look like. Run the

command standard-toolbar to restore the original tool bar.

user char want_toolbar;

Epsilon uses the want_toolbar primitive variable to remember if the user wants a tool bar displayed,

in versions of Epsilon which support this.

Printing Primitives

struct print_options {

int flags; // Flags: see below.

int frompage; // The range of pages to print.

int topage;

int height;

int width;

};

/* Epsilon supports these printer flags. */

#define PD_SELECTION 0x00000001

#define PD_PAGENUMS 0x00000002

#define PD_PRINTSETUP 0x00000040

short select_printer(struct print_options *p)

page_setup_dialog()

In the Windows version of Epsilon, the select_printer() primitive displays a dialog box that lets

the user choose a printer, select page numbers, and so forth. The flags and parameters are a subset of those

of the Windows API function PrintDlg(). The primitive returns zero if the user canceled printing, or

nonzero if the user now wants to print. In the latter case, Epsilon will have filled in the height and width

parameters of the provided structure with the number of characters that can fit on a page of text using the

selected printer.

The page_setup_dialog() displays the standard Windows page setup dialog, which you can use to

set printer margins or switch to a different printer.

short start_print_job(char *jobname)

short print_eject()

short end_print_job()

After using the select_printer() primitive, an EEL program that wishes to print must execute the

start_print_job() primitive. It takes a string specifying the name of this job in the print queue. The

EEL program can then print one or more pages, ending each page with a call to print_eject(). After all

pages have been printed, the EEL program must call end_print_job().

short print_line(char *str, ?int scheme)

short print_window(int win)

int create_invisible_window(int width, int height, int buf)

10.4. Operating System Primitives 507

To actually produce output, two primitives are available. The print_line() primitive simply prints

the given line of text, and advances to the next line. It prints using the “text” color class in the current color

scheme. If the optional parameter scheme is nonzero, Epsilon uses that color scheme instead.

The print_window() primitive prints the contents of a special kind of Epsilon window. The window

must have been created by calling create_invisible_window(), passing it the desired dimensions of the

window, in characters, and the buffer it should display. The create_invisible_window() primitive

returns a window handle which can be passed to print_window(). An EEL program can move through the

buffer, letting different parts of the buffer “show” in this window, to accomplish printing the entire buffer.

The invisible window may be deleted using the window_kill() primitive once the desired text has been

printed.

10.4.3 Timing

int time_ms()

time_begin(TIMER *t, int len)

int time_done(TIMER *t)

int time_remaining(TIMER *t)

The time_ms() primitive returns the time in milliseconds since some arbitrary event in the past.

Eventually, the value resets to 0, but just when this occurs varies with the environment. In some cases, the

returned value resets to 0 once a day, while others only wrap around after longer periods.

The time_begin() and time_done() primitives provide easier ways to time events. Both use the

TIMER data type, which is built into Epsilon. The time_begin() primitive takes a pointer to a TIMER

structure and a delay in hundredths of a second. It starts a timer contained in the TIMER structure. The

time_done() primitive takes a pointer to a TIMER that has previously been passed to time_begin() and

returns nonzero if and only if the indicated delay has elapsed. The time_remaining() primitive returns the

number of hundredths of a second until the delay of the provided timer elapses. If the delay has already

elapsed, the function returns zero. You can pass -1 to time_begin() to create a timer that will never

expire; time_remaining() will always return a large number for such a timer, and time_done() will

always return zero.

Also see the delay() primitive on page 515.

current_time_and_date(char *s)

The current_time_and_date() subroutine fills in the string s with the current time and date. It uses

the format specified by the date-format variable.

struct time_info {

short year;

short month; /* 1-12 */

short day; /* 1-31 */

short hour; /* 0-23 */

short minute; /* 0-59 */

short second; /* 0-59 */

short hundredth;/* 0-99 */

short day_of_week; /* 0=Sunday ... 6=Saturday */

};

time_and_day(struct time_info *t_info)

508 Chapter 10. Primitives and EEL Subroutines

The time_and_day() primitive requests the current time and day from the operating system, and fills

in the time_info structure defined above. The structure declaration also appears in eel.h.

Notice that the time_and_day() primitive takes a pointer to a structure, not the structure itself. Here is

an example command that prints out the time and date in the echo area.

#include "eel.h"

command what_time()

{

struct time_info ts;

time_and_day(&ts);

say("It’s %d:%d on %d/%d/%d.", ts.hour, ts.minute,

ts.month, ts.day, ts.year);

}

10.4.4 Calling DLLs (Windows Only)

int call_dll(char *dll_name, char *func_name,

char *ftype, char *args, ...)

The call_dll() primitive calls a function in a Windows DLL. Epsilon can only call 32-bit DLLs. The

dll_name parameter specifies the DLL file name. The func_name parameter specifies the name of the

particular function you want to call.

The ftype parameter specifies the routine’s calling convention. The character C specifies the C calling

convention, while P specifies the Pascal calling convention. Most Windows DLLs use the Pascal calling

convention, but any function that accepts a variable number of parameters must use the C calling convention.

The args parameter specifies the type of each remaining parameter. Each letter in args specifies the

type of one parameter, according to the following table.

Character Description

L unsigned long DWORD

I int INT, UINT, HWND, most other handles

S far char * LPSTR

P far void * LPVOID

R far void ** LPVOID *

The I character represents a 32-bit parameter, and is equivalent to L in this version. L, S, P, and R

always represent 32-bit parameters.

S represents a null-terminated string being sent to the DLL. P is passed similarly, but Epsilon will not

check the string for null termination. It’s useful when the string is an output parameter of the DLL, and may

not be null-terminated before the call, or when passing structure pointers to a DLL.

R indicates that a DLL function returns a pointer by reference. Epsilon will pass the pointer you supply

(if any) and retrieve the result. Use this for DLL functions that require a pointer to a pointer, and pass the

address of any EEL variable whose type is “pointer to ...” (other than “pointer to function”).

Here’s an example, using call_dll() to determine the main Windows directory:

10.4. Operating System Primitives 509

#define GetWindowsDirectory(dir, size) (is_gui == IS_WIN31 \

? call_dll("kernel.dll", "GetWindowsDirectory", \

"p", "pi", dir, size) \

: call_dll("kernel32.dll", "GetWindowsDirectoryA", \

"p", "pi", dir, size))

char dir[FNAMELEN];

GetWindowsDirectory(dir, FNAMELEN);

say("The Windows directory is %s", dir);

A DLL function that exists in both 16-bit and 32-bit environments will usually be in different .dll files,

and will often go by a different name. Its parameters will often be different as well. In particular, remember

that a structure that includes int members will be a different size in the two environments. To write an EEL

interface to a DLL function that takes a pointer to such a structure, you’ll need to declare two different

versions of the structure, and pass the correct one to the DLL function, if you want your EEL interface to

work in both 16-bit and 32-bit environments.

After you call a function in a DLL, Epsilon keeps the DLL loaded to make future calls fast. You can

unload a DLL loaded by call_dll() by including just the name of the DLL, and omitting the name of any

function or parameters. For example, call_dll("extras.dll"); unloads a DLL named extras.dll.

char *make_pointer(int value)

The make_pointer() primitive can be useful when interacting with system DLLs. It takes a machine

address as a number, and returns an EEL pointer that may be used to access memory at that address. No

error checking will be done on the validity of the pointer.

10.4.5 Running a Process

The following sections describe the EEL primitives for running a program. Here’s a summary of the key

differences among them.

shell concur_shell pipe_text winexec run_viewer

Windows • • • • •

Mac/Unix • • • •

Can wait • • •

Searches path • • • •

Opens docs Win Win Win •

Captures output • • •

Provides input • •

Interactive •

Cmd line flags • • • •

Hide/max/min • •

Key:

Windows: Supported under Windows. Mac/Unix: Supported under Mac OS X, Linux, and FreeBSD.

Can wait: Primitive can be set to wait until subprocess has terminated before returning. Searches path:

Primitive looks for executable along PATH environment variable, so executable’s full path may be omitted.

510 Chapter 10. Primitives and EEL Subroutines

Opens docs: You can provide the full path of a non-executable file instead of a program, and the

appropriate program to open or display it will be run, per system settings. (Win indicates this only works

under Windows.)

Captures output: Can retrieve text sent by a command-line program to its standard output into a buffer.

Provides input: Can send a block of text from a buffer to a command-line program’s standard input.

Interactive: Can send text to a command-line program as it runs, interspersed with retrieving its output,

allowing programmatic interaction.

Cmd line flags: Can run program and pass it parameters on its command line. Hide/max/min: Can set

the GUI process’s window hidden, or maximize or minimize it.

int shell(char *program, char *cline, char *buf, ?int flags)

The shell() primitive takes the name of an executable file (a program) and a command line, pushes to

the program, and gives it that command line. The primitive returns the result code of the wait() system call,

or -1 if an error occurred. In the latter case, the error number is in errno.

The first argument to shell() is the name of the actual file a program is in, including any directory

prefix. The second argument to shell() is the command line to pass to the program.

If the first argument to shell() is an empty string "", Epsilon behaves differently. In this case, Epsilon

runs the appropriate shell command processor. (Note that "" is not the same as NULL, a pointer whose

value is 0.) If the second argument is also "", Epsilon runs the shell interactively, so that it prompts for

commands. Otherwise, Epsilon makes the shell run only the command line specified in the second

argument. Epsilon knows what flags to provide to the various standard shells to make them run interactively,

or execute a single command and return, but you can set these if necessary. You can also set the command

processor Epsilon should use. See page 140.

Under Windows, when you provide a nonempty first argument, Epsilon won’t search the path for the

specified file. To run a file on the path, put its name as the second argument and leave the first as "". This

technique is also necessary to execute batch files, use internal commands like “dir”, or do command-line

redirection.

The third argument to shell() controls whether the output of the program is to be captured. If "", no

capturing takes place. Otherwise the output is inserted in the specified buffer, replacing its previous contents.

In the Windows GUI version, and when Epsilon for Unix runs as an X11 program, Epsilon starts the

program and then immediately continues without waiting for it to finish, whenever the first three arguments

to shell() are "". Otherwise, Epsilon waits for the program to finish. The SHELL_SYNCH flag forces

Epsilon to wait; the SHELL_NO_SYNCH flag tells Epsilon not to wait for the program.

The remaining flags for shell() only apply to the Windows version. SHELL_HIDE makes the resulting

program’s main window hidden; SHELL_MINIMIZED minimizes it, and SHELL_MAXIMIZED maximizes it.

Normally Epsilon inserts an EPSRUNS=Y setting into the environment passed to the child process, in case

some program wants to know if Epsilon invoked it. The SHELL_KEEP_ENV flag prevents that.

int do_push(char *cmdline, int cap, int show)

The do_push() subroutine is a convenient way to call shell(). It uses the command processor to

execute a command line (so the command line may contain redirection characters and the like). If cap is

nonzero, the subroutine will capture the output of the command to the process buffer. If show is nonzero, the

subroutine will arrange to show the output to the user. How it does this depends on cap. To show captured

output, Epsilon displays the process buffer after the program finishes. To show non-captured output, Epsilon

(non-GUI versions only) waits for the user to press a key after the program finishes, before restoring

Epsilon’s screen. If show is -1, Epsilon skips this step.

10.4. Operating System Primitives 511

This subroutine interprets the variable start-process-in-buffer-directory and takes care of

displaying an error to the user if the process couldn’t be run.

Concurrent Process Primitives

int concur_shell(char *program, char *cline,

?char *curdir, char *buf, int flags)

short another_process();

int is_process_buffer(int buf)

The concur_shell() primitive also takes a program and a command line, with the same rules as the

shell() primitive. It starts a concurrent process, with input and output connected to the buffer “process”,

just like the start-process command described on page 140 does. If you specify a buffer buf, it starts the

process in that buffer. (Some versions of Epsilon support only one process buffer; in them the buffer name, if

specified, must be “process”.) If you specify a directory name in curdir, Epsilon starts the process with that

current directory. The primitive returns 0 if it could start the process. If it couldn’t, it returns an error code.

Normally Epsilon sets certain environment variables in the subprocess it creates, such as EPSRUNS=C.

The SHELL_KEEP_ENV flag prevents that.

Epsilon only receives concurrent process output and sends it input when Epsilon is waiting for you to

press a key (or during a delay()—see page 515), but the process otherwise runs independently.

The another_process() primitive returns the number of active concurrent processes.

The is_process_buffer() primitive returns ISPROC_CONCUR if the specified buffer holds an active

concurrent process, ISPROC_PIPE if the buf_pipe_text() primitive is sending output into it, or 0 if no

concurrent process is associated with that buffer.

user buffer int type_point;

Characters from the process go into the process buffer at a certain position that we call the type point.

The type_point variable stores this position.

When a process tries to read a character of input, Epsilon stops the process until there is at least one

character following the type point, and when the process tries to read a line of input, Epsilon does not run

the process until a newline appears in the section of the buffer after the type point. When a concurrent

process is started by the concur_shell() primitive, the type point is initially set to the value of point in the

specified buffer.

Internet commands for Telnet and FTP use type_point much like a process buffer does, to determine

where to insert text into a buffer and where to read any text to be sent.

int process_input(?int buf)

#define PROCESS_INPUT_LINE 1

#define PROCESS_INPUT_CHAR 2

buffer int (*when_activity)();

concur_handler(int activity, int buf, int from, int to)

The process_input() primitive returns PROCESS_INPUT_LINE if the process is waiting for a

character, PROCESS_INPUT_CHAR if the process is waiting for a line of input, and 0 if the process is running

or there is no process. It operates on the buffer named “process” if no buffer number is specified.

Whenever Epsilon receives process output or sends it input, it calls an EEL function. The

buffer-specific when_activity variable contains a function pointer to the function to call. If the variable is

512 Chapter 10. Primitives and EEL Subroutines

zero in a buffer, Epsilon won’t call any EEL function as it proceeds. For a typical process buffer, the

when_activity variable points to the concur_activity() subroutine.

Just after a concurrent process inserts output in a process buffer, it calls this subroutine, passing

NET_RECV as the activity. The from and to parameters mark the range of buffer text that was just

received from the process. The concur_activity() subroutine responds to this message by coloring the

inserted characters with the color_class process_output color, and similar tasks.

Epsilon calls this subroutine and passes NET_SEND when it detects that the concurrent process is now

ready for input, and again as it sends the input to the process. When the process becomes ready for input, the

subroutine will be called with a from parameter of zero. When the process is sent a line of text, the

subroutine will be called with a from of PROCESS_INPUT_LINE, and when the process is sent a single

character it will be called with a from of PROCESS_INPUT_CHAR. In each case the to parameter will

indicate the beginning of the input text (the value of type_point before the input begins).

Epsilon calls this subroutine and passes NET_DONE when the process exits. Its from parameter will hold

the exit code, or 0 if Epsilon didn’t record this. Epsilon sets the buffer-specific process_exit_status

variable to the value PROC_STATUS_RUNNING when a process starts, and sets it to the process exit status (or

0) when the process exits.

Epsilon for Unix often cannot detect when a process is awaiting input. Therefore process_input()

always returns zero, and a NET_SEND activity will typically not be signaled with a from parameter of zero.

int process_send_text(int buf, char *text, int len)

Normally input to a process running in a concurrent process buffer comes from text the user inserts into

the buffer. The process_send_text() primitive provides a way to send text directly to the process,

bypassing the buffer. This is especially useful for passwords, since if a password appears in the buffer it

might be seen, or retrieved with undo. The primitive sends len characters from text to the process

associated with the buffer buf.

The FEAT_PROC_SEND_TEXT bit of the has_feature variable indicates when this primitive is

available.

int halt_process(?int hard_kill, int buf)

The halt_process() primitive has the same function as the stop-process command. A value of 0 for

hard_kill makes the primitive act the same as stop-process with no argument. Otherwise, it is equivalent

to stop-process with an argument. The function returns 1 if it succeeds, and 0 if it cannot signal the process

for some reason. It operates on the buffer named “process” if no buffer number is specified.

int process_kill(?int buf)

The process_kill() primitive disconnects Epsilon from a running concurrent process, telling it to

exit. The function returns 1 if it succeeds, and 0 if it cannot kill the process for some reason. It operates on

the buffer named “process” if no buffer number is specified.

Other Process Primitives

int pipe_text(char *input, char *output, char *cmdline,

char *curdir, int flags, int handler)

my_handler(int activity, int buf, int from, int to) // Sample.

int buf_pipe_text(int inputb, int outputb, char *cmdline,

char *curdir, int flags, ?int errorb)

10.4. Operating System Primitives 513

The pipe_text() subroutine runs the program specified by cmdline, passing it the contents of a

buffer as its standard input, and inserting its standard output into a second buffer (or the same buffer).

The input buffer name may be NULL if the process does not require any input. Epsilon provides a

current directory of curdir to the process. It passes Epsilon’s current directory if curdir is NULL or "".

This subroutine returns 0 and sets errno if the function could not be started, or returns 1 if the function

started successfully.

The PIPE_SYNCH flag means don’t return from the subroutine until the process has finished. Without

this flag, Epsilon starts the subprocess and then returns from pipe_text(), letting the subprocess run

asynchronously.

The PIPE_CLEAR_BUF flag means empty the output buffer before inserting the process’s text (but do

nothing if the process can’t be started); it’s convenient when the input and output buffers are the same, to

filter a buffer in place.

The PIPE_NOREFRESH flag tells Epsilon not to refresh the screen each time more data is received from

the process, and is most useful with PIPE_SYNCH if you don’t want the user to see the data until after it’s

been postprocessed in some way.

The PIPE_KEEP_ENV flag prevents Epsilon from modifying the environment it passes to the subprocess.

By default, it passes settings such as EPSRUNS=P to the subprocess.

The PIPE_SKIP_SHELL flag makes Epsilon directly invoke the specified program, instead of using a

shell as an intermediary. This results in improved performance, but command lines that use shell meta

characters (like >file for redirection, | for pipelines, or file pattern wildcards) won’t operate as desired.

Only Epsilon for Unix supports this flag. When Epsilon prepares an argument list from the command line, it

interprets and removes quotes which may surround arguments that contain spaces.

If handler is nonzero, it’s the index of a function (that is, an EEL function pointer) to call each time

text is received from the process, and when the process terminates. The handler function will be called with

the buffer number into which more process output has just been inserted, and from and to set to indicate the

new text. The parameter activity will be NET_RECV when characters have been received, or NET_DONE

when the subprocess has exited. In the latter case from will hold the process exit code.

The command inserts text in a buffer at its type_point (see the previous section), the same as other

functions that insert text into a buffer in the background.

Epsilon sets the buffer-specific process-exit-status variable in the output buffer to the value

PROC_STATUS_RUNNING when a process starts, and sets it to the process exit status (or 0) when the process

exits.

The pipe_text() subroutine described above is implemented using the buf_pipe_text() primitive.

There are a few differences between these:

The buf_pipe_text() primitive uses buffer numbers, not buffer names. It won’t create a buffer for

you the way the subroutine will; the buffer must already exist. (Pass 0 for a buffer number if you don’t need

input.)

Instead of passing a function pointer for handler, you must instead set the buffer-specific

when_activity variable in the output buffer prior to calling buf_pipe_text().

Pass a curdir of "", not NULL, to buf_pipe_text() to use Epsilon’s current directory.

The buf_pipe_text() primitive accepts an additional, optional, parameter errorb. If nonzero, any

output of the program sent to standard error will be sent to the errorb buffer instead of the outputb buffer.

If errorb is zero, such output will appear in outputb along with standard output.

int winexec(char *prog, char *cmdline, int show, int flags)

/* Pass these values to winexec: */

514 Chapter 10. Primitives and EEL Subroutines

#define SW_HIDE 0

#define SW_SHOWNORMAL 1

#define SW_SHOWMINIMIZED 2

#define SW_SHOWMAXIMIZED 3

#define SW_SHOWNOACTIVATE 4

#define SW_SHOW 5

#define SW_MINIMIZE 6

#define SW_SHOWMINNOACTIVE 7

#define SW_SHOWNA 8

#define SW_RESTORE 9

In Epsilon for Windows, the winexec() primitive runs a program, like the shell() primitive, but

provides a different set of options. Normally, the second parameter to winexec() contains the command

line to execute and the first parameter contains the full path of the program to execute.

The third parameter to winexec() specifies the window visibility state for the new program. It can be

one of the values listed above.

The fourth parameter contains flag bits. The SHELL_KEEP_ENV flag prevents Epsilon from putting

EPSRUNS=Y into the environment of the process it starts, as it does by default. The SHELL_SYNCH flag tells

Epsilon to wait for the program to finish before returning from the winexec() primitive. By default, the

primitive will return immediately.

This primitive returns the exit code of the program it ran. If an error prevented it from running the

program, it returns -1 and puts an error code in the global variable errno. When the primitive runs a

program without waiting for it to finish, the primitive returns zero if the program started successfully.

int run_viewer(char *file, char *action, char *dir)

The run_viewer() primitive runs the program associated with the given file, using its Windows file

association. The most common action is "Open", though a program may define others, such as "Print".

The dir parameter specifies the current directory in which to run the program. The primitive returns

nonzero if it was successful, or zero if it could not run the program or the program returned an error code.

This primitive always returns zero in the Unix version of Epsilon, which uses a shell script

epsilon-viewer to run a viewer.

10.5 Control Primitives

10.5.1 Control Flow

error(char *format, ...)

when_aborting() /* control.e */

quick_abort()

Epsilon provides several primitives for altering the flow of control from one statement to the next. The

error() primitive takes arguments like say(), displays the string as say() does, and then aborts the

current command, returning to the main loop (see page 557). In addition this primitive discards any

type-ahead and calls the user-defined subroutine when_aborting() if it exists. The standard version of

when_aborting() optionally rings the bell and removes the erroneous command from any keyboard macro

being defined. The primitive quick_abort() acts like error() but displays no message.

10.5. Control Primitives 515

user char user_abort;

int abort_key;

check_abort()

The variable user_abort is normally 0. It is set to 1 when you press the key whose value is

abort_key. To disable the abort key, set abort_key to -1. By default, the abort_key variable is set to

Control-G. Use the set-abort-key command to set the abort_key variable. See page 99.

The primitive check_abort() calls error() with the argument "Canceled." if the variable

user_abort is nonzero. Use the primitive check_abort() whenever a command can be safely aborted,

since otherwise an abort will only happen when the command returns. Epsilon calls check_abort()

internally during any searching operation (see page 428), when you use the delay() primitive (described

below) to wait, or (optionally) during certain file matching primitives (see page 551) and file input/output

(see page 477).

leave(?int exitcode)

when_exiting() /* EEL subroutine */

The primitive leave() exits Epsilon with the specified exit code (or 0 if omitted). A nonzero exit code

keeps Epsilon from saving any settings it normally would, such as the currently selected font’s name, or the

sizes of any resized dialogs.

Just before calling leave(), Epsilon’s standard commands call any subroutine whose name starts with

do_when_exiting_. It receives one integer parameter, nonzero if the user said to exit without checking for

unsaved buffers or saving the session. It should return no result. (It can abort if it needs to prevent Epsilon

from exiting; it should never do this if its parameter was nonzero, though.) Epsilon also calls the

when_exiting() subroutine; modifying it was an earlier way to customize Epsilon’s behavior when

exiting.

delay(int hundredths, int condition, ?int buf)

The delay() primitive takes an argument specifying a period of time, in hundredths of a second, and a

bit pattern specifying additional conditions (with codes specified in codes.h). It waits until one of the

conditions occurs, or until the specified time limit is reached. A time limit of -1 means to wait forever.

The condition code COND_KEY makes Epsilon return when a key is pressed or any key-generating input

event occurs (like a mouse event, or getting the focus). The condition code COND_TRUE_KEY is similar, but

only returns on actual keys, not mouse events or other events. The condition code COND_PROC makes

Epsilon return when a concurrent process is waiting for input, or has exited. The condition code

COND_PROC_EXIT makes Epsilon return when a concurrent process has exited. For the last two conditions,

Epsilon checks on the buffer specified by the optional parameter buf. If buf is missing or zero, it checks the

buffer named “process”. These conditions are ignored if no process is running in the specified buffer.

The condition flag COND_RETURN_ABORT, in combination with COND_KEY, makes the delay()

primitive return if the user presses the abort key, instead of aborting by calling the check_abort()

primitive. (Note that if you don’t specify COND_KEY or COND_TRUE_KEY as well, the primitive ignores all

keys, including the abort key.)

This function varies a bit from one operating system to another. For example, the Unix version of

Epsilon can’t detect when a process is currently waiting for input, so it can only return when a process exits.

Also see the timing functions on page 507.

int do_recursion()

leave_recursion(int val)

516 Chapter 10. Primitives and EEL Subroutines

int recursive_edit() /* control.e */

int recursive_edit_preserve() /* control.e */

char _recursion_level;

The do_recursion() primitive starts a new loop for getting characters and interpreting them as

commands. A recursive edit preserves the current values of the variables has_arg, iter, this_cmd, and

prev_cmd, but does not preserve the current buffer, window, or anything else. (See page 557.) Exit the

recursion by calling the leave_recursion() primitive. It arranges for the main loop to exit, instead of

waiting for another key to be executed. The call to do_recursion() will then return with a value of val,

the argument of the call to leave_recursion().

Sometimes a recursive edit is done “secretly,” and the user doesn’t know that one is being used. For

example, when Epsilon reads the name of a file using completion, it’s actually doing a recursive edit. Keys

like 〈Space〉 exit the recursive edit with a special code, and the function that did the recursive edit displays a

menu, or whatever is needed, and then does another recursive edit.

Other times (typing Ctrl-R in query-replace, for example), the user is supposed to exit the recursive edit

explicitly using the exit-level command. When you’re supposed to use exit-level to exit, Epsilon displays

extra []’s in the mode line as a reminder. The recursive_edit() subroutine does a recursive edit, and

arranges for these []’s to appear by modifying the _recursion_level variable. It contains the number of

extra []’s to display. The recursive_edit() subroutine returns the value returned by do_recursion().

The recursive_edit_preserve() subroutine calls recursive_edit(). If the user changes the

current buffer or window during the recursion, recursive_edit_preserve() returns to the original buffer

or window before itself returning. If the user deleted the original buffer or window during the recursive edit,

this subroutine remains in the new buffer or window and returns 0. It returns 1 otherwise.

If you call leave_recursion() when there has been no matching do_recursion(), Epsilon

automatically invokes the command exit. If exit returns instead of calling the primitive leave(), Epsilon

begins its main loop again.

int setjmp(jmp_buf *location)

longjmp(jmp_buf *location, int value)

Epsilon implements aborting by two special primitives that allow jumping from a function to another

point in that function or any of the functions that called it. The setjmp() primitive marks the place to

return, storing the location in a variable declared like this:

jmp_buf location;

After calling setjmp() with a pointer to this structure, you can return to this place in the code at any

time until this function returns by calling the longjmp() primitive. The first argument is a pointer to the

same structure, and the second argument may be any nonzero value.

The first time setjmp() is called, it returns a zero value. Each time longjmp() is called, Epsilon acts

as if it is returning from the original setjmp() call again, returning the second argument from the

longjmp(). For example:

one()

{

jmp_buf location;

if (setjmp(&location)){

stuff("Back in one\n");

10.5. Control Primitives 517

return;

} else

stuff("Ready to go\n");

two(&location);

}

two(loc)

jmp_buf *loc;

{

stuff("In two\n");

longjmp(loc, 1);

stuff("Never get here\n");

}

This example inserts the lines

Ready to go

In two

Back in one

jmp_buf *top_level;

The error() primitive uses the jump buffer pointed to by the top_level variable. If you wish to get

control when the user presses the abort key, temporarily change the value of top_level to refer to another

jump buffer. Make sure you restore it, however, or subsequent aborting may not work.

10.5.2 Character Types

int isspace(int ch)

int isdigit(int ch)

int isalpha(int ch)

int islower(int ch)

int isupper(int ch)

int isalnum(int ch) /* basic.e */

int isident(int ch) /* basic.e */

int any_uppercase(char *p)

Epsilon has several primitives that are helpful for determining if a character is in a certain class. The

isspace() primitive tells if its character argument is a space, tab, or newline character. It returns 1 if it is,

otherwise 0.

In the same way, the isdigit() primitive tells if a character is a digit (one of the characters 0 through

9), and the isalpha() primitive tells if the character is a letter. The islower() and isupper() primitives

tell if the character is a lower case letter or upper case letter, respectively.

The isalnum() subroutine returns nonzero if the specified character is alphanumeric: either a letter or

a digit. The isident() subroutine returns nonzero if the specified character is an identifier character: a

letter, a digit, or the _ character.

The any_uppercase() subroutine returns nonzero if there are any upper case characters in its string

argument p.

518 Chapter 10. Primitives and EEL Subroutines

int tolower(int ch)

int toupper(int ch)

The tolower() primitive converts an upper case letter to the corresponding lower case letter. It returns

a character that is not an upper case letter unchanged. The toupper() primitive converts a lower case letter

to its upper case equivalent, and leaves other characters unchanged.

int set_character_property(int ch, int propcode, int value)

You can alter the rules Epsilon uses for determining if a particular character is alphabetic, uppercase, or

lowercase, and how Epsilon case-folds when searching, sorting or otherwise comparing text, using the

set_character_property() primitive. It takes the numeric code of the character whose properties you

want to modify, a property code indicating which of its properties to access, and a new value for that

property.

The property code CPROP_CTYPE sets whether the isalpha(), isupper(), islower(), and

isdigit() primitives consider a character alphabetic, uppercase, lowercase, or a digit, respectively. These

attributes are independent, though there are conventions for their use. (For instance, only alpha characters

generally have a case, no character is both uppercase and lowercase, and so forth.) The bits C_ALPHA,

C_LOWER, C_UPPER, and C_DIGIT represent these attributes. The bits also control whether the regular

expressions <digit>, <alpha>, <alphanum>, and <word> match these characters; see page 66.

The property code CPROP_TOLOWER controls what value the tolower() primitive returns for the

specified character, and the property code CPROP_TOUPPER controls what value the toupper() primitive

returns for it.

The property code CPROP_FOLD controls how Epsilon case-folds that character during searching,

sorting, and similar functions, whenever case folding is in use. It specifies a replacement character to be

used in place of the original during comparisons. The complete set of case-folding properties must follow

two rules: if some character X folds to Y, then Y must fold to itself, and character codes below 256 must

never fold to a value greater than or equal to 256. (If a particular group of characters should be treated as

equal when searching, setting the case folding property of each to the code of the lowest-numbered one is

sufficient to comply with these rules.)

The primitive returns the previous value of the specified property of that character. If the new value is

out of range for the property (such as a negative value), it will be ignored, and the primitive will just return

the current value. You can use this to retrieve the current properties of a character without changing them.

Epsilon doesn’t store current character properties in its state file. If you want to use non-default

properties all the time, write a startup function that calls this primitive. See page 531.

Epsilon always starts with character classifications based on standard Unicode properties, except for the

Win32 console version. That version, when running with a DOS/OEM character set (see the

console-ansi-font variable), begins with its classifications for 8-bit characters set to match the current

OEM font.

int get_direction() /* window.e */

The get_direction() subroutine converts the last key pressed into a direction. It understands arrow

keys, as well as the equivalent control characters. It returns BTOP, BBOTTOM, BLEFT, BRIGHT, or -1 if the

key doesn’t correspond to any direction.

10.5. Control Primitives 519

10.5.3 Examining Strings

int strlen(char *s)

Epsilon provides various functions for manipulating strings, or equivalently, zero-terminated arrays of

characters. (General-purpose functions for modifying strings are covered in the next section.) The

strlen() primitive returns the length of a string. That is, it tells the position in the array of the first zero

character.

int strcmp(char *first, char *second)

int strncmp(char *first, char *second, int count)

The strcmp() primitive tells if two strings are identical. It returns 0 if all characters in them are the

same (and if they have the same length). Otherwise, it returns a negative number if the lexicographic

ordering of these strings would put the first before the second. It returns a positive number otherwise. The

strncmp() primitive is like strcmp(), except only the first count characters matter.

int strfcmp(char *first, char *second)

int strnfcmp(char *first, char *second, int count)

int charfcmp(int first, int second)

Epsilon also has similar comparison primitives that consider upper case and lower case letters to be

equal. The strfcmp() primitive acts like strcmp() and the strnfcmp() primitive acts like strncmp(),

but if the buffer-specific variable case_fold is nonzero, Epsilon folds characters in the same way searching

or sorting would before making the comparison. The charfcmp() primitive takes two characters and

performs the same comparison on them. For characters a and b, charfcmp(’a’, ’b’) equals

strfcmp("a", "b"). (EEL also recognizes the corresponding ANSI C name stricmp() instead of

strfcmp().)

int compare_chars(char *str1, char *str2, int num, int fold)

The compare_chars() primitive works like strcmp(), except that it makes no assumptions about

zero-termination. It takes two strings and a size, then compares that many characters from each string. If the

strings exactly match, compare_chars() returns zero. If str1 would be alphabetically before str2, it

returns a negative value. If str2 would be alphabetically before str1, it returns a positive value. It ignores

the case of the characters when comparing if fold is nonzero.

char *index(char *s, int ch)

char *rindex(char *s, int ch)

char *strstr(char *s, char *t)

char *strpbrk(char *s, char *charset)

char *strpbrk_cnt(char *s, char *charset, int skip)

The index() primitive tells if a character ch appears in the string s. It returns a pointer to the first

appearance of ch, or a null pointer if there is none. The rindex() primitive works the same, but returns a

pointer to the last appearance of ch. (EEL also recognizes the corresponding ANSI C names strchr()

instead of index() and strrchr() instead of rindex().)

The strstr() primitive searches the string s for a copy of the string t. It returns a pointer to the first

appearance of t, or a null pointer if there is none. It case-folds as described above for strfcmp().

520 Chapter 10. Primitives and EEL Subroutines

The strpbrk() subroutine returns a pointer to the first character in s that appears in the list of

characters charset. Both strings must be null-terminated. If the strings have no characters in common, it

returns a null pointer.

The strpbrk_cnt() subroutine is similar, but it skips over the first skip characters in s that also

appear in charset. For instance, with skip set to 1, it returns a pointer to the second character in s that

also appears in charset.

int fpatmatch(char *s, char *pat, int prefix, int flags)

#define FPAT_FOLD 1

#define FPAT_IGNORE_SQUARE_BRACKETS 2

The fpatmatch() primitive returns nonzero if a string s matches a pattern pat. It uses a simple

filename-style pattern syntax: * matches any number of characters; ? matches a single character, and [a-z]

match a character class (with the same character class syntax as other patterns in Epsilon). It also recognizes

| to permit alternatives. If prefix is nonzero, s must begin with text matching pat; otherwise pat must

match all of s.

The flags parameter recognizes two bits. The FPAT_FOLD bit makes Epsilon fold characters before

comparing, according to the current buffer’s folding rules. The FPAT_IGNORE_SQUARE_BRACKETS bit

makes Epsilon treat the character [in a pattern like any other, instead of interpreting it as the start of a

character class.

int string_matches_regex(char *str, char *pat, int fold)

int string_matches_pattern(char *str, char *pat)

The string_matches_regex() subroutine returns nonzero if the start of the given string matches the

regular expression pattern. Use <eof> at the end of the pattern to check if the entire string matches. It does

case-folding if fold is nonzero.

The similar string_matches_pattern() subroutine returns the length of match (which differs from

the above only with patterns that can match zero-length text), and uses case_fold.default.

Both return zero when given an invalid regular expression pattern.

int word_in_list(char *word, char *list, int fold)

int starts_with_in_list(char *word, char *list, int fold)

The word_in_list() subroutine returns nonzero whenever the text in word appears in the |-separated

list of words list. “Word” here means any text that doesn’t contain an actual | character. The list of words

must begin and end with | delimiters. The similar starts_with_in_list() subroutine returns nonzero

whenever word starts with one of the words in the list. Both do case-folding if fold is nonzero. They are

faster than the regular-expression-based subroutines above.

10.5.4 Modifying Strings

strcpy(char *tostr, char *fromstr)

strncpy(char *tostr, char *fromstr, int count)

copy_expanding(char *src, char **dest, int minlen)

10.5. Control Primitives 521

The strcpy() primitive copies the null-terminated string fromstr to the array at tostr, including the

terminating null character. The strncpy() primitive does the same, but always stops when count

characters have been transferred, adding an additional null character to the string at tostr if necessary.

The copy_expanding() subroutine helps work with text that has no fixed length, stored in a

dynamically allocated character pointer, not a fixed-length character array. Pass a pointer to a char *

variable as dest, and the subroutine will resize it as needed to hold src. The char * variable may hold

NULL initially. The minlen parameter provides a minimum allocation length for the result.

strcat(char *tostr, char *fromstr)

strncat(char *tostr, char *fromstr, int count)

The strcat() primitive concatenates (or appends) the string at fromstr after the string at tostr. For

example, if fromstr points at the constant string “def” and tostr is an array of 10 characters that contains

“abc” (and then, of course, a null character, plus 6 more characters with any value), then strcat(tostr,

fromstr); makes the array tostr contain “abcdef” followed by a null character and 3 unused characters.

The strncat() primitive works similarly. It appends at most count characters from fromstr, and

ensures that the result is zero-terminated by adding a null character if necessary. Note that the count limits

the number of characters appended, not the total number of characters in the string.

set_chars(char *ptr, char value, int count)

The set_chars() primitive sets all the count characters in a character array ptr to the given value.

int sprintf(char *dest, char *format, ...)

The sprintf() primitive is the most powerful string building primitive Epsilon provides. It takes two

or more arguments. The first is a character array. The remaining arguments are in the format that say()

uses: a format string possibly followed by more arguments. (See page 461.) Instead of printing the string

that is built on the screen, it copies the string into the destination array, and returns the number of characters

copied.

int expand_string_template(char *dest, char *template,

char *keys, char *vals[])

The expand_string_template() subroutine uses a template to construct a new string dest. The

template contains zero or more escape sequences, each a percent character % followed by another letter. The

subroutine replaces each escape sequence with its corresponding value. The allowed escape sequence

characters should be listed in keys, and their replacement values should be listed in the array of strings

vals in the same order. Epsilon will interpolate the sequences to construct dest, returning nonzero to

indicate an error in the template (usually an unknown escape sequence).

For instance, if keys contains "ad", and the supplied vals array has been set so vals[0] is "happy"

and vals[1] is "tiger", then the template "the %a is %d today" is copied to dest as "the tiger

is happy today", and the subroutine will return 0.

The subroutine provides two built-in codes. For %x, it substitutes the directory name that contains

Epsilon’s executable. For %X, it substitutes the same, but (under Windows) converted to its 8.3 filename alias

using the convert_to_8_3_filename() primitive. These built-in codes shouldn’t appear in the keys

string.

522 Chapter 10. Primitives and EEL Subroutines

10.5.5 Byte Arrays

These functions operate on 8-bit byte arrays, not 16-bit characters.

int memcmp(byte *str1, byte *str2, int num)

int memfcmp(byte *str1, byte *str2, int num)

memcpy(byte *tostr, byte *fromstr, int num)

memset(byte *ptr, char value, int count)

The memcmp() and memfcmp() primitives compare 8-bit bytes, not 16-bit characters like the

compare_chars() and strcmp() primitives do. The memfcmp() primitive ignores case, memcmp()

doesn’t. They return values like the others, and don’t stop comparing when an array element has a zero

value, as strcmp() does.

The memcpy() primitive copies exactly num bytes from the second byte array to the first.

The memset() primitive sets all the count bytes in a byte array ptr to the given value.

chars_to_bytes(byte *b, char *s)

bytes_to_chars(char *s, byte *b)

The chars_to_bytes() function copies the null-terminated character string s to the byte array b,

discarding the upper 8 bits of each 16-bit character.

The bytes_to_chars() function copies the null-terminated byte string b to the character array s.

10.5.6 Memory Allocation

char *malloc(int size)

char *realloc(char *ptr, int size)

free(char *ptr)

Epsilon maintains a pool of memory and provides primitives for allocating and deallocating blocks of

any size. The malloc() primitive takes an int giving the number of characters of space required, and returns

a pointer to a block of that size.

The realloc() primitive takes a pointer previously allocated with malloc(). First, it tries to expand

the block to the requested size. If it cannot do that, it allocates another block of the requested size, then

copies the old characters to the new block. In either case, it returns a pointer to a block of the requested size.

The free() primitive takes a pointer that malloc() previously returned and puts it back into the

storage pool. Never use a block after you free it.

char *strsave(char *s)

char *strkeep(char *s)

For convenience, Epsilon provides a primitive to copy a string to an allocated block of the proper size.

The strsave() primitive is used when a string needed later is stored in an array that must be reused. The

primitive returns a pointer to the copy of the string it makes. The free() primitive may be given this

pointer when the string is no longer needed.

The strkeep() subroutine also saves a string so it may be used later, returning a pointer to the copy.

It’s often used to store a mode name for use with the major_mode variable. Unlike strsave(), calling

strkeep() on the same text multiple times always reuses the same saved block. Strings allocated by

strkeep() may not be freed; they remain until Epsilon exits.

10.5. Control Primitives 523

user int mem_in_use;

The mem_in_use variable gives the space in bytes Epsilon is now using for miscellaneous storage (not

including buffer text).

set_swapname(char *path)

If Epsilon can’t fit all your files in available memory, it will swap parts to disk. The parts are contained

in one or more swap files. The set_swapname() primitive tells Epsilon what directories to use for swap

files, if it needs them. The argument is a string containing a list of directories in which to place swap files, as

described under the -fs command line flag. After swapping has begun, this primitive has no effect.

Supplying an empty argument "" makes Epsilon use the standard place for swapping, as described under the

-fs command line switch on page 14.

10.5.7 The Name Table

int final_index()

Epsilon keeps track of all EEL variables, commands, subroutines, key tables, color schemes, and

keyboard macros in its name table. Each of these items has an entry there that lists its name, type, value, and

additional information. An EEL program can access the table using a numeric index, like an array index.

The first valid index to the name table is 1, and the final_index() primitive returns the last valid index.

The index is based on the order in which the names were defined.

All variables appear in the name table, including primitive variables. Primitive functions (like most of

those defined in this chapter) and EEL’s #define textual macros are not in the name table. A state file

contains an exact copy of a name table (plus some additional information).

Each entry contains the name of the item, a type code, a debugging flag, a help file offset, and whatever

information Epsilon needs internally to make use of the item. When executing an EEL program, Epsilon

automatically uses the table to find the value of a variable, for example, or execute a command. You can

manipulate the table with EEL functions.

int find_index(char *name)

There are two ways to get an index if you have the name of an item. The find_index() primitive takes

an item name as a string and returns the index of that item, or 0 if there is no such item. If the item is an EEL

command or subroutine, casting its function pointer to a short also yields the index. For example, (short)

forward_word gives the index of the command forward-word if forward_word() has been declared

previously in the source file the expression appears in.

char *name_name(int index)

int name_type(int index) /* codes: */

#define NT_COMMAND 1 /* normal bytecode function */

#define NT_SUBR 2 /* hidden bytecode function */

#define NT_MACRO 3 /* keyboard macro */

#define NT_TABLE 4 /* key table */

#define NT_VAR 5 /* normal variable */

#define NT_BUFVAR 6 /* buffer-specific variable */

#define NT_WINVAR 7 /* window-specific variable */

#define NT_COLSCHEME 8 /* color scheme */

524 Chapter 10. Primitives and EEL Subroutines

#define NT_BUILTVAR 9 /* built-in variable */

#define NT_AUTOLOAD 10 /* load cmd from file */

#define NT_AUTOSUBR 11 /* load subr from file */

The primitives name_name() and name_type() return the name and type of a table entry, respectively.

They each take an index into the name table and return the desired information. The value returned by

name_name() is only valid until the next call to this function. Copy the name if you want to preserve it.

The codes for name_type() are in the standard include file codes.h.

int try_calling(char *name)

The try_calling() primitive calls a subroutine or command if it exists and doesn’t complain if the

function does not exist. It takes the name of the function to call. It returns 0 if the function doesn’t exist.

The function it calls must not require arguments.

int call_with_arg_list(int func, char *argtypes, int intargs[],

char *strargs[], ?char **res)

The call_with_arg_list() primitive can call an EEL function that takes only integer and string

parameters, specified by its name table index func. The caller must specify the types of the parameters to

pass in argtypes, and supply the integer and string parameters in the arrays intargs and strargs,

respectively. The argtypes value is a list of characters: “i” for an integer, or “s” for a string. For each “i”,

Epsilon uses the next entry in the intargs array, and for each “s”, the strargs array.

If the EEL function returns an integer, the call_with_arg_list() primitive returns it. If it returns a

character pointer, pass the address of a character pointer, and the primitive will fill it in with the return value.

The func parameter may refer to a keyboard macro if argtypes is empty.

int drop_name(char *name)

To delete an item from the name table, use the drop_name() primitive. It returns 0 if it deleted the

name, 1 if there was no such name in the name table, and 2 if there was such a name but it couldn’t be

deleted because it is currently in use.

int replace_name(char *old, char *new)

The replace_name() primitive renames an item in the name table. It returns 0 if the name change was

successful, 1 if the original name did not exist, and 2 if the name change was unsuccessful because another

item had the new name already. Any references to the original item result in an error, unless you provide a

new definition for it later.

Sometimes when writing an Epsilon extension, you may wish to redefine one of Epsilon’s built-in

subroutines (getkey(), for example) to do something in addition to its usual action. You can, of course,

simply modify the definition of the function, adding whatever you want. Unfortunately, if someone else

gives you an extension that modifies the same function, it will overwrite your version. You’ll have the same

problem when you get a new version of Epsilon—you’ll have to merge your change by hand.

#define REPLACE_FUNC(ext, func)

/* definition omitted */

10.5. Control Primitives 525

Alternatively, you can create an extension that modifies the existing version of a function, even if it’s

already been modified. The trick is to replace it with a function that calls the original function. This can be

done from a when_loading() function by using the replace_name() and drop_name() primitives, but

eel.h defines a macro that does all of this. The REPLACE_FUNC() macro takes the name of the extension

you’re writing, and the name of the existing subroutine you want to replace. It doesn’t really matter what the

extension name is, just so long as no other extension uses it.

Here’s an example. Suppose you’re writing an extension that displays “Hello, world” whenever you

start Epsilon. You’ve decided to name the extension “hello”, and you want Epsilon’s start_up() function

to do the work. Here’s what you do:

new_hello_start_up() /* will be renamed to start_up */

{

say("Hello, world");

hello_start_up(); /* call old (which will have this name) */

}

REPLACE_FUNC("hello", "start-up")

Notice the steps: first you have to define a function with a name of the form

new_<extension-name>_<replaced-function-name>. Make sure it calls a function named

<extension-name>_<replaced-function-name>. Then do the REPLACE_FUNC(), providing the two names.

This will rename the current <replaced-function-name> to <extension-name>_<replaced-function-name>,

then rename your function to <replaced-function-name>.

10.5.8 Built-in and User Variables

Variables that are automatically defined by Epsilon, and have no definition in eel.h, are called built-in

variables. These include point, bufnum, and most of the primitive variables described in this chapter. All

such built-in variables have entries in Epsilon’s name table, so that you can see and set them using

commands like set-variable or set-any-variable. Built-in variables have a name_type() code of

NT_BUILTVAR.

int get_num_var(int i)

set_num_var(int i, int value)

char *get_str_var(int i)

set_str_var(int i, char *value)

Epsilon has several primitives that let you get and set the value of numeric and string global variables

(including both built-in and ordinary, user-defined variables). Each primitive takes a name table index i.

The get_num_var() and get_str_var() primitives return the numeric or string value (respectively) of

the indicated variable, while the set_num_var() and set_str_var() primitives set the variable. If you

provide an index that doesn’t refer to a variable of the correct type, the setting functions do nothing, while

the getting functions return zero. (See the vartype() primitive below.) The set_str_var() primitive

only operates on variables with a character pointer data type, not on character arrays. Use varptr() below

to modify character arrays.

The set-variable command and similar functions look for and try to call a function named

when_setting_varname() after setting a variable named varname. For most variables a function with that

name doesn’t exist, and nothing happens. The want-code-coloring variable is an example of a variable

526 Chapter 10. Primitives and EEL Subroutines

with a when_setting() function. Its when_setting() function sets various other variables to match

want-code-coloring’s new value.

Any user attempts to set a variable (such as running set-variable or loading a command file) will call

such a function, but an ordinary assignment statement in an EEL function will not. If you write an EEL

function that sets a variable with a when_setting() function, you should call the function explicitly after

setting the variable.

int name_user(int i)

set_name_user(int i, int is_user)

For each global variable, built-in or not, Epsilon records whether or not it is a “user” variable. Some

commands such as set-variable only show user variables. Otherwise, Epsilon treats user variables the same

as others. The name_user() primitive returns non-zero if the variable with the given name table index is a

user variable, and the set_name_user() primitive sets whether a variable with a particular name table

index is a user variable.

user int my_var; // sample declaration

By default, variables you declare with EEL are all non-user variables, hidden from the user. If the user

is supposed to set a variable directly in order to alter a command’s behavior, put the user keyword before its

global variable definition to make it a user variable. (In previous versions, Epsilon used a convention that

any non-user variables you defined had to start with an underscore character, and all others were effectively

user variables. This convention still works: set-variable will still exclude such variables from normal

completion lists.)

int ptrlen(char *p, ?int in_bytes)

typedef struct eel_pointer { /* format of EEL pointer */

int base, size, value;

} EEL_PTR;

The ptrlen() primitive takes a pointer of any type and returns the size in characters of the object it

points to. The value of ptrlen(p) is the lowest value i for which ((char *)p)[i] is an illegal

dereference. If its optional second argument is nonzero, it returns its count in bytes, not characters.

(Characters are 16 bits wide, while bytes are 8 bits wide.)

The EEL_PTR type, defined in lowlevel.h, is a structure representing the internal format of an EEL

pointer (except for function pointers, which are represented as short integers internally). An EEL pointer

consists of a base, a size, and a value. The base and value are standard system pointers, and the size is an

integer. Epsilon compares the three fields to catch invalid pointer usage.

Whenever a function dereferences a pointer, Epsilon checks that the fields are consistent. That is, it

makes sure that value is greater than or equal to base, and that value is less than base+size. Epsilon will

report an illegal dereference if these conditions are not met.

When Epsilon constructs a pointer, it sets the base field to the start of the block of storage within which

the pointer points, and sets the size field to the size of the block of storage, in bytes. Epsilon then sets the

value field to the actual address to which the pointer points. For example, if an EEL pointer p points to the

letter ‘c’ in the string "abcd" (which is terminated by a null character), the size field of p will contain 10

(since five 16-bit characters require ten bytes), the base field will point to the ‘a’, and the value field will

point to the ‘c’. Adding an integer to p will change only the value field. Notice that the modified version of

p is “consistent” according to the rules above exactly when dereferencing it would be legal: *(p - 2),

*(p - 1), *p, *(p + 1) and *(p + 2). The ptrlen() primitive above is often a better way to access

pointer boundary information, and is less likely to change in future versions.

10.5. Control Primitives 527

#include "eel.h"

#include "lowlevel.h"

command eel_ptr_example()

{

char *hello = "Hello world";

char *p = hello + 6;

EEL_PTR *ptr = (EEL_PTR *) &p;

say("Hello’s value is %x, size in bytes is %d, base is %x", hello);

say("P’s value is %x, size in bytes is %d, base is %x", p);

say("P’s value is %x, size in bytes is %d, base is %x",

ptr->value, ptr->size, ptr->base);

say("P’s value is %x", ((int *)&p)[2]);

}

The above example shows various ways to display the internal structure of pointers for debugging

purposes.

char *varptr(int i)

int pointer_to_index(void *)

The varptr() primitive returns a pointer to any global variable given its index in the name table. The

pointer is always a character pointer and should be cast to the correct type before it’s used. When varptr()

is applied to a buffer-specific or window-specific variable, Epsilon checks the use_default variable to

determine if a pointer to the default or current value should be returned (see page 528). This function

doesn’t operate with built-in variables—use get_num_var() and similar functions for these.

The pointer_to_index() primitive does the reverse. It takes a pointer and checks to see if it refers to

a global variable. If a global variable is an array or structure, the pointer can point anywhere within. It

returns the name table index of the global variable, or 0 if the pointer doesn’t point to the contents of any

global variable.

int vartype(int i)

#define TYPE_CHAR 1 /* 16-bit Unicode character */

#define TYPE_SHORT 2 /* a 16-bit number */

#define TYPE_INT 3 /* a 32-bit number */

#define TYPE_CARRAY 4 /* character array */

#define TYPE_CPTR 5 /* character pointer */

#define TYPE_POINTER 6 /* contains pointers or spots */

#define TYPE_OTHER 7 /* none of the above */

#define TYPE_BYTE 8 /* an 8-bit number */

int vartype_class(int i)

The vartype() primitive returns information on the type of a global variable (or buffer-specific or

window-specific variable). It takes the index of the variable in the name table and returns one of the above

codes if the variable has type byte, character, short, integer, character array, or character pointer. It returns

TYPE_POINTER if the variable is a spot or pointer, or a structure or union containing a spot or pointer. For

other types of variables, it returns TYPE_OTHER. It returns 0 if the given index doesn’t refer to a variable.

528 Chapter 10. Primitives and EEL Subroutines

The vartype_class() subroutine can be more convenient than vartype(). It returns 1 if the variable

(specified by its name table index) has a numeric type, 2 if it has a string type (TYPE_CARRAY or

TYPE_CPTR), and 0 otherwise.

int new_variable(char *name, int type, int vtype, ?int length)

The new_variable() primitive provides a way to create a new variable without having to load a

bytecode file. The first argument specifies the name of the variable. The second argument is a type code of

the kind returned by the name_type() primitive. The code must be NT_VAR for a normal variable,

NT_BUFVAR for a buffer-specific variable, NT_WINVAR for a window-specific variable, or NT_COLSCHEME for

a color scheme. The third argument is a type code of the kind returned by the vartype() primitive. This

code must be one of the following: TYPE_BYTE, TYPE_CHAR, TYPE_SHORT, TYPE_INT, or TYPE_CARRAY.

The last argument is a size, which is used only for TYPE_CARRAY. It returns the name table index of the new

variable, or -1 if it couldn’t create the variable in question.

10.5.9 Buffer-specific and Window-specific Variables

char use_default;

Epsilon’s buffer-specific variables have a value for each buffer. They change when the current buffer

changes. When you create a new buffer, you also automatically create a new copy of each buffer-specific

variable. The initial value of each newly created buffer-specific variable is set from special default values

Epsilon maintains. These values may be set using the variable use_default. When use_default is

nonzero, referencing any buffer-specific variable accesses its default value, not the value for the current

buffer. Otherwise, a value particular to the current buffer applies, as usual.

The normal way to reference a variable’s default value is to use the “.default” syntax described on page

385, not to set use_default.

Window-specific variables have a separate value for each window. When you split a window, the newly

created window initially has the same values for all variables as the original window. Each window-specific

variable also has a default value, which can be referred to in the same way as buffer-specific variables, via

the “.default” syntax described on page 385 or by setting the use_default variable. Epsilon uses the

default value to initialize the first window it creates, during startup, and when it creates pop-up windows.

Only the default values of window- and buffer-specific variables are saved in a state file.

copy_buffer_variables(int tobuf, int frombuf)

safe_copy_buffer_variables(int tobuf, int frombuf)

The copy_buffer_variables() primitive sets all buffer-specific variables in the buffer tobuf to

their values in the buffer frombuf. If frombuf is zero, Epsilon resets all buffer-specific variables in the

buffer tobuf to their default values. The safe_copy_buffer_variables() subroutine calls

copy_buffer_variables(), then clears the values of certain variables that should not be copied between

buffers; generally these variables are spot variables that must always refer to positions within their own

buffers.

10.5.10 Bytecode Files

load_commands(char *file)

load_from_path(char *file) /* control.e */

int load_eel_from_path(char *file, int flags)

10.5. Control Primitives 529

The load_commands() primitive loads a bytecode file of command, subroutine and variable definitions

into Epsilon after the EEL compiler has produced it from the .e source file. The primitive changes the name

provided so that it has the appropriate .b extension, then opens and reads the file. The primitive prints a

message and aborts to top-level if it cannot find the file or the file name is invalid.

The subroutine load_from_path() searches for a bytecode file using the lookpath() primitive (see

page 494) and loads it using load_commands().

The load_eel_from_path() subroutine searches for an EEL source file with the specified name using

lookpath(). Then it compiles and loads the file. Bits in the flags parameter tell it when to report errors to

the user. By default, it doesn’t. The 1 bit means complain if the file contained errors, and 2 means also

complain if no file by that name was found. The 4 bit has it tell lookpath() to search the current directory

first. The subroutine returns zero if the file compiled and loaded without errors, one if it wasn’t found, and

two for other errors.

int eel_compile(char *file, int use_fsys, char *flags,

char *errors, int just_check)

The eel_compile() primitive lets Epsilon run the EEL compiler without having to invoke a command

processor. File specifies the name of a file or buffer. If use_fsys is nonzero, it names a file; if use_fsys

is zero, a buffer. The flags parameter may contain any desired command line flags. Compiler messages

will go to the buffer named errors. Unless errors occur or the just_check parameter is nonzero, Epsilon

will automatically load the result of the compilation. No bytecode file on disk will be modified. Note that

when the compiler includes header files, it will always read them from disk, even if they happen to be in an

Epsilon buffer.

The primitive returns 0 on success, 1 if the compilation had fatal errors and did not complete, 2 if the

compiler could not be located, or -1 if the user aborted.

when_loading() /* EEL subroutine */

Any subroutines with the special name when_loading() execute as they are read, and then go away.

There may be more than one of these functions defined in a single file. (Note: When the last function

defined in an EEL file has been deleted or replaced, Epsilon discards all the constant strings defined in that

file. So a file that contains only a when_loading() function will lose its constant strings as soon as it exits.

If a pointer to such a string must be put in a global variable, use the strsave() primitive to make a copy of

it. See page 522.)

The autoload_commands() primitive described below executes any when_loading() functions

defined in the file, just as load_commands() would. Epsilon never arranges for a when_loading()

function to be autoloaded, and will execute and discard such functions as soon as they’re loaded. If you run

autoload_commands() on a file with when_loading() functions, Epsilon will execute them twice: once

when it initially sets up the autoloading, and once when it autoloads the file.

user char *byte_extension;

user char *state_extension;

The extensions used for Epsilon’s bytecode files and state files may vary with the operating system.

Currently, all operating system versions of Epsilon use “.b” for bytecode files, and “.sta” for state files. The

byte_extension and state_extension primitives hold the appropriate extension names for the

particular version of Epsilon.

autoload(char *name, char *file, int issubr)

autoload_commands(char *file)

530 Chapter 10. Primitives and EEL Subroutines

Epsilon has a facility to define functions that are not loaded into memory until they are invoked. The

autoload() primitive takes the name of a function to define, and the name of a bytecode file it can be

found in. The file name string may be in a temporary area, because Epsilon makes a copy of it.

The primitive’s final parameter should be nonzero to indicate that the autoloaded function will be a

subroutine, or zero if the function will be a command. (Recall that commands are designed to be invoked

directly by the user, and may not take parameters, while subroutines are generally invoked by commands or

other subroutines, and may take parameters.) Epsilon enters the command or subroutine in its name table

with a special code to indicate that the function is an autoloaded function: NT_AUTOLOAD for commands, or

NT_AUTOSUBR for subroutines.

When Epsilon wants to call an autoloaded function, it first invokes the EEL subroutine

load_from_path(), passing it the file name from the autoload() call. The standard definition of this

function is in the file control.e. It searches for the file along the EPSPATH, as described on page 12, and

then loads the file. The load_from_path() subroutine reports an error and aborts the calling function if it

cannot find the file.

When load_from_path() returns, Epsilon checks to see if the function is now defined as a regular,

non-autoloaded function. If it is, Epsilon calls it. However, it is not necessarily an error if the function is still

undefined. Sometimes a function’s work can be done entirely by the when_loading() subroutines that are

run and immediately discarded as a bytecode file loads.

For example, all the work of the set-color command was once done by a when_loading() function in

the EEL file color.e. (In recent versions, it no longer uses autoloading.) Loading the corresponding bytecode

file automatically ran this when_loading() function, which displayed some windows and let the user

choose colors. When the user exited from the command, Epsilon discarded the code for the

when_loading() function that displayed windows and interpreted keys, and finishes loading the bytecode

file. The set-color command was still defined as a command that autoloads the color.b bytecode file, so the

next time the user ran this command, Epsilon loaded the file again.

If the autoloaded function was called with parameters, but remains undefined after Epsilon tries to

autoload it, Epsilon aborts the calling function with an error message. Functions that use the above

technique to load temporarily may not take parameters.

Like load_commands(), the primitive autoload_commands() takes the name of a compiled EEL

bytecode file as a parameter. It loads any variables or bindings contained in the file, just like

load_commands(). But instead of loading the functions in the file, this primitive generates an autoload

request for each function in the file. Whenever any EEL function tries to call a function in the file, Epsilon

will load the entire file.

10.5.11 Starting and Finishing

do_save_state(char *file)

int save_state(char *file)

The do_save_state() subroutine writes the current state to the specified file. It aborts with an error

message if it encounters a problem. It uses the save_state() primitive to actually write the state. The

primitive returns 0 if the information was written successfully, or an error code if there was a problem (as

with file_write()). Both change the extension to “.sta” before using the supplied name.

The state includes all commands, subroutines, keyboard macros, and variables. It does not include

buffers or windows. Since a state file can only be read while Epsilon is starting (when there are no buffers or

windows), only the default value of each buffer-specific or window-specific variable is saved in a state file.

Pointer variables will have a value of zero when the state file is loaded again. Epsilon does not save the

object that is pointed to. Spot variables and structures or unions containing pointers or spots are also zeroed,

10.5. Control Primitives 531

but other types of variables are retrieved unchanged (but see the description of the zeroed keyword on page

406).

short argc;

char *argv[];

When Epsilon starts, it examines the arguments on its command line, and modifies its behavior if it

recognizes certain special flags. But first it adds in the contents of the configuration variable EPSILON, if

this exists, putting this before any actual command line parameters.

Epsilon looks for certain special flags, interprets them and removes them from the command line. It

then passes the remainder of the command line to the EEL startup code in cmdline.e. That code interprets

any remaining flags and files on the command line. You can add new flags to Epsilon by modifying

cmdline.e. See page 13 for the meaning of each of Epsilon’s flags.

Epsilon interprets and removes these flags from the command line:

-k Keyboard options -m Memory control

-s Load from state file -w Directory options

-b Load from bytecode file -v Video options

Some of these settings are visible to an EEL program through variables. See the load-from-state

variable for the -b flag, the state_file variable for the -s flag, the want-cols and want-lines variables

for the -vc and -vl flags, and the directory-flags variable for the -w flag.

All other flags, as well as any specified files, are interpreted by the EEL functions in cmdline.e. They

read the command line from the argc and argv variables, already broken down into words. The argc

variable contains the number of words in the command line. The argv variable contains the words

themselves. The first word on the command line, argv[0], is always the name of Epsilon’s executable file,

so that if argc is 2, there was one argument and it is in argv[1].

char *original_argv(int n)

The original_argv() primitive lets EEL code access Epsilon’s original command line arguments,

including those interpreted internally and not passed along to EEL code in the argv array, and excluding

those added by any EPSILON configuration variable. Calling original_argv(1) returns the first

command line argument, original_argv(2) the second, and so forth. A null return value indicates there

are no more arguments. Calling original_argv(0) returns the full path of Epsilon’s executable.

when_restoring() /* cmdline.e */

early_init() /* cmdline.e */

middle_init() /* cmdline.e */

start_up() /* cmdline.e */

user char *version;

apply_defaults()

Epsilon calls the EEL subroutine when_restoring() if it exists after loading a state file. Unlike

when_loading(), this subroutine is not removed after it executes. The standard version of

when_restoring() sets up variables and modes, and interprets the command line. It calls several EEL

subroutines at various points in the process. Each does nothing by default, but you can conveniently

532 Chapter 10. Primitives and EEL Subroutines

customize Epsilon by redefining them. (See page 524 to make sure your extension doesn’t interfere with

other extensions.)

The when_restoring() function calls early_init() just before interpreting flags, and

middle_init() just after. It then loads files (from the command line, or a saved session), displays

Epsilon’s version number, and calls the start_up() subroutine. (The version variable contains a string

with the current version of Epsilon, such as “9.0”.) Finally, Epsilon executes any -l and -r switches.

The when_restoring() subroutine calls the apply_defaults() primitive before it calls

early_init(). This primitive sets the values of window-specific and buffer-specific variables in the

current buffer and window to their default values.

char state_file[];

user char load_from_state;

The state_file primitive contains the name of the state file Epsilon was loaded from, or "" if it was

loaded only using bytecode files with the -b flag. The load_from_state variable will be set to 1 if Epsilon

loaded its functions from a state file at startup, or 0 if it loaded only from bytecode files.

after_loading()

After Epsilon calls the when_restoring() subroutine, it finishes its internal initialization by checking

for the existence of certain variables and functions that must be defined if Epsilon is to run. Until this is

done, Epsilon can’t perform a variety of operations such as getting a key from the keyboard, displaying

buffers, and searching. The after_loading() primitive tells Epsilon to finish initializing now. The

variables and functions listed in figure 10.2 must be defined when you call after_loading().

finish_up()

user char leave_blank;

When Epsilon is about to exit, it calls the subroutine finish_up(), if it exists. (See page 524 to make

sure your extension doesn’t interfere with other extensions that may also define finish_up().) Epsilon

normally redisplays each mode line one last time just before exiting, so any buffers that it saved just before

exiting will not still be marked unsaved on the screen. However, if the leave_blank primitive is nonzero, it

skips this step.

10.5.12 EEL Debugging and Profiling

int name_debug(int index)

set_name_debug(int index, int flag)

Every command or subroutine in Epsilon’s name table has an associated debug flag. If the debug flag of

a command or subroutine is nonzero, Epsilon will start up the EEL debugger when the function is called,

allowing you to step through the function line by line. See page 159. The name_debug() primitive returns

the debug flag for an item, and the set_name_debug() primitive sets it.

start_profiling()

stop_profiling()

char *get_profile()

10.5. Control Primitives 533

when_idle()

when_displaying()

when_repeating()

getkey()

on_modify()

prepare_windows()

build_mode()

fix_cursor()

load_from_path()

color_class standard_color;

color_class standard_mono;

user int see_delay;

user short beep_duration;

user short beep_frequency;

user char mention_delay;

char _display_characters[];

user buffer int undo_size;

buffer short *mode_keys;

user buffer short tab_size;

user buffer short case_fold;

buffer char *_display_class;

char *_echo_display_class;

user window int display_column;

window char _highlight_control;

window char _window_flags;

char use_process_current_directory;

Figure 10.2: Variables and functions that must be defined.

534 Chapter 10. Primitives and EEL Subroutines

Epsilon can generate an execution profile of a section of EEL code. A profile is a tool to determine

which parts of a program are taking the most time. The start_profiling() primitive begins storing

profiling information internally. Profiling continues until Epsilon runs out of space, or you call the

stop_profiling() primitive, which stops storing the information. Many times each second, Epsilon saves

away information describing the location in the source file of the EEL code it is executing, if you’ve turned

profiling on. You can use this to see where a command is spending its time, so that you can center your

efforts to speed the command up there.

Once you stop the profiling with the stop_profiling() primitive, you can retrieve the profiling

information with the get_profile() primitive. Each call returns one line of the stored profile information,

and the function returns a null pointer when all the information has been retrieved. Each line contains the

name of an EEL source file and a line number within the file, separated by a space. See the profile command

for a more convenient way to use these primitives. Functions that you’ve compiled with the EEL compiler’s

-s flag will not appear in the profile.

10.5.13 Help Subroutines

int name_help(int index)

set_name_help(int index, int offset)

get_doc() /* help.e */

Every item in Epsilon’s name table has an associated help file offset. The help offset contains the

position in Epsilon’s help file “edoc” where information on an item is stored. Epsilon uses it to provide

quick access to help file items. It is initially -1, and may be set with the set_name_help() primitive and

examined with the name_help() primitive. (The Windows version of Epsilon normally uses a standard

Windows help file to display help, so it doesn’t use these help file offsets.)

When an EEL function wants to look up information in the help file, it calls the EEL subroutine

get_doc(). This function loads the help file into the buffer “-edoc” if it hasn’t been loaded before.

Epsilon’s help file “edoc” uses a simple format that makes it easy to add new entries for your own

commands. Each command’s description begins with a line consisting of a tilde (˜), the command or

variable’s name, a 〈Tab〉, and the command’s one-line description (or, for a variable, some type

information). Following lines (until the next line that starts with ˜, or the end of the file) constitute the

command’s full description. The entries can occur in any order; they don’t have to be listed alphabetically.

An entry can contain a cross-reference link to another entry in the file; these consist of the name of the

command or variable being cross-referenced, bracketed by two control characters. Put a ^A character before

the name of the command or variable, and a ^B character after. Also see the description of the

view_linked_buf() subroutine on page 445.

help_on_command(int ind) /* help.e */

help_on_current() /* help.e */

The help_on_command() subroutine provides help on a particular command. It takes the name table

index of the command to provide help on.

The help_on_current() subroutine displays help on the currently-running command. It uses the

last_index variable to determine the current command.

show_binding(char *fmt, char *cmd) /* help.e */

The show_binding() subroutine displays the message fmt using the say() primitive. The fmt must

contain the %s sequence (and no other % sequences). Epsilon will replace the %s with the binding of the

command cmd. For example,

10.6. Input Primitives 535

show_binding("Type %s to continue", "exit-level");

displays “Type Ctrl-X Ctrl-Z to continue” with Epsilon’s normal bindings.

10.6 Input Primitives

10.6.1 Keys

wait_for_key()

user int key;

user int full_key;

int generic_key(int k)

when_idle(int times) /* EEL subroutine */

add_buffer_when_idle(int buf, int (*func)())

delete_buffer_when_idle(int buf, int (*func)())

when_repeating() /* EEL subroutine */

int is_key_repeating()

The wait_for_key() primitive advances to the next key, waiting for one if necessary. The variable

key stores the last key obtained from wait_for_key().

Some key combinations have both a generic and specific interpretation. For instance, the 〈Plus〉 key on

a numeric keypad has a generic code identical to the 〈Plus〉 key on the main keyboard, but a unique specific

code. Epsilon sets the full_key variable to the specific key code for that key, and key to the generic code

for the key (in this case, “+”). For keys with only one interpretation, Epsilon sets key and full_key the

same.

The generic_key() primitive returns the generic version of the specified key. For keys with only one

interpretation, it returns the original key code.

When you call wait_for_key(), it first checks to see if the ungot_key variable has a key (see below)

and uses that if it does. If not, and a keyboard macro is active, wait_for_key() returns the next character

from the macro. (The primitive also keeps track of repeat counts for macros.) If there is no key in

ungot_key and no macro is active, the primitive checks to see if you have already typed another key and

returns it if you have. If not, the primitive waits until you type a key (or a mouse action or other event

occurs—Epsilon treats all of these as keys).

When a concurrent process is outputting text into an Epsilon buffer, it only appears there during a call to

wait_for_key(). Epsilon handles the processing of other concurrent events like FTP transfers during this

time as well.

While Epsilon is waiting for a key, it calls the when_idle() subroutine. The default version of this

function does idle-time code coloring and displays any defined idle-time message in the echo area (see the

show-when-idle variable), among other things. The when_idle() subroutine receives a parameter that

indicates the number of times the subroutine has been called since Epsilon began waiting for a key. Every

time Epsilon gets a key (or other event), it resets this count to zero.

The when_idle() subroutine should return a timeout code in hundredths of a second. Epsilon will not

call the subroutine again until the specified time has elapsed, or another key arrives. If it doesn’t need

Epsilon to call it for one second, for example, it can return 100. If it wants Epsilon to call it again as soon as

possible (assuming Epsilon remains idle), it can return 0. If the subroutine has completed all its work and

doesn’t need to be called again until after the next keystroke or mouse event, it can return -1. Epsilon will

then go idle waiting for the next event. (The return value is only advisory; Epsilon may call when_idle()

more frequently or less frequently than it requests.)

536 Chapter 10. Primitives and EEL Subroutines

A mode may wish to provide additional functions that run during idle time, beyond those the

when_idle() subroutine performs itself. The add_buffer_when_idle() subroutine registers a function

func so that it will be called during idle-time processing whenever buf is the current buffer. The

delete_buffer_when_idle() subroutine removes the specified function from that buffer’s list of

buffer-specific idle-time functions. (It does nothing if the function was not on the list.) A buffer-specific

when-idle function takes a parameter times and must return a result in the same fashion as the

when_idle() function itself.

To add an idle-time task not associated with any specific buffer, or one that runs even if a given buffer

isn’t the current one, define a function with a name that starts with do_when_idle_. Epsilon will call it

whenever it’s idle. It must take a parameter times and return a result just like the when_idle() function.

When you hold down a key to make it repeat, Epsilon does not call the when_idle() subroutine.

Instead, it calls the when_repeating() subroutine. Again, this varies by environment: under some

operating systems, Epsilon cannot distinguish between repeated key presses and holding down a key to

make it repeat. If this is the case, Epsilon won’t call the function.

You can add your own logic for when a key repeats by defining a function with a name that starts with

do_when_repeating_. The when_repeating() subroutine will call it whenever it runs. It must take no

parameters and return no result.

The is_key_repeating() primitive returns nonzero if the user is currently holding down a key

causing it to repeat. Epsilon can’t detect this in all environments, so the primitive always returns 0 in that

case.

int getkey() /* control.e */

Instead of calling wait_for_key() directly, EEL commands should call the EEL subroutine getkey()

(defined in control.e), to allow certain actions that are written in EEL code to take effect on each character.

For example, the standard version of getkey() saves each new character in a macro, if you’re defining one.

It checks the EEL variable _len_def_mac, which contains the length of the macro being defined plus one,

or zero if you’re not defining a macro. For convenience, getkey() also returns the new key. The getkey()

subroutine calls wait_for_key(). (If you want to add functions to getkey(), see page 524 to make sure

your extension doesn’t interfere with other extensions that may also add to getkey().)

int char_avail()

int in_macro(?int ignore_suspended)

The char_avail() primitive returns 0 if wait_for_key() would have to wait if it were called, and 1

otherwise. That is, it returns nonzero if and only if a key is available from ungot_key, a keyboard macro, or

the keyboard.

The in_macro() primitive returns 1 if a keyboard macro is running or has been suspended, 0

otherwise. If its optional ignore_suspended parameter is nonzero, it counts a suspended macro as if no

macro were running. While processing the last key of a keyboard macro, in_macro() will return 0, because

Epsilon has already discarded the keyboard macro by that time. Check the key-from-macro variable

instead to see if the key currently being handled came from a macro.

There are some textual macros defined in eel.h which help in forming the codes for keys in an EEL

function. The codes for normal ASCII keys are their ASCII codes, so the code for the key ‘a’ is ’a’; the

same goes for Unicode characters. The ALT() macro makes these normal keys into their Alt forms, so the

code for Alt-a is ALT(’a’). The CTRL() macro changes a character into the corresponding control

character, so CTRL(’h’) or CTRL(’H’) both represent the Ctrl-H key. Both CTRL(ALT(’q’)) and

ALT(CTRL(’q’)) stand for the Ctrl-Alt-q key.

10.6. Input Primitives 537

The remaining key codes represent those keys that don’t correspond to any possible buffer character,

plus various key codes that represent other kinds of input events, such as mouse activity.

The FKEY() macro represents the function keys. FKEY(1) and FKEY(12) are F1 and F12, respectively.

Note that this macro takes a number, not a character.

Refer to the cursor pad keys using the macros KEYINSERT, KEYEND, KEYDOWN, KEYPGDN, KEYLEFT,

KEYRIGHT, KEYHOME, KEYUP, KEYPGUP, and KEYDELETE. You can refer to the numeric keypad keys with the

NUMDIGIT() macro: NUMDIGIT(0) is N-0, and NUMDIGIT(9) is N-9. NUMDOT is the numeric keypad

period, and NUMENTER is the 〈Enter〉 or 〈Return〉 key on the numeric keypad (normally mapped to Ctrl-M).

The codes for the remaining keys are GREYPLUS, GREYMINUS, GREYSTAR, GREYSLASH, GREYEQUAL, and

GREYHELP for the +, –, *, /, =, and Help keys on the numeric keypad (not every keyboard has all these keys),

and GREYENTER, GREYBACK, GREYTAB, GREYESC, and SPACEBAR for the 〈Enter〉, 〈Backspace〉, 〈Tab〉, 〈Esc〉,
and 〈Spacebar〉 keys, respectively.

#define NUMSHIFT(c) ((c) | KEY_SHIFT)

#define NUMCTRL(c) ((c) | KEY_CTRL)

#define NUMALT(c) ((c) | KEY_ALT)

#define KEY_PLAIN(c) ((c) & ~ (KEY_SHIFT | KEY_CTRL | KEY_ALT))

The NUMSHIFT(), NUMCTRL(), and NUMALT() macros make shifted, control, and alt versions of keys,

respectively, by turning on the bit in a key code for each of these properties: KEY_SHIFT, KEY_CTRL, and

KEY_ALT. For example, NUMCTRL(NUMDIGIT(3)) is Ctrl-N-<PgDn>, and NUMALT(KEYDELETE) is

A-. The KEY_PLAIN() macro strips away these bits.

In this version, NUMALT() and ALT() are the same, and NUMCTRL() and CTRL() only differ on certain

low-numbered characters: the former always turns on the KEY_CTRL bit, while the latter also generates

ASCII control codes when given suitable ASCII characters.

int make_alt(int k) /* control.e */

int make_ctrl(int k) /* control.e */

The make_alt() subroutine defined in control.e will return an Alt version of any key. The

make_ctrl() subroutine is similar, but makes a key into its Control version. These may be used instead of

the ALT() and CTRL() macros.

Use the IS_CTRL_KEY() macro to determine if a given key is a control key of some kind. Its value is

nonzero if the key is an ASCII Control character, a function key with Control held down, or any other

Control key. It understands all types of keys. The macro IS_ALT_KEY() is similar; its value is nonzero if

the given key was generated when holding down the Alt key.

A macro command recorded using the notation <!find-file> uses the bit flag CMD_INDEX_KEY. In

this case the value of key is not a true key, but rather the name table index of the specified command. See

page 162 for more information.

user int ungot_key;

If the ungot_key variable is set to some value other than its usual value of -1, that number is placed in

key and full_key as the new key when wait_for_key() is called next, and ungot_key is set to -1

again. You can use this to make a command that reads keys itself, then exits and runs the key again when

you press an unrecognized key. The statement ungot_key = key; accomplishes this.

show_char(char *str, int key, ?int style)

538 Chapter 10. Primitives and EEL Subroutines

The show_char() primitive converts a key code to its printed representation, described on page 162.

For example, the code produced by function key 3 generates the string F-3. The string is appended to the

character array str.

If show_char()’s optional third parameter is present, and nonzero, this primitive will use a longer,

more readable printed representation. For example, rather than C-A-S or , or S-F-10, show_char() will

return Ctrl-Alt-S or <Comma> or Shift-F10. (Epsilon can only parse the former style, in Epsilon

command files and in all other commands that use the get_keycode() primitive below.)

This function always represents non-Latin1 Unicode characters (those in the range 256–65535) with

their character names, like <GREEK SMALL LETTER GAMMA>. With a style of 3, Epsilon does this for Latin

1 characters (those in the range 32–255) too, thus representing all Unicode characters by name. With a style

of 2, Epsilon uses Unicode character names for non-ASCII Latin 1 characters (those in the range 128–255)

but represents printable ASCII characters like “J” as-is. With a style of 1, it represents all Latin 1 characters

(in the range 32–255) as-is, using Unicode character names only for characters over 255.

See the %k sequence used by sprintf() and other functions, described on page 461, for a more

convenient way to translate keys or characters to text. It always uses style 1.

#define key_t int

key_t *get_keycode()

int key_value(char *s, ?char **after)

stuff_macro(key_t *mac, int oneline)

The get_keycode() primitive is used to translate a sequence of key names such as "C-xC-A-f" into

the equivalent key codes. It moves past a quoted sequence of key names in the buffer and returns an array of

ints with the key codes. The same array is used each time the function is called. The first entry of the array

contains the number of array entries. The primitive returns null if the string had an invalid key name.

The key_t macro represents the type of a key. It’s the same as an int in this versions, but not in older

versions. Writing key_t instead of int, and #including the compatibility header file oldkeys.h helps

make EEL code compatible with older versions.

The key_value() primitive also converts key names into key codes, but it gets the key name from a

string, not a buffer, and returns a single key code at a time. It tries to interpret s as a key name, and returns

its value. If the optional pointer after is non-null, it must point to a character pointer. Epsilon sets *after

to the position in the string after the key name. When s contains an invalid key name, key_value() returns

-1 and sets *after (if after is non-null) to s.

The stuff_macro() subroutine inserts a sequence of key names into the current buffer in a format that

get_keycode() can read, surrounding the key names with " characters. The list of keys is specified by an

array of ints in the same format get_keycode() uses: the first value contains the total number of array

entries. If oneline is nonzero, the subroutine represents line breaks with \n so that the text stays on one

line.

user char key_type;

user short key_code;

When wait_for_key() returns a key that comes directly from the keyboard, it also sets the primitive

variables key_type and key_code. These let EEL programs distinguish between keys that translate to the

same Epsilon key code, for certain special applications. The wait_for_key() primitive doesn’t change

either variable when the key comes from ungot_key.

The key_code variable contains the sixteen-bit BIOS-style encoding for the key that Epsilon received

from the operating system, if available. Its ASCII code is in the low eight bits and its scan code is in the high

eight bits.

10.6. Input Primitives 539

The key_type variable has one of the following values, defined in codes.h. If KT_NONASCII or

KT_NONASCII_EXT, the key was a special key without an ASCII translation, such as a function key. Such

keys are of type KT_NONASCII_EXT if they’re one of the keys on an extended keyboard that are synonyms to

multikey sequences on the old keyboard, such as the keys on the extended keyboard’s cursor pad.

A key type of KT_ACCENT_SEQ indicates a multikey sequence that the operating system or a resident

program has translated as a single key, such as an ê. Key type KT_ACCENT generally means the operating

system translated a single key to a graphics character or foreign language character. Key type KT_NORMAL

represents any other key. Most keys have a key type of KT_NORMAL.

A key type of KT_MACRO means the key came from a macro. A macro key recorded with the

EXTEND_SEL_KEY bit flag returns a key type of KT_EXTEND_SEL instead, but these extend codes are not

used in current versions of Epsilon. In either case, the key_code variable is set to zero in this case.

In many environments, the key_code variable is always zero, and key_type is either KT_NORMAL,

KT_MACRO, or KT_EXTEND_SEL.

10.6.2 The Mouse

When a mouse event occurs, such as a button press or a mouse movement, Epsilon enqueues the information

in the same data structure it uses for keyboard events. A call to wait_for_key() retrieves the next item

from the queue—either a keystroke or a mouse event. Normally an EEL program calls the getkey()

subroutine instead of wait_for_key(). See page 535.

user short catch_mouse;

The catch_mouse primitive controls whether Epsilon will queue up any mouse events. Setting it to

zero causes Epsilon to ignore the mouse. A nonzero value makes Epsilon queue up mouse events. If your

system has no mouse, setting catch_mouse has no effect.

user short mouse_mask;

user short mouse_x, mouse_y;

user short mouse_screen;

user int double_click_time;

You can control which mouse events Epsilon dequeues, and which it ignores, by using the mouse_mask

primitive. The following values, defined in codes.h, control this:

#define MASK_MOVE 0x01

#define MASK_LEFT_DN 0x02

#define MASK_LEFT_UP 0x04

#define MASK_RIGHT_DN 0x08

#define MASK_RIGHT_UP 0x10

#define MASK_CENTER_DN 0x20

#define MASK_CENTER_UP 0x40

#define MASK_ALL 0x7f

#define MASK_BUTTONS (MASK_ALL - MASK_MOVE)

#define MASK_DN // ... see eel.h

#define MASK_UP // ... see eel.h

For example, the following EEL code would cause Epsilon to pay attention to the left mouse button and

mouse movement, but ignore everything else:

540 Chapter 10. Primitives and EEL Subroutines

mouse_mask = MASK_MOVE | MASK_LEFT_DN | MASK_LEFT_UP;

When Epsilon dequeues a mouse event with wait_for_key(), it sets the values of mouse_x and

mouse_y to the screen coordinates associated with that mouse event. Setting them moves the mouse cursor.

The upper left corner has coordinate (0, 0).

When dequeuing a mouse event, wait_for_key() returns one of the following “keys” (defined in

codes.h):

MOUSE_LEFT_DN MOUSE_LEFT_UP MOUSE_DBL_LEFT

MOUSE_CENTER_DN MOUSE_CENTER_UP MOUSE_DBL_CENTER

MOUSE_RIGHT_DN MOUSE_RIGHT_UP MOUSE_DBL_RIGHT

MOUSE_MOVE

Dequeuing a mouse event also sets the mouse_screen variable to indicate which screen its coordinates

refer to. Screen coordinates are relative to the specified screen. Ordinary Epsilon windows are on the main

screen, screen 0. When Epsilon creates a dialog box containing Epsilon windows, each Epsilon window

receives its own screen number. For example, if you type Ctrl-X Ctrl-F ?, Epsilon displays a dialog box

with two screens, usually numbered 1 and 2. If you click on the ninth line of the second screen, Epsilon

returns the key MOUSE_LEFT_DN, sets mouse_y to 8 (counting from zero), and sets mouse_screen to 2.

The double_click_time primitive specifies how long a delay to allow for double-clicks (in

hundredths of a second). If two consecutive MOUSE_LEFT_DN events occur within the allotted time, then

Epsilon enqueues a MOUSE_DBL_LEFT event in place of the second MOUSE_LEFT_DN event. The

corresponding thing happens for right clicks and center clicks as well. Epsilon for Windows ignores this

variable and uses standard Windows settings to determine double-clicks.

#define IS_WIN_KEY(k) // ... omitted

#define IS_MOUSE_KEY(k) // ... omitted

#define IS_TRUE_KEY(k) // ... omitted

#define IS_EXT_ASCII_KEY(k) // ... omitted

#define IS_WIN_PASSIVE_KEY(k) // ... omitted

#define IS_MOUSE_LEFT(k) // ... omitted

#define IS_MOUSE_RIGHT(k) // ... omitted

#define IS_MOUSE_CENTER(k) // ... omitted

#define IS_MOUSE_SINGLE(k) // ... omitted

#define IS_MOUSE_DOUBLE(k) // ... omitted

#define IS_MOUSE_DOWN(k) // ... omitted

#define IS_MOUSE_UP(k) // ... omitted

The IS_MOUSE_KEY() macro returns a nonzero value if the given key code indicates a mouse event.

The IS_TRUE_KEY() macro returns a nonzero value if the given key code indicates a keyboard key. The

IS_EXT_ASCII_KEY() macro returns a nonzero value if the given key code represents a character that can

appear in a buffer (rather than a function key or cursor key). The IS_WIN_KEY() macro returns a nonzero

value if the given key code indicates a window event like a menu selection, pressing a button on a dialog, or

getting the focus, while IS_WIN_PASSIVE_KEY() returns nonzero if the given key represents an incidental

event: losing or gaining focus, losing the selection, or the mouse entering or leaving Epsilon’s window.

The IS_MOUSE_LEFT(), IS_MOUSE_RIGHT(), and IS_MOUSE_CENTER() macros return nonzero if a

particular key code represents either a single or a double click of the indicated button. The

IS_MOUSE_SINGLE() and IS_MOUSE_DOUBLE() macros return nonzero if the given key code represents a

single-click or double-click, respectively, of any mouse button. The IS_MOUSE_DOWN() macro returns

nonzero if the key code represents the pressing of any mouse button (either a single-click or a double-click).

Finally, the IS_MOUSE_UP() macro tells if a particular key code represents the release of any mouse button.

10.6. Input Primitives 541

user short mouse_pixel_x, mouse_pixel_y;

int y_pixels_per_char()

int x_pixels_per_char()

clip_mouse() /* mouse.e subr. */

On most systems, Epsilon can provide the mouse position with finer resolution than simply which

character it is on. The mouse_pixel_x and mouse_pixel_y variables contain the mouse position in the

most accurate form Epsilon provides. Setting the pixel variables moves the mouse cursor and resets the

mouse_x and mouse_y variables to match. Similarly, setting mouse_x or mouse_y resets the corresponding

pixel variable.

EEL subroutines should not assume any particular scaling between the screen character coordinates

provided by mouse_x and mouse_y and these “pixel” variables. The scaling varies with the screen display

mode or selected font. As with the character coordinates, the upper left corner has pixel coordinate (0, 0).

The y_pixels_per_char() and x_pixels_per_char() primitives report the current scaling between

pixels and characters. For example, mouse_x usually equals the quantity mouse_pixel_x /

x_pixels_per_char(), rounded down to an integer.

The mouse_x variable can range from -1 to screen_cols, while the valid screen columns range from

0 to (screen_cols - 1). Epsilon uses the additional values to indicate that the user has tried to move the

mouse cursor off the screen, in environments which can detect this (currently, no supported environments

can). The mouse_pixel_x variable, on the other hand, ranges from 0 to screen_cols *

x_pixels_per_char(). The highest and lowest values of mouse_pixel_x correspond to the highest and

lowest values of mouse_x, while other values obey the relation outlined in the previous paragraph. The

mouse_y and mouse_pixel_y variables work in the same way.

The clip_mouse() subroutine alters the mouse_x and mouse_y variables so that they refer to a valid

screen column, if they currently range off the screen.

user short mouse_shift;

short shift_pressed()

#define KB_ALT_DN 0x08 // Some Alt key

#define KB_CTRL_DN 0x04 // Some Ctrl key

#define KB_LSHIFT_DN 0x02 // Left shift key

#define KB_RSHIFT_DN 0x01 // Right shift key

#define KB_SHIFT_DN (KB_LSHIFT_DN | KB_RSHIFT_DN)

// Either shift key

int was_key_shifted()

When Epsilon dequeues a mouse event with wait_for_key(), it also sets the mouse_shift variable

to indicate which shift keys were depressed at the time the mouse event was enqueued. The

shift_pressed() primitive returns the same codes, but indicates which shift keys are depressed at the

moment you call it.

The was_key_shifted() subroutine tells if the user held down Shift when pressing the current key.

Some keys produce the same key code with or without shift.

Unlike the shift_pressed() primitive, which reports on the current state of the Shift key, this one

works with keyboard macros by returning the state of the Shift key at the time the key was originally

pressed. A subroutine must call was_key_shifted() at the time the macro is recorded for the Shift state to

be recorded in the macro. Macros defined by a command file can use an E- prefix to indicate this.

short mouse_buttons()

int mouse_pressed()

get_movement_or_release() /* menu.e */

542 Chapter 10. Primitives and EEL Subroutines

The mouse_buttons() primitive returns the number of buttons on the mouse. A value of zero means

that Epsilon could not find a mouse on the system.

The mouse_pressed() primitive returns a nonzero value if and only if some button on the mouse has

gone down but has not yet gone up. The subroutine get_movement_or_release() uses this function. It

delays until the mouse moves or all its buttons have been released.

Mouse Cursors

user short mouse_display;

user short mouse_auto_on; /* default = 1 */

user short mouse_auto_off; /* default = 1 */

The mouse_display primitive controls whether or not Epsilon displays the mouse cursor. Set it to zero

to turn the mouse cursor off, and to a nonzero value to turn the mouse cursor on. Turning off the mouse

cursor does not cause Epsilon to stop queuing up mouse events—to do that, use catch_mouse.

Epsilon automatically turns on the mouse cursor when it detects mouse motion, if the mouse_auto_on

primitive has a nonzero value. Epsilon automatically turns off the mouse when you start to type on the

keyboard, if the mouse_auto_off primitive has a nonzero value. Neither of these actions affect the status of

queuing up mouse events. When Epsilon automatically turns on the mouse cursor, it sets mouse_display to

2.

typedef struct mouse_cursor {

byte on_pixels[32];

byte off_pixels[32];

byte hot_x, hot_y;

short stock_cursor;

} MOUSE_CURSOR;

MOUSE_CURSOR *mouse_cursor;

MOUSE_CURSOR std_pointer;

You can select a different mouse cursor in Epsilon for Windows by setting the mouse_cursor

primitive. It points to a structure of type MOUSE_CURSOR. The MOUSE_CURSOR type is built into Epsilon. In

the current version, only the stock_cursor member is used. It selects one of several standard Windows

cursors, according to the following table, which lists the stock cursor codes defined in codes.h:

CURSOR_ARROW Standard arrow

CURSOR_IBEAM Text I-beam

CURSOR_WAIT Hourglass

CURSOR_CROSS Crosshair

CURSOR_UPARROW Arrow pointing up

CURSOR_SIZE Resize

CURSOR_ICON Empty icon

CURSOR_SIZENWSE Double-headed arrow pointing northwest and southeast

CURSOR_SIZENESW Double-headed arrow pointing northeast and southwest

CURSOR_SIZEWE Double-headed arrow pointing east and west

CURSOR_SIZENS Double-headed arrow pointing north and south

CURSOR_PAN Neutral cursor for wheeled mouse panning

CURSOR_PAN_UP Wheeled mouse cursor when panning up

10.6. Input Primitives 543

CURSOR_PAN_DOWN Wheeled mouse cursor when panning down

The std_pointer primitive variable contains Epsilon’s standard left-pointing arrow cursor. Use the

syntax mouse_cursor = &some_cursor; to set the cursor to a different MOUSE_CURSOR variable. In

Epsilon for Unix under X11, the panning cursors above are available, but not the others.

Mouse Subroutines

window int (*mouse_handler)();

allow_mouse_switching(int nwin) // mouse.e subr.

buffer char mouse_dbl_selects;

char run_by_mouse;

char show_mouse_choices;

The mouse.e and menu.e files define the commands and functions normally bound to the mouse buttons.

The functions that handle button clicks examine the window-specific function pointer mouse_handler so

that you can easily provide special functions for clicks in a particular window. By default, the variable

contains 0 in each window, so that Epsilon does no special processing. Set the variable to point to a

function, and Epsilon will call it whenever the user pushes a mouse button and the mouse cursor is over the

indicated window. The function receives one parameter, the window handle of the specified window. It can

return nonzero to prevent the normal functioning of the button, or zero to let the function proceed.

The allow_mouse_switching() subroutine is a mouse_handler function. Normally, when a pop-up

window is on the screen, Epsilon doesn’t let the user simply switch to another window. Depending on the

context, Epsilon either removes the pop-up window and then switches to the new window, or signals an error

and remains in the pop-up window. If you set the mouse_handler variable in a particular window to the

allow_mouse_switching() subroutine, Epsilon will permit switching to that window if the user clicks in

it, without deleting any pop-up window.

The buffer-specific mouse_dbl_selects variable controls what double-clicking with a mouse button

does. By default the variable is zero, and double-clicking selects words. If the variable is nonzero, Epsilon

instead runs the command bound to the 〈Newline〉 key.

The run_by_mouse variable is normally zero. Epsilon sets it to one while it runs a command that was

selected via a pull-down menu or using the tool bar. Commands can use this variable to behave differently in

this case. For example, the subroutine that provides completion automatically produces a list of choices to

choose from, when run via the mouse. It does this if the MUST_MATCH flag (see page 547) indicates that the

user must always pick one of the choices (instead of typing in a different selection), or if the

show-mouse-choices variable is nonzero.

The Scroll Bar

user window int display_scroll_bar;

int scroll_bar_line()

The built-in variable display_scroll_bar controls whether or not the current window’s right border

contains a scroll bar. Set it to zero to turn off the scroll bar, or to any positive number to display the bar. If a

window has no right border, or has room for fewer than two lines of text, Epsilon won’t display a scroll bar.

Although the EEL functions that come with Epsilon don’t support clicking on a scroll bar on the left border

of a window, Epsilon will display one if display_scroll_bar is negative. Any positive value produces

544 Chapter 10. Primitives and EEL Subroutines

the usual right-border scroll bar. (This variable, and the following primitive, have no effect in Epsilon for

Windows, which handles scrolling internally.)

The scroll_bar_line() primitive returns the position of the scroll box diamond on the scroll bar. A

value of one indicates the line just below the arrow at the top of the scroll bar. Epsilon always positions this

arrow adjacent to the first line of text in the window, so a return value of n indicates the scroll box lies

adjacent to text line n in the window (numbered from zero).

scroll_by_wheel(int clicks, int per_click)

When you use a wheeled mouse like the Microsoft IntelliMouse, Epsilon calls the

scroll_by_wheel() subroutine whenever you roll its wheel. (See the next section for information on what

happens when you click the wheel, not roll it.) Epsilon provides the number of clicks of the wheel since the

last time this function was called (which may be positive or negative) and the control panel setting that

indicates the number of lines Epsilon should scroll on each click.

After calling this subroutine, Epsilon can then optionally generate a WIN_WHEEL_KEY key event. See

page 545.

Mouse Panning

int mouse_panning;

int mouse_panning_rate(int percent, int slow, int fast)

The mouse_panning variable and the mouse_panning_rate() primitive work together to support

panning and auto-scroll with the Microsoft IntelliMouse (or any other three button mouse). The EEL

subroutine that receives clicks of the third mouse button sets mouse_panning nonzero to tell Epsilon to

begin panning and record the initial position of the mouse.

Then the subroutine can regularly call mouse_panning_rate() to determine how quickly, and in what

direction, to scroll. The parameter percent specifies the percentage of the screen the mouse has to travel to

reach maximum speed (usually 40%). The parameter slow specifies the minimum speed in milliseconds per

screen line (usually 2000 ms/line). The parameter fast specifies the maximum speed in milliseconds per

screen line (usually 1 ms/line).

The mouse_panning_rate() primitive uses these figures, plus the current position of the mouse, to

return the scroll rate in milliseconds per screen line. It returns a positive number if Epsilon should scroll

down, a negative number to scroll up, or zero if Epsilon should not scroll.

See the previous section for information on what happens when you roll the wheel on a wheeled mouse

instead of clicking it.

10.6.3 Window Events

When an EEL function calls getkey() to retrieve the next key, it sometimes receives a key code that

doesn’t correspond to any actual key, but represents some other kind of input event. Mouse keys (see page

540) are one example of this. This section describes the other key codes Epsilon uses for input events. These

keys only occur in the Windows version.

The WIN_MENU_SELECT key indicates that the user selected an item from a menu or the tool bar.

Epsilon sets the variable menu_command to the name of the selected command whenever it returns this key.

The WIN_DRAG_DROP key indicates that the user has just dropped a file on one of Epsilon’s windows, or

that Epsilon has received a DDE message from another program. See the description of the

drag_drop_result() primitive on page 503.

10.6. Input Primitives 545

The WIN_EXIT key indicates that the user has tried to close Epsilon, by clicking on the close box, for

example.

The WIN_HELP_REQUEST key indicates that the user has just pushed a button in Epsilon’s help file to set

a particular variable or run a command. Epsilon fills the menu_command variable with the message from the

help system.

The GETFOCUS and LOSEFOCUS keys indicate that a particular screen has gained or lost the focus. These

set mouse_screen just like mouse keys. (See page 540.)

The WIN_RESIZE key indicates that Epsilon has resized a screen. Sometimes Epsilon will resize the

screen without returning this key.

The WIN_VERT_SCROLL key indicates that Epsilon has scrolled a window. Epsilon doesn’t normally

return keys for these events. Instead, Epsilon calls the EEL subroutine scrollbar_handler() from within

the wait_for_key() function, passing it information on which scroll bar was clicked, which part of the

scroll bar was selected, and so forth.

Epsilon only recognizes user attempts to scroll by clicking on the scroll bar, or to resize the window,

when it waits for a key in a recursive edit level. When an EEL command requests a key, Epsilon normally

ignores attempts to scroll, and postpones acting on resize attempts.

An EEL command can set the permit_window_keys variable to allow these things to happen

immediately, and possibly redraw the screen. Bits in the variable control these activities: set the

PERMIT_SCROLL_KEY bit to permit immediate scrolling, and set PERMIT_RESIZE_KEY to permit resizing.

Setting PERMIT_SCROLL_KEY also makes Epsilon return the WIN_VERT_SCROLL key shortly after scrolling.

Setting the PERMIT_WHEEL_KEY bit tells Epsilon to generate a WIN_WHEEL_KEY key event after scrolling due

to a wheel roll on a Microsoft IntelliMouse.

The WIN_BUTTON key indicates that the user has clicked on a button in a dialog box, or selected the

button via the keyboard. By default, Epsilon translates many buttons to standard keys like Ctrl-M. An EEL

program can set the variable return_raw_buttons to disable this translation and instead receive

WIN_BUTTON keys for each button pressed. For other buttons, and for check boxes and certain other dialog

events, Epsilon always enqueues a WIN_BUTTON key. For each of these input events, it sets the

key_is_button variable to a distinct value.

Epsilon supports up to three buttons on a mouse directly, with distict key codes like MOUSE_CENTER_DN

(plus wheel events). If Epsilon for X11 receives messages about additional buttons, it returns them using the

WIN_BUTTON key code, with key_is_button set to a unique value for that button.

10.6.4 Completion

There are several EEL subroutines defined in complete.e that get a line of input from the user, allowing

normal editing. Most of them offer some sort of completion as well. They also provide a command history.

Each function takes two or three arguments. The first argument is an array of characters in which to

store the result. The second argument is a prompt string to print in the echo area. The third argument, if there

is one, is the default string. Depending on the setting of the insert-default-response variable, Epsilon

may insert this string after the prompt, highlighted, or it may be available by pressing Ctrl-R or Ctrl-S.

Some functions will substitute the default string if you press 〈Enter〉 without typing any response.

These functions display the default to you inside square brackets [] (whenever they don’t actually pre-type

the default after the prompt). The prompt that you must provide to these functions shouldn’t include the

square brackets, or the colon and space that typically ends an Epsilon prompt. The function will add these

on before it displays the prompt. If there should be no default, use the empty string "".

get_file(char *res, char *pr, char *def)

get_file_dir(char *res, char *pr)

546 Chapter 10. Primitives and EEL Subroutines

The get_file() and get_file_dir() subroutines provide file name completion. When the

get_file() subroutine constructs its prompt, it begins with the prompt string pr, then appends a colon ‘:’

and a space. (If insert-default-response is zero, it also includes the default value in the prompt, inside

square brackets.) If the user presses 〈Enter〉 without typing any response, get_file() copies the default

def to the response string res.

The get_file_dir() subroutine provides the directory part of the current file name, inserted as part of

a default response or available via Ctrl-S or Ctrl-R (see the description of the

prompt-with-buffer-directory variable), but it doesn’t display that as part of the prompt. It uses the

prompt pr as is. It doesn’t substitute any default if the user enters no file name. Both get_file() and

get_file_dir() call absolute() on the name of the file before returning (see page 490).

get_buf(char *res, char *pr, char *def)

The get_buf() subroutine completes on the name of a buffer. To construct its prompt, the subroutine

begins with the prompt string pr, then adds the default def inside square brackets [], and then appends a

colon ‘:’ and a space.

get_any(char *res, char *pr, char *def)

get_cmd(char *res, char *pr, char *def)

get_macname(char *res, char *pr, char *def)

get_func(char *res, char *pr, char *def)

get_var(char *res, char *pr, char *def, int flags)

Epsilon locates commands, subroutines, and variables by looking them up in its name table. See page

523 for details. The subroutines that complete on commands, variables and so forth all look in the same

table, but restrict their attention to particular types of name table entries. For example, the get_macname()

subroutine ignores all name table entries except those for keyboard macros. In the following table, •
indicates that the subroutine allows entries of that type.

Command Subr. Kbd. Macro Key Table Variable

get_any() • • • • •

get_cmd() • •

get_func() • •

get_macname() •

get_var() •

These subroutines all substitute the default string if you just press 〈Enter〉 without entering anything.

They also display the default inside square brackets [] after the prompt you provide (if

insert-default-response is zero), and then append a colon ‘:’ and a space.

The get_var() subroutine takes an additional, fourth parameter. It contains a set of flags to pass to the

comp_read() subroutine, as listed below.

int get_command_index(char *pr)

The get_command_index() subroutine defined in control.e calls the get_cmd() subroutine to ask the

user for the name of a command. It then checks to see if the command exists, and reports an error if it

doesn’t. (When checking, it allows subroutines and macros as well as actual commands.) If the function

name checks out, get_command_index() returns its name table index.

10.6. Input Primitives 547

Completion Internals

/* bits for finder func */

#define STARTMATCH 1

#define EXACTONLY 2

#define LISTMATCH 4

#define FM_NO_DIRS (0x10)

#define FM_ONLY_DIRS (0x20)

char *b_match(char *partial, int flags)

/* sample finder */

comp_read(char *response, char *prmpt,

char *(*finder)(), int flags, char *def)

/* bits for comp_read() */

#define CAUTIOUS (0x100)

#define COMP_FOLD (0x200)

#define MUST_MATCH (0x400)

#define NONE_OK (0x800)

#define POP_UP_PROMPT (0x1000)

#define COMP_FILE (0x2000 | CAUTIOUS)

#define PASSWORD_PROMPT (0x4000)

#define SPACE_VALID (0x8000)

prompt_comp_read(char *response, char *prmpt,

char *(*finder)(), int flags,

char *def)

zeroed char completion_column_marker;

It’s easy to add new subroutines that can complete on other things. First, you must write a “finder”

function that returns each of the possible matches, one at a time, for something the user has typed. For

example, the get_buf() subroutine uses the finder function b_match().

A finder function takes a parameter partial which contains what the user’s typed so far, and a set of

flags. If the STARTMATCH flag is on, the function must return the first match of partial. If STARTMATCH is

off, it should return the next match. The function should return 0 when there are no more matches. The

LISTMATCH flag is on when Epsilon is preparing a list of choices because the user has pressed ‘?’. This is so

that a finder function can format the results differently in that case. If the EXACTONLY flag is on, the finder

function should return only exact matches for partial. If the finder function is matching file names, you

may also provide the FM_NO_DIRS flag, to exclude directory names, or FM_ONLY_DIRS to retrieve only

directory names.

Next, write a subroutine like the various get_ routines described above, all of which are defined in

complete.e. It should take a prompt string, possibly a default string, and a character pointer in which to put

the user’s response. It passes these to the comp_read() subroutine, along with the name of your finder

function (as a function pointer).

The comp_read() subroutine also takes a flags parameter. If the CAUTIOUS flag is zero,

comp_read() assumes that all matches for a certain string will begin with that string, and that if there is

only one match for a certain string, adding characters to that string won’t generate any more matches. These

assumptions are true for most things Epsilon completes on, but they’re not true for files. (For example, if the

only match for x is xyz, but xyz is a directory with many files, the second assumption would be false. The

first assumption is false when Epsilon completes on wildcard patterns like *.c, since none of the matches

548 Chapter 10. Primitives and EEL Subroutines

will start with the * character.) If you provide the CAUTIOUS flag when you call comp_read(), Epsilon

doesn’t make those assumptions, and completion is somewhat slower.

Actually, when completing on files, provide the COMP_FILE macro instead of just CAUTIOUS; this

includes CAUTIOUS but also makes Epsilon use some special rules necessary for completing on file names.

If you provide the COMP_FOLD flag to comp_read(), it will do case-folding when comparing possible

completions.

The MUST_MATCH flag tells comp_read() that if the user types a response that the finder function

doesn’t recognize, it’s probably a mistake. The comp_read() subroutine will then offer a list of possible

responses, even though the user may not have pressed a key that ordinarily triggers completion. The

comp_read() subroutine might still return with an unrecognized response, though. This flag is simply

advice to comp_read(). The NONE_OK flag is used only with MUST_MATCH. It tells comp_read() that an

empty response (just typing 〈Enter〉) is ok.

Under Epsilon for Windows, the POP_UP_PROMPT flag tells comp_read() to immediately pop up a

one-line dialog box when prompting. Right now, this flag may only be used when no completion is involved,

and comp_read() is simply prompting for a line of text.

The PASSWORD_PROMPT flag tells comp_read() to display each character of the response as a *

character. When the Internet functions prompt for a password they use this flag.

The SPACE_VALID flag tells comp_read() that a 〈Space〉 character is valid in the response. Since

〈Space〉 is also a completion character, comp_read() tries to guess whether to add a 〈Space〉 or complete,

by examining possible matches.

A finder function receives any of the above flags that were passed to comp_read(), so it can alter its

behavior if it wants.

The comp_read() subroutine uses the prompt you supply as-is. Usually, the prompt should end with a

colon and a space, like "Find file: ". By contrast, the prompt_comp_read() subroutine adds to the

supplied prompt by showing the default value inside square brackets, when insert-default-response is

zero. The prompt string you supply to it should not end with a colon and space, since Epsilon will add these.

If you provide a prompt such as "Buffer name" and a default value of "main", Epsilon will display

Buffer name [main]: . If the default value you provide is empty or too long, Epsilon will instead

display Buffer name: , omitting the default. Whether or not Epsilon displays the default, if the user

doesn’t enter any text at the prompt the prompt_comp_read() subroutine substitutes the default value by

copying def to response.

Sometimes it’s convenient if a finder function returns matches with additional data after them which

shouldn’t be included in the returned response. You can set the variable completion_column_marker to a

character that marks the start of such extra data. If it’s nonzero, and a response from the finder function

contains it, Epsilon strips that character and any following text from the response before returning it, if the

user selects that choice from the list of completions.

char *(*list_finder)();

list_matches(char *s, char *(*finder)(), int flags, int mbuf)

int *(*completion_lister)();

char resize_menu_list;

The comp_read() subroutine looks at several variables whenever it needs to display a list of possible

completions (such as when the user types ‘?’). You can change the way Epsilon displays the list by setting

these variables. Typically, you would use the save_var statement to temporarily set one of these while your

completion routine runs.

By default, Epsilon calls the list_matches() subroutine to prepare its buffer of possible matches.

The function takes the string to complete on, the finder function to use, flags as described above, and a

10.6. Input Primitives 549

buffer number. It calls the finder function repeatedly (passing it the LISTMATCH flag as well as any others

passed to list_matches()) and puts the resulting matches into the indicated buffer, after sorting the

matches. If the completion_lister function pointer is non-null, Epsilon calls that function instead of

list_matches(), passing it the same parameters. If, for example, you have to sort the matches in a special

order, you can set this variable.

If you simply want a different list of matches when Epsilon lists them, as opposed to when Epsilon

completes on them, you can set the list_finder function pointer to point to a different finder function.

The list_matches() subroutine always uses this variable if non-null, instead of the finder function it

receives as a parameter.

An EEL completion function can temporarily set the resize_menu_list variable nonzero to indicate

that if the user tries to list possible completion choices, the window displaying the choices should be

widened if necessary to fit the widest choice. This variable has no effect on Epsilon windows within GUI

dialogs.

int complete(char *response, char *(*finder)(), int flags)

To actually do completion, comp_read() calls the complete() subroutine. It takes a finder function

pointer, flags like CAUTIOUS and COMP_FOLD described above, and a string to complete on. It tries to extend

the string with additional characters from the matches, modifying it in place.

The complete() subroutine generally returns the number of possible matches for the string. However,

it may be able to determine that no more completion is possible before reaching the last match. For example,

if the subroutine tries to complete on the file name “foo”, and encounters files named “foobar”, “foobaz”,

“foo3”, “foo4” and so forth, it can determine on the third file that no completion is possible. In this case, it

returns 3, even though there may be additional matches. It can only “give up early” in this way when it has

encountered two or more matches. So when the subroutine returns a value of two or greater, there may be

additional matches not included in its count.

build_prompt(char *full, char *pr, char *def, int omit, int rel)

The build_prompt() subroutine helps construct the text of a prompt. It copies the prompt pr to full,

appending the default value def to it (inside brackets).

If the combination would be too wide for the screen, the subroutine abbreviates the default value. If

even an abbreviated value would be too wide, or if omit is nonzero, it omits the default from the prompt

entirely. If rel is nonzero, it assumes def is an absolute pathname, and uses its relative form.

find_buffer_prefix(int buf, char *prefix)

The find_buffer_prefix() subroutine looks through all the lines in the buffer buf to see if they all

start with the same string of characters. It puts any such common prefix shared by all the lines in prefix.

For instance, if the buffer contains three lines “waters”, “watering” and “waterfall”, it would put the string

“water” in dest.

char *general_matcher(char *s, int flags)

Epsilon providers a general-purpose finder function called general_matcher(). An EEL function can

perform completion on some arbitrary list of words by putting the list of words in a buffer named

_MATCH_BUF (a macro defined in eel.h) and then providing general_matcher() as a finder function to a

subroutine like comp_read(). Call comp_read() with the COMP_FOLD flag if you want

general_matcher() to ignore case when comparing.

550 Chapter 10. Primitives and EEL Subroutines

char _doing_input;

keytable comp_tab, menu_tab, view_tab;

An EEL function can tell if Epsilon is currently prompting for a line of input (or performing certain

related tasks) by examining the _doing_input variable. It’s zero normally. While Epsilon is inside the

search_read() subroutine or related ones, getting a search string from the user, it’s set to DI_SEARCH.

While Epsilon is prompting for a line of some other type of input, it’s set to DI_LINEINPUT.

While the view_buf() subroutine (or a related one) is displaying a pop-up window, _doing_input is

set to either DI_VIEW or DI_VIEWLAST, according to whether the last parameter passed to view_buf()

was zero or not.

When Epsilon prompts for input, it uses certain specialized key tables in the buffer that accepts the

input. It uses the comp_tab key table for the one-line buffer where the user types a response, in all the

subroutines that accept a line of input (except in search_read() and related subroutines that prompt for

search strings).

When Epsilon displays a list of possible matches, or previous responses, or similar things, while getting

a line of input, it uses the menu_tab key table in the buffer displaying the list.

Finally, subroutines like view_buf() normally use the view_tab key table to show a buffer in a

pop-up window.

Listing Commands, Buffers, or Files

int name_match(char *prefix, int start)

Several primitives help to perform completion. The name_match() primitive takes a command prefix

such as “nex” and a number. It finds the next command or other name table entry that begins with the

supplied prefix, returning its name table index. If its numeric argument is nonzero, it starts at the beginning

of the name table. Otherwise it continues from the name table index returned on the previous call. It returns

zero when there are no more matching names. When comparing names, case doesn’t count and ‘-’ is the

same as ‘_’.

char *buf_match(char *pattern, int flags)

char *do_file_match(char *pattern, int flags)

#define STARTMATCH 1

#define EXACTONLY 2

#define FM_NO_DIRS (0x10)

#define FM_ONLY_DIRS (0x20)

#define FM_FOLD (0x200)

char *file_match(char *pattern, int flags)

The buf_match() and file_match() primitives are similar to name_match(). Instead of returning a

command index, they return the actual matching buffer or file names, respectively, and return a null pointer

when there are no more matches. The values returned by file_match() are only valid until the next call to

this function. Copy the name if you want to preserve it.

The buf_match() primitive returns one of a series of buffer names that match a pattern. The pattern is

of the sort that fpatmatch() accepts: * matches any number of characters, ? matches a single character,

[a-z] represents a character class, and | separates alternatives. The STARTMATCH flag tells it to examine the

pattern and return the first match; omitting the flag makes it return the next match of the current pattern. The

EXACTONLY flag tells it to return only exact matches of the pattern; otherwise it returns buffer names that

10.6. Input Primitives 551

start with a match of the pattern (as if it ended in *). The FM_FOLD flag tells it to ignore case when

comparing buffer names against the pattern; by default buffer names are case-sensitive (but see the

preserve-filename-case variable).

The file_match() primitive returns one of a series of file names that match a pattern. You can use this

primitive to expand file name patterns such as a*.c. See page 128 for details on Epsilon’s syntax for file

patterns. The STARTMATCH flag tells it to examine the pattern and return the first match; omitting the flag

makes it return the next match of the current pattern. The EXACTONLY flag tells it to return only exact

matches of the pattern; otherwise it returns file names that start with a match of the pattern. Use the

FM_NO_DIRS flags if you want to skip over directories when looking for files that match, or FM_ONLY_DIRS

to retrieve only directory names.

Instead of directly calling the file_match() primitive, you should call the subroutine

do_file_match(). It takes the same arguments as file_match() and returns the same value. In fact, by

default it simply calls file_match(). But a user extension can replace the subroutine to provide Epsilon

with new rules for file matching.

short abort_file_matching = 0;

#define ABORT_IGNORE 0 /* ignore abort key & continue */

#define ABORT_JUMP -1 /* jump via check_abort() */

#define ABORT_ERROR -2 /* return ABORT_ERROR as error code */

By default, the file_match() and do_dired() primitives ignore the abort key. (See page 489 for

information on do_dired().) To permit aborting a long file match, set the primitive variable

abort_file_matching using save_var to tell Epsilon what to do when the user presses the abort key. If

you set abort_file_matching to ABORT_ERROR and the user presses the abort key, this function will

return a failure code and set errno to EREADABORT. Set the variable to ABORT_JUMP if you want Epsilon to

abort your function by calling the check_abort() primitive. (See page 514.) By default, the variable is

zero, and Epsilon ignores the abort key until the primitive finishes.

10.6.5 Other Input Functions

get_strdef(char *res, char *pr, char *def)

get_strnone(char *res, char *pr, char *def)

get_string(char *res, char *pr)

get_str_auto_def(char *res, char *pr)

get_strpopup(char *res, char *title,

char *def, char *help)

The subroutines get_string(), get_strdef(), and the rest each get a string from the user, and

perform no completion. They each display the prompt, and accept a line of input with editing.

The get_strdef() routine additionally displays the default string (indicated by def) and allows the

user to select the default by typing just the 〈Enter〉 key. The user can also pull in the default with Ctrl-S, and

then edit the string if desired. While the other two functions use their prompt arguments as-is,

get_strdef() constructs the actual prompt by adding a colon and space. If insert-default-response

is zero, they also include the default value in the prompt, inside square brackets.

The get_strnone() subroutine works like get_strdef(), except that the default string is not

displayed in the prompt (even when insert-default-response is zero), and Epsilon won’t replace an

empty response with the default string. Use this instead of get_strdef() if an empty response is valid.

The get_str_auto_def() subroutine is like get_strdef(), except it automatically provides the last

response to the current prompt as a default.

552 Chapter 10. Primitives and EEL Subroutines

The get_strpopup() subroutine is a variation of get_strnone() that is only available under Epsilon

for Windows. It displays a simple dialog. The parameter title provides the dialog’s title, and def provides

the initial contents of the response area, which is returned in res. If the user presses the Help button,

Epsilon will look up help for the specified command or variable name or other topic name in its help file.

int get_number(char *pr)

int numtoi(char *str)

int strtoi(char *str, int base)

int exptoi(char *str)

int evaluate_numeric_expression(char *expr)

char got_bad_number;

The get_number() subroutine is handy when a command needs a number. It prompts for the number

using get_string(), but uses the prefix argument instead if one is provided. It returns the number

obtained, and also takes care of resetting iter if necessary. It also understands numbers such as 0x10 in

EEL’s hexadecimal (base 16) format, binary and octal numbers, and character codes like ’a’.

The numtoi() subroutine converts from a string to a number. It skips over any spaces at the beginning

of its string parameter, determines the base (by seeing if the string starts with “0x” or similar), and then calls

strtoi() to perform the actual conversion. The subroutine strtoi() takes a string and a base, and returns

the value of the string assuming it is a number in that base. It handles bases from 2 to 16, and negative

numbers too. It stops when it finds a character that is not a legal digit in the requested base.

The evaluate_numeric_expression() subroutine evaluates an arithmetic expression that may

contain operators like +, -, *, or /, returning its numeric value. It runs the EEL compiler to do this. The

exptoi() subroutine does the same. However, it examines the expression first. If it contains no arithmetic

operators, it calls numtoi() instead, which is significantly faster.

The numtoi() and exptoi() subroutines both also recognize a key name inside angle brackets, such

as <Tab>, and return the key’s numeric value. (The evaluate_numeric_expression() subroutine

doesn’t, only permitting proper EEL expressions.) The exptoi() subroutine is usually the best choice for

evaluating numeric user input. The get_number() subroutine mentioned above calls it.

All these subroutines set the variable got_bad_number to a nonzero value if the string they receive

doesn’t indicate a valid number. They return the value zero in this case. If the string does represent a

number, they set got_bad_number to zero.

int get_choice(int list, char *resp, char *title,

char *msg, char *b1, char *b2,

char *b3)

int get_key_choice(int list, char *resp, char *title,

char *msg, char *b1, char *b2, char *b3)

int select_menu_item(int resbuf, int menuwin,

int owin, int dir)

The get_choice() subroutine provides a way to ask the user to select one of a list of choices. The

choices must appear in the buffer list, one to a line. The subroutine displays a pop-up window with the

indicated title and shows the specified message.

Epsilon for Windows instead displays a dialog with the indicated title, and doesn’t use the message. It

uses the specified button labels (see the description of the button_dialog() primitive on page 554 for

details). The get_choice() subroutine puts the user’s choice in resp and returns 1. If the user cancels, the

subroutine returns 0.

10.6. Input Primitives 553

If resp is initially nonempty, get_choice() will position point on the first line starting with that text.

If resp is initially "", the subroutine won’t change point in list.

The get_key_choice() subroutine is a variation on get_choice(), designed to let the user select

one of a series of options. Each of the lines in the buffer list should begin with a unique character. When

the user presses that character, Epsilon moves to that entry in the list. This subroutine’s behavior is

otherwise identical to get_choice().

The get_choice() subroutine uses the select_menu_item() subroutine to handle user interaction.

It takes the window handle menuwin of a window containing a list of choices and returns when the user has

selected one. The parameter owin should be the handle of the window that was current before displaying

menuwin. If resbuf is nonzero, Epsilon will copy the selected line to the specified buffer.

The parameter dir tells Epsilon how to behave when the user presses self-inserting keys like ‘a’. If dir

is zero, the subroutine interprets N and P to move forward and back, and Q to quit. Other normal keys are

ignored. If dir is 1 or -1, and search-in-menu is nonzero, normal keys are added to the result, and

Epsilon searches for the first (if 1) or last (if -1) item that matches.

10.6.6 Dialogs

Standard Dialogs

short common_file_dlg(char *fname, char *title,

int *flags, int save,

?char *filt_str, ?char *cust_filter,

?int *filt_index)

short use_common_file_dlg(char *fname, char *title,

int *flags, int save)

int use_common_file_dialog()

Under Windows, the common_file_dlg() primitive displays the Common Open/Save File Dialog.

The fname parameter should be initialized to the desired default file name; on return it will hold the file

name the user selected. The title parameter specifies the title of the dialog window. Epsilon passes the

flags parameter to Windows; definitions for useful flag values appear in codes.h. Windows modifies some

of the flags before it returns from the dialog. If the parameter save is nonzero, Epsilon displays the Save

dialog, if zero it uses the Open dialog. This primitive uses the common-open-curdir variable to hold the

directory that this dialog should display.

The filter parameters let you specify the file types the user can select; these are all passed directly to

Windows. Epsilon normally invokes common_file_dlg() through the use_common_file_dlg()

subroutine, which uses the filter definitions from the file filter.txt to construct the filt_str parameter. You

can edit that file to add new filters.

The parameter filt_str has the following format. It consists of pairs of null-terminated strings. The

first string says what to display in the dialog, while the second is a Windows-style list of file patterns,

separated by semicolons. For example, the first string might be "Fortran files" and the second string

might be "*.for;*.f77". A final null character follows the last pair.

The use_common_file_dialog() subroutine examines the want-common-file-dialog variable

and other settings and tells whether a command should use the common file dialog in place of Epsilon’s

traditional file dialog.

find_dialog(int show)

find_dialog_say(char *text)

554 Chapter 10. Primitives and EEL Subroutines

Under Windows, the find_dialog() primitive displays a find/replace dialog, when its parameter show

is nonzero. When its parameter show is zero, it hides the dialog. While a find/replace dialog is on the screen,

the getkey() function returns certain predefined keys to indicate dialog events such as clicking a button or

modifying the search string. The _find() subroutine defined in search.e interprets these key codes to

control the dialog. The global variable find_data lets that subroutine control the contents of the dialog.

When a find/replace dialog is on the screen, an EEL program can display an error message in it using

the find_dialog_say() primitive. This also adds an alert symbol to the dialog. To clear the message and

remove the alert symbol, pass a parameter of "".

short window_lines_visible(int w)

The window_lines_visible() primitive returns the number of lines of a given window that are

visible above a find/replace dialog. If the given window contains twelve lines, but a find/replace dialog

covers the bottom three, this function would return nine. If Epsilon isn’t displaying a find/replace dialog, the

function returns the number of lines in the given window.

int comm_dlg_color(int oldcolor, char *title)

In Epsilon for Windows, the comm_dlg_color() primitive lets the user select a color using the

Windows common color dialog. The oldcolor parameter specifies the default color, and title specifies

the dialog’s title. The primitive returns the selected color, or -1 if the user canceled.

about_box()

The about_box() primitive displays Epsilon’s “About” box under Windows. In other versions of

Epsilon, it inserts similar information into the current buffer. The about-epsilon command uses this

primitive.

Button Dialogs

short button_dialog(char *title, char *question,

char *yes, char *no, char *cancel,

int def_button)

The button_dialog() primitive displays a dialog having one to three buttons. By convention, these

buttons have meanings of “Yes”, “No”, and “Cancel”, but the labels may have any text. Set the cancel

parameter to "" to use a dialog with two buttons. Set both cancel and no to "" if you want a dialog with

one button. Put & before a character in a button label to make it an access key; it will be underlined, and

pressing the key will act like clicking that button. Use && for a literal & character. The parameter title

specifies the title of the dialog. The parameter question holds the text to display in the dialog next to the

buttons.

Set def_button to 1, 2, or 3 to make the default button be the first, second or third. Any other value

for def_button is the same as 1. Canceling or closing the dialog is equivalent to pressing the last defined

button.

The primitive returns 1, 2, or 3 to indicate which button was pressed. It sets the key_is_button

variable to its return value if the user actually clicked a button, or to zero if he pressed a key to end the

dialog. It sets key and full_key to indicate the pressed key (uppercased), or to 'Y', 'N', or 'C',

respectively, if the user clicked one of the buttons.

10.6. Input Primitives 555

If the user clicked the dialog’s close box, the primitive returns 3, setting key_is_button to 4, and key

and full_key to the abort key. If the user pressed the abort key, the primitive returns the code for the last

button, setting key_is_button to 0, and key and full_key to the pressed key.

This primitive only works in the Windows version of Epsilon; read on for similar functions that work

everywhere.

int ask_yn(char *title, char *question, char *yes_button,

char *no_button, int def_button)

ask_3way(char *title, char *question, char *prompt,

char *a1, char *a2, char *a3, int def)

The ask_yn() subroutine defined in basic.e asks a Yes/No question. Under Windows, it uses a dialog.

The parameters specify the title of the dialog, the text of the question displayed in it, and the text on its two

buttons (typically “Yes” and “No”, but sometimes “Save” and “Cancel” or the like). Put & before a

character in a button label to make it an access key; it will be underlined, and pressing the key will act like

clicking that button. Use && for a literal & character.

Set def_button to 0 for no default, 1 to make the first choice “Yes” the default, or 2 to make the

second choice “No” the default. (Under non-Windows versions, no default means that just hitting 〈Enter〉
won’t return from this function; you must choose an option. Under Windows, no default is the same as a

default of “Yes”.) The function returns 1 if the user selected the first option “Yes” or 0 if the user selected

the section option “No”. Non-Windows versions of Epsilon only use the question and def_button

parameters. They modifies the prompt to indicate the default, if any.

The ask_3way() subroutine is similar, but asks a question with three possible responses. Epsilon

always displays the prompt; GUI versions also display a dialog with the specified title and question. The

first letter of each answer is its shortcut key; put an ampersand “&” before another letter in an answer to use

that as the shortcut key instead. The value def may be 1, 2, or 3 to make that answer the default, or 0 for

none. The subroutine returns 1, 2, 3 as its response, or 0 if the user aborted.

int get_key_response(char *pr, char *valid, int def, char *helpcmd)

The get_key_response() subroutine waits for the user to type a valid key in response to a prompt pr.

The parameter valid lists the acceptable characters, such as "YN" for a yes/no question. (But see the

ask_yn() subroutine, more suitable for yes/no questions.) The def parameter, if greater than zero, indicates

which key should be the default if the user presses 〈Enter〉. If the helpcmd parameter is non-null, Epsilon

displays help on that topic if the users presses ? or another help key. The subroutine returns the selected key.

Windowed Dialogs

display_dialog_box(char *dialogname, char *title,

int win1, int win2, int win3,

char *button1, char *button2, char *button3,

char *button4, ?char *tag)

The display_dialog_box() primitive creates a new dialog box in Epsilon for Windows containing

one or more Epsilon windows. The dialogname must correspond to one of the dialogs in this list:

556 Chapter 10. Primitives and EEL Subroutines

Dialog name Windows Dialog name Windows

AskExitBox 2 GeneralBox 1

AskSaveBox 2 HelpSetup1 1

CaptionBox 2 OneLineBox 1

EditVarBox 2 PromptBox 2

FileDateBox 1 SetColorBox 3

FileDateBox2 1 UsageBox 1

Each dialog requires one to three handles to pop-up windows, created with add_popup() in the usual

way. The primitive moves these windows to the new dialog box. If you use a dialog which requires only one

or two window handles, provide zero for the remaining handles. The windows will be resized to fit the

dialog, and each will be assigned a unique “screen handle”. Mouse clicks in that window will set the

mouse_screen variable to the matching screen handle. You can use the window_to_screen() primitive to

determine the screen number assigned to each window.

The parameters button1, button2, button3, and button4 specify the text for the buttons. If you

want fewer buttons, provide the value "" for any button except button 1 and it will not appear. The specified

title appears at the top of the dialog box.

When you click on a button in a dialog, Epsilon normally returns a particular fixed keystroke: either

Ctrl-M, or the abort key specified by the abort_key variable, or the help key specified by the HELPKEY

macro, for the first, second, and third buttons respectively. These correspond to typical button labels of

“OK”, “Cancel”, and “Help”, so that most EEL programs don’t need to do anything special to receive input

from buttons. If an EEL program needs to know whether a keypress came from an actual key, or a button, it

can examine the value of the key_is_button variable. This variable is zero whenever the last key returned

was an actual key, and nonzero when it was really a button. In the latter case, its value is 1 if the leftmost

button was pressed, 2 if the next button was pressed, and so forth.

Sometimes an EEL program puts different labels on the buttons. It can be more convenient in this case

to retrieve a button press as a distinct key. Set the return_raw_buttons variable to a nonzero value to

retrieve all button presses as the key code WIN_BUTTON. The key_is_button variable will still be set as

described above, so you can distinguish one button from another by examining its value.

Epsilon for Windows remembers and restores the sizes of most of these dialogs. Some dialogs may be

used in multiple contexts. To have Epsilon remember a different size for each context, pass a unique tag

parameter. If the optional tag is missing or NULL, Epsilon uses a default context for remembering the

dialog’s size.

one_window_to_dialog(char *title, int win1,

char *button1, char *button2, char *button3)

prompt_box(char *title, int win1, int win2, char *tag)

two_scroll_box(char *title, int win1, int win2,

char *button1, char *button2, char *button3)

void (*use_alternate_dialog)(int win1, int win2, int win3);

char *use_alternate_dialog_name;

The subroutines one_window_to_dialog(), prompt_box(), and two_scroll_box() each call

display_dialog_box() with some of its parameters filled in for you. They display certain common kinds

of dialogs. Call one_window_to_dialog() to display a dialog with a single text window and one to three

buttons. To see an example, define a bookmark with Alt-/ and then type Alt-X list-bookmarks. Call

prompt_box() to display a dialog with a one-line window, and below it a list-box style window. To see an

example, type Ctrl-X Ctrl-F and then ’?’. Call two_scroll_box() to display a dialog box with two

multi-line windows.

10.6. Input Primitives 557

These subroutines all call a subroutine named do_display_dialog_box(), which takes the same

parameters as display_dialog_box(), but can be told to use an alternative function to display the dialog,

not display_dialog_box(), by temporarily setting the function pointer use_alternate_dialog to a

suitable function. Or they can be told to use a different dialog name by temporarily setting the

use_alternate_dialog_name variable to its name.

next_dialog_item()

prev_dialog_item()

Within an Epsilon window that’s part of a dialog box, the next_dialog_item() and

prev_dialog_item() primitives move the focus to a different window or button within the dialog box.

Epsilon normally binds 〈Tab〉 and Shift-〈Tab〉 to commands that use these primitives.

int dialog_checkboxes;

int disable_dialog_controls;

Some dialogs include check boxes. The dialog_checkboxes variable controls which check boxes are

checked. Each check box corresponds to a bit in this variable. When EEL code sets or clears a bit, it’s

reflected in the state of that check box; similarly, when the user clicks the check box, its corresponding bit in

this variable changes to match. This also generates a WIN_BUTTON event; see page 545.

The disable_dialog_controls variable lets EEL code disable check boxes and buttons in a dialog.

Each check box or button corresponds to a bit in this variable. Setting the bit disables the corresponding

control. Clearing the bit enables the control. For check boxes, it unchecks the check box, clearing the

corresponding bit in dialog_checkboxes. Check boxes are assigned the low-order eight bits. Any buttons

in the dialog are assigned the remaining bits.

set_window_caption(int win, char *title)

show_window_caption()

The set_window_caption() primitive sets the text in the title bar of the dialog box containing the

window win. If the specified window is on Epsilon’s main screen, it sets the main window title displayed

above the menu bar. The show_window_caption() subroutine calls this to include the current file name in

the caption of Epsilon’s main window.

10.6.7 The Main Loop

While Epsilon runs, it repeatedly gets keys, executes the commands bound to them, and displays any

changes to buffers that result. We call this process the main loop. Epsilon loops until you call the

leave_recursion() primitive, as described on page 516. The steps in the main loop are as follows:

• Epsilon resets the in_echo_area variable. See page 462.

• Epsilon calls the check_abort() primitive to see if you pressed the abort key since the last time

check_abort() was called. If so, an abort happens. See page 514.

• Epsilon sets the current buffer to be the buffer connected to the current window.

• Epsilon calls maybe_refresh(), so that all windows are brought up to date if the next key is not

ready yet.

558 Chapter 10. Primitives and EEL Subroutines

• Epsilon calls undo_mainloop(), to make sure undo information is kept for the current buffer, and to

tell the undo system that future buffer changes will be part of the next command.

• Epsilon sets the this_cmd and has_arg variables to 0, and the iter variable to 1. See below.

• Epsilon calls the EEL subroutine getkey(). This subroutine in turn calls the wait_for_key()

primitive to wait for the next key, mouse click, or other event.

• Epsilon executes the new key by calling the primitive do_topkey() as described on page 560.

• Epsilon sets the prev_cmd variable to the value in this_cmd.

user short this_cmd;

user short prev_cmd;

invisible_cmd()

Some commands behave differently depending on what command preceded them. For example, up-line

behaves differently when the previous command was also up-line. To get this behavior, the command acts

differently if prev_cmd is set to a certain value and sets this_cmd to that value itself. Epsilon copies the

value in this_cmd to prev_cmd and then clears this_cmd, each time through the main loop.

Sometimes a command doesn’t wish to be counted when determining the previous command. For

example, when you move the mouse, Epsilon is actually running a command. But the up-line command of

the previous example must behave the same, whether or not you happen to move the mouse between one

up-line and the next. A command may call the invisible_cmd() primitive to make commands like up-line

ignore it. (In fact, the primitive simply sets this_cmd equal to prev_cmd.)

user char has_arg;

user int iter;

Numeric arguments work using the has_arg and iter variables. The main loop resets iter to 1 and

has_arg to 0. The argument command sets iter to the value of the argument, and sets has_arg to 1 so

other commands can distinguish an argument of 1 from no argument. The do_command() primitive,

described on page 560, will repeatedly execute a command while iter’s value is greater than one,

subtracting one from iter’s value with each execution. If a command wants to handle arguments itself, it

must set iter to one or less before returning, or the main loop will call it again.

user short cmd_len;

Any command may get more keys using the wait_for_key() primitive (usually by calling getkey();

see page 535). Epsilon counts the keys used so far by the current command and stores the value in the

variable cmd_len. This counter is reset to zero each time Epsilon goes through the main loop. The counter

doesn’t count mouse keys or other events that appear as keys.

10.6.8 Bindings

Epsilon lets each buffer have a different set of key bindings appropriate to editing the type of text in that

buffer. For instance, while in a buffer with EEL source code, a certain key could indent the current function.

The same key might indent a paragraph in a buffer with text.

A key table stores a set of key bindings. A key table acts like a very large array, with one entry for each

key on the keyboard. Each entry in the array contains an index into the name table. (See page 523.) If the

value of a particular entry is negative or zero, it means the key is undefined according to that table.

10.6. Input Primitives 559

Since the key codes that index a key table can be very large numbers, with big gaps between entries,

Epsilon doesn’t actually store key tables as arrays, but they act like arrays in EEL. (Internally, Epsilon stores

a key table as a type of sparse array.) The MAXKEYS macro holds a number bigger than the biggest possible

key code.

#define key_t int

set_range(key_t *table, int i, int value, int cnt)

int get_range(key_t *table, int i, int value)

int find_next_entry(key_t *table, int value, int bound)

EEL code that wants to perform some operation on groups of keys can’t simply use a loop like for (i

= 0; i < MAXKEYS; i++) to do so; that would be too slow. Instead, there are primitives specifically

designed for such purposes.

To set a range of key codes entries to a particular value, use the set_range() primitive. It sets the cnt

entries starting at index i in the key table table to the specified value. The key_t type represents the type

of a key table entry.

To find the length of a run of identical values in a key table array, use the get_range() primitive. It

returns the number of entries, starting at index i, with the specified value. For instance, if k is a key table,

and k[5], k[6], and k[7] equal 123, but k[8] equals 456, then get_range(k, 5, 123) would return 3,

and get_range(k, 8, 123) would return 0.

The find_next_entry() primitive searches for the index of the next member of the key table array k

with the specified value. It starts looking at position bound in the array, skipping past index entries less than

or equal to bound. It returns -1 if there are no more entries set to the specified value.

The EEL header file oldkeys.h provides sample implementations of the above primitives. If the

number of possible keys were much smaller, you could use them instead of the above primitives. If you

write EEL source code that must also work in older versions of Epsilon, you can include that file. Your EEL

source code will use the definitions in oldkeys.h when you compile it in old versions of Epsilon; under

Epsilon 12 or later, it will use the above primitives.

buffer short *mode_keys;

short *root_keys;

keytable reg_tab, c_tab;

Epsilon uses two key tables in its search for the binding of a key. First it looks in the key table

referenced by the buffer-specific variable mode_keys. If the entry for the key is negative, Epsilon considers

the command unbound and signals an error. If the entry for the key is 0, as it usually is, Epsilon uses the

entry in the key table referenced by the variable root_keys instead. If the resulting entry is zero or

negative, Epsilon considers the key unbound. If it finds an entry for the key that is a positive number,

Epsilon considers that number the key’s binding. The number is actually an index into the name table.

Most entries in a key table refer to commands, but an entry may also refer to a subroutine (if it takes no

arguments), to a keyboard macro, or to another key table. For example, the entry for Ctrl-X in the default

key table refers to a key table named cx_tab, which contains the Ctrl-X commands. The entry for the

find-file command bound to Ctrl-X Ctrl-F appears in the cx_tab key table.

Normally in Epsilon the root_keys variable points to the reg_tab array. The mode_keys variable

points to one of the many mode-specific tables, such as c_tab for C mode.

int new_table(char *name)

int make_anon_keytable() /* control.e */

short *index_table(int index)

560 Chapter 10. Primitives and EEL Subroutines

Key tables are usually defined with the keytable keyword as described on page 406. If a key table’s

name is not known when the routine is compiled, the new_table() primitive can be used. It makes a new

key table with the given name. All entries in it are 0.

The make_anon_keytable() subroutine defined in control.e calls new_table(), first choosing an

unused name for the table. The index_table() function takes a name table index and retrieves the key

table it refers to.

fix_key_table(short *ftab, int fval, short *ttab, int tval)

copy_key_table(short *from, short *to)

set_list_keys(short *tab)

The fix_key_table() subroutine copies selected key table information from one key table to another.

For each key in ftab bound to the function fval, the subroutine binds that key in ttab to the function

tval. The copy_key_table() subroutine copies an entire key table. The set_list_keys() subroutine

sets the ‘n’ and ‘p’ keys to move up or down by lines.

do_topkey()

run_topkey()

When Epsilon is ready to execute a key in its main loop, it calls the primitive do_topkey(). This

primitive searches the key tables for the command bound to the current key, as described above. When it has

found the name table index, it calls do_command(), below, to interpret the command.

The run_topkey() subroutine provides a wrapper around do_topkey() that resets iter and similar

variables like the main loop does. An EEL subroutine that wants to retrieve keys itself and execute them as

if the user typed them at command level can call this subroutine.

do_command(int index)

user short last_index;

The do_command() primitive executes the command or other item with the supplied name table index.

If the index is invalid, then the quick_abort() primitive is called. Otherwise, the index is copied to the

last_index variable, so the help system can find the name of the current command (among other uses).

If the name table index refers to a command or subroutine, Epsilon calls the function. When it returns,

Epsilon checks the iter variable. If it is two or more, Epsilon proceeds to call the same function repeatedly,

decrementing iter each time, so that it calls the function a total of iter times. See page 558.

key_t *table_keys;

int table_count;

table_prompt() /* control.e */

If the entry in the name table that do_command() is to execute contains another table, Epsilon gets

another key. First, Epsilon updates the primitive array table_keys. It contains the prefix keys entered so

far in the current command, and table_count contains their number. Next, Epsilon calls the EEL

subroutine table_prompt() if it exists to display a prompt for the new key. The version of this subroutine

that’s provided with Epsilon uses mention(), so the message may not appear immediately. Epsilon then

calls the EEL subroutine getkey() to read a new key and clears the echo area of the prompt. Epsilon then

interprets the key just as the do_topkey() primitive would, but using the new key table. If both mode_keys

and root_keys provided a table as the entry for the first key, the values from each are used as the new mode

and root key tables.

10.6. Input Primitives 561

do_again()

The do_again() primitive reinterprets a key using the same pair of mode and root tables that were

used previously. The value in the variable key may, of course, be different. Epsilon uses this primitive in

commands such as alt-prefix.

Epsilon handles EEL subroutines without parameters in the name table in the same way as commands,

as described above. If the entry is for a keyboard macro, the only other legal name table entry, Epsilon goes

into a recursive edit level and begins processing the keys in the macro. It saves the macro internally so that

future requests for a key will return characters from the macro, as described on page 535. It also saves the

value of iter, so the macro will iterate properly. When the macro runs out of keys, Epsilon automatically

exits the recursive edit level, and returns from the call to do_again(). (When macro-runs-immediately

is nonzero, running a macro doesn’t enter a recursive edit level, but returns immediately. Future key requests

will still come from the macro until it’s exhausted.)

short ignore_kbd_macro;

Epsilon provides a way for a keyboard macro to suspend itself and get input from the user, then

continue. Set the ignore_kbd_macro variable nonzero to get keyboard input even when a macro is

running. The pause-macro command uses this variable.

short *ask_key(char *pr, char *keyname, int flags)

int key_binding[30]; // ask_key() puts key info here

The ask_key() subroutine defined in basic.e duplicates the logic of the main loop in getting the

sequence of keys that make up a command. However, it prompts for the sequence and doesn’t run the

command at the end. Commands like bind-to-key that ask for a key and accept a sequence of key table keys

use it.

The ask_key() subroutine returns a pointer to the entry in the key table that was finally reached. The

value pointed to is the name table index of the command the key sequence invokes.

This subroutine stores the key sequence in the keyname parameter in text form (as “Ctrl-X f”, for

example). It also copies the key sequence into the global variable key_binding. The key sequence is in

macro format, so in the example of Ctrl-X f, key_binding[1] would hold CTRL(’X’), key_binding[2]

would hold ’f’, and key_binding[0] would hold 3, the total number of entries in the array.

If you pass the 1 flag in flags and the user presses a key like 〈Backspace〉 with both a generic and a

specific interpretation, Epsilon asks the user which one he wants. Without this flag, Epsilon assumes the

specific key is meant.

If you pass the 2 flag and the user presses a key that normally shouldn’t be rebound because it

self-inserts (such as letter keys or 〈Enter〉), the subroutine asks for confirmation.

full_getkey(char *pr, int code) /* basic.e */

/* for full_getkey() */

#define ALTIFY_KEY 1

#define CTRLIFY_KEY 2

The full_getkey() subroutine defined in basic.e gets a single key from the keyboard, but recognizes

the prefix keys 〈Esc〉 and Ctrl-^. The ask_key() subroutine uses it, as well as the commands bound to the

prefix keys above. It takes a prompt to display and a bit pattern (from eel.h) to make it act as if certain of the

above keys had already been typed. For example, the ctrl-prefix command calls this subroutine with the value

CTRLIFY_KEY. It leaves the key that results in the key primitive.

562 Chapter 10. Primitives and EEL Subroutines

name_macro(char *name, key_t *keys)

Epsilon has no internal mechanism for capturing keyboard keys to build a macro (this is done in the

getkey() subroutine defined in control.e), but once a macro has been built Epsilon can name it and make it

accessible with the name_macro() function. It takes the name of the macro to create, and the sequence of

keys making up the macro in an array of short ints. This array is in the same format that get_keycode()

uses. That is, the first element of the array contains the number of valid elements in the array (including the

first one). The actual keys in the macro follow. The name_macro() primitive makes a copy of the macro it

is given, so the array can be reused once the macro has been defined.

key_t *get_macro(int index)

The get_macro() primitive can retrieve the keys in a defined keyboard macro. It takes the name table

index of a macro, and returns a pointer to the array containing the macro, in the same format as

name_macro().

bind_universally(int k, int f)

The bind_universally() subroutine can be useful to bind a function to a key in all modes. When a

key has a generic version, a mode that binds the generic version will override a global definition for the

non-generic version of the key. For instance, the Tab key has a generic version, Ctrl-I. By default, each time

you press Tab, Epsilon converts it to Ctrl-I and uses the current mode’s binding for Ctrl-I, unless the current

mode has its own definition for the Tab key too. If you want Ctrl-I to behave in a mode-specific manner, but

force Tab to always run the same command regardless of the mode, you can call this function. It binds the

key k to the function f in all key tables.

int list_bindings(int start, short *modetable,

short *roottable, int find)

The list_bindings() primitive quickly steps through a pair of key tables, looking for entries that

have a certain name table index. It takes mode and root key tables, the name table index to find, and either

-1 to start at the beginning of the key tables, or the value it returned on a previous call. It returns the index

into the key table, or -1 if there are no more matching entries. For each position in the tables, Epsilon looks

at the value in the mode key table, unless it is zero. In that case, it uses the root table.

In addition to the matches, list_bindings() also stops on each name table index corresponding to a

key table, since these must normally be searched also. For example, the following file defines a command

that counts the number of separate bindings of any command.

#include "eel.h"

command count_bindings()

{

char cmd[80];

get_cmd(cmd, "Count bindings of command", "");

if (*cmd)

say("The %s command has %d bindings", cmd,

find_some(mode_keys,

root_keys, find_index(cmd)));

}

10.7. Defining Language Modes 563

/* count bindings to index in table */

int find_some(modetable, roottable, index)

short *modetable, *roottable;

{

int i, total = 0, found;

i = list_bindings(-1, modetable, roottable, index);

while (i != -1) {

found = (modetable[i]

? modetable[i] : roottable[i]);

if (found == index)

total++;

else

total += find_some(index_table(found),

index_table(found), index);

i = list_bindings(i, modetable, roottable, index);

}

return total;

}

10.7 Defining Language Modes

There are several things to be done to define a new mode. Suppose you wish to define a mode called

reverse-mode in which typing letters inserts them backwards, so typing “abc” produces “cba”, and yanking

characters from a kill buffer inserts them in reverse order. First, define a key table for the mode with the

keytable keyword, and put the special definitions for that mode in the table:

keytable rev_tab;

command reversed_normal_character()

{

normal_character();

point--;

}

when_loading()

{

int i;

for (i = ’a’; i <= ’z’; i++)

rev_tab[toupper(i)] = rev_tab[i] = (short)

reversed_normal_character;

}

command yank_reversed() on rev_tab[CTRL(’Y’)]

{

564 Chapter 10. Primitives and EEL Subroutines

...

}

Now define a command whose name is that of the mode. It should set mode_keys to the new table and

major_mode to the name of the mode, and then call the subroutine make_mode() to update the mode line:

command reverse_mode()

{

mode_keys = rev_tab; /* use these keys */

major_mode = strkeep("Reverse");

make_mode();

}

Using strkeep() for the mode name ensures that it remains valid even if the reverse-mode

command is redefined later. Since some buffers may continue to point to it, it’s important that the pointer

remains valid. (Alternatively, you could define a character array variable with the mode name, and set

major_mode to that.) The mode name in major_mode, with the addition of “-mode”, should be the name of

a command that goes into that mode.

If you want Epsilon to go into that mode automatically when you find a file with the extension .rev (as it

goes into C mode with .c files, for instance), define a function named suffix_rev() which calls

reverse_mode(). The EEL subroutine find_it() defined in files.e automatically calls a function named

suffix_ext (where ext is the file’s extension) whenever you find a file, if a function with that name exists. It

tries to call the suffix_none() function if the file has no suffix. If it can’t find a function with the correct

suffix, it will try to call the suffix_default() function instead.

suffix_rev()

{

reverse_mode();

}

The source file samplemode.e defines a sample mode you can use as a template for your modes. Make a

copy of the file, replace all references to “sample” with the name of your mode, and modify it as needed for

your language’s syntax.

Language modes may wish to define a compilation command. This tells the compile-buffer command on

Alt-F3 how to compile the current buffer. For example, compile_asm_cmd is defined as ml "%r". (Note

that " characters must be quoted with \ in strings.) Use one of the % sequences shown on page 115 in the

command to indicate where the file name goes, typically %f or %r.

The mode can define coloring rules. See page 469 for details. Often, you can copy existing syntax

coloring routines like those for .asm or .html files and modify them. They typically consist of a loop that

searches for the next “interesting” construct (like a comment or keyword), followed by a switch statement

that provides the coloring rule for each construct that could be found. Usually, finding an identifier calls a

subroutine that does some additional processing (determining if the identifier is a keyword, for instance).

A language mode should set comment variables like comment-start. This tells the commenting

commands (see page 97) how to search for and create legal comments in the language.

The comment commands look for comments using regular expression patterns contained in the

buffer-specific variables comment-pattern (which should match the whole comment) and

comment-start (which should match the sequence that begins a comment, like ‘/*’). When creating a

comment, comment commands insert the contents of the buffer-specific variables comment-begin and

comment-end around the new comment.

10.7. Defining Language Modes 565

SHOWING MATCHING DELIMITERS.

Commands like forward-level that move forward and backward over matching delimiters will (by

default) recognize (, [, and { delimiters. It won’t know how to skip delimiters inside quoted strings, or

similar language-specific features. A language mode can define a replacement delimiter movement function.

See page 433 for details.

To let Epsilon automatically highlight matching delimiters in the language when the cursor appears on

them, a language mode uses code like this to set the auto-show-matching-characters variable:

if (auto_show_asm_delimiters)

auto_show_matching_characters = asm_auto_show_delim_chars;

where references to “asm” are of course replaced by the mode’s name. The language mode should

define the two variables referenced above:

user char auto_show_asm_delimiters = 1;

user char asm_auto_show_delim_chars[20] = "{[]}";

The list of delimiters should contain an even number of characters, with all left delimiters in the left half

and right delimiters in the right half. (A delimiter that’s legal on the left or right should appear in both

halves; then the language must provide a mode_move_level definition that can determine the proper search

direction itself. See page 433.)

Sometimes a mode may wish to highlight delimiters more complicated than single characters, such as

BEGIN and END keywords. To do this, the mode should define a function such as

mymode_auto_show_delimiter() and then set the buffer-specific function pointer variable

mode_auto_show_delimiter to point to it in that buffer.

Epsilon will then call that function when idle to highlight delimiters. It should return 0 if no

highlighting should be done, 1 to make Epsilon try to use the auto_show_matching_characters setting

described above for simple highlighting, 2 to indicate mismatched delimiters, or 3 to indicate matched

delimiters. In the latter two cases it should also display the highlighting, by setting two arrays to mark the

appropriate buffer regions, as shown in the example. This sample only demonstrates how to control the

highlighting; a typical mode would use smarter rules for finding the matching keywords (ignoring nested

pairs, skipping over keywords in comments or strings, and so forth).

A language mode may also want to set things up so typing a closing delimiter momentarily moves the

cursor back to show its matching pair. Binding keys like] and) to the command show-matching-delimiter

will accomplish this.

DISPLAYING THE CURRENT FUNCTION’S NAME.

c_func_name_finder() // Sample C mode func name finder.

char display_func_name[];

char must_find_func_name;

int start_of_function;

set_display_func_name()

get_func_name(int idle)

A language mode may want to arrange for the name of the current function or similar to appear in the

mode line, subject to the display-definition variable.

To do this, it must define a function named modename_func_name_finder, where modename is the

mode’s name as recorded in the major_mode variable. The function should write the current function’s

566 Chapter 10. Primitives and EEL Subroutines

#include "eel.h"

#include "colcode.h"

int mymode_auto_show_delimiter()

{

save_var point, case_fold = 1;

save_var matchstart, matchend, abort_searching = 0;

init_auto_show_delimiter(); // Must do this first.

point -= parse_string(-1, "[a-z0-9_]+");

*highlight_area_start[0] = point;

if (parse_string(1, "</word>begin</word>")) {

*highlight_area_end[0] = matchend;

if (!re_search(1, "</word>end</word>"))

return 2;

} else if (parse_string(1, "</word>end</word>")) {

*highlight_area_end[0] = matchend;

if (!re_search(-1, "</word>begin</word>"))

return 2;

} else

return 1;

*highlight_area_start[1] = matchstart; // Mark the far end.

*highlight_area_end[1] = matchend;

modify_region(SHOW_MATCHING_REGION, MRTYPE, REGNORM);

// Make the highlighting visible.

return 3;

}

Figure 10.3: Highlighting keyword delimiters.

name to the display_func_name variable and return 1, also setting the start_of_function variable to a

buffer position representing the start of the function, if it can. If point is not in a function, set

display_func_name to an empty string and return 1.

Epsilon normally runs this function during idle time. If the user presses a key during this function, and

the must_find_func_name variable is zero, it should stop any slow parsing if it can and return 0.

There are two subroutines that take advantage of such functions. The set_display_func_name()

subroutine is what Epsilon calls when idle, to update the displayed function name.

The get_func_name() subroutine allows EEL code to take advantage of a mode’s function name

finder at other times. Pass a nonzero value for idle if you want it to give up and return should the user press

a key. It returns 0 if Epsilon’s idea of the function name in display_func_name was already up to date, 1

if it wasn’t, but it now is, 2 if it couldn’t be computed, or 3 if the function gave up to handle a waiting key.

Both these functions set start_of_function to the start of the current function in this buffer if they can,

or -1 otherwise.

HELPFUL SUBROUTINES.

Some subroutines help with mode-specific tasks.

int call_by_suffix(char *file, char *pattern)

10.7. Defining Language Modes 567

int get_mode_variable(char *pat)

char *get_mode_string_variable(char *pat)

int get_mode_based_index(char *pat)

The call_by_suffix() subroutine constructs a function name based on the extension of a given file

(typically the file associated with the current buffer). It takes the file name, and a function name with %s

where the extension (without its leading “.”) should be. For example, call_by_suffix("file.cpp",

"tag-suffix-%s") looks for a subroutine named tag-suffix-cpp. (If the given file has no extension,

the subroutine pretends the extension was “none”.)

If there’s no subroutine with the appropriate name, call_by_suffix() then replaces the %s with

“default” and tries to call that function instead. The call_by_suffix() subroutine returns 1 if it found

some function to call, or 0 if it couldn’t locate any suitable function.

The get_mode_variable() subroutine searches for a function or variable with a name based on the

current mode. Its parameter pat must be a printf-style format string, with a %s where the current mode’s

name should appear. The subroutine will look for a function or variable with the resulting name. A variable

by that name must be numeric; the subroutine will return its value. A function by that name must take no

parameters and return a number; this subroutine will call it and return its value. In either case it will set the

got_bad_number variable to zero. If get_mode_variable() can’t locate a suitable function or variable, it

sets got_bad_number nonzero.

The get_mode_string_variable() subroutine retrieves the value of a string variable whose name

depends on the current mode. The name may also refer to a function; its value will be returned. It constructs

the name by using sprintf(); pat should contain a %s and no other % characters; the current mode’s name

will replace the %s. If there’s no such variable or function with that name, it returns NULL. The subroutine

sets the got_bad_number variable nonzero to indicate that there was no such name, or zero otherwise.

The get_mode_based_index() subroutine looks for a name table entry of any sort (a function,

variable, key table, etc.) with a name built by replacing the %s sequence in the specified pattern with the

name of the current mode. If there is none, it substitutes "default" for the mode name and tries again. It

returns the name table index of the entry it found, or zero if none.

int guess_mode_without_extension(char *res, char *pat)

The guess_mode_without_extension() subroutine tries to determine the correct mode for a file

without an extension, mostly by examining its text. It can detect some Perl and C++ header files that lack

any .perl or .hpp extension, as well as makefiles (based simply on the file’s name) and various other sorts of

files. If it can determine the mode, it uses pat as a pattern for sprintf() (so it should contain one %s and

no other %’s) and sets res to the pat, with its %s replaced by the mode name. Then it returns 1. If it can’t

guess the mode it returns 0.

mode_default_settings()

The mode_default_settings() subroutine resets a number of mode-specific variables to default

settings. A command that establishes a mode can call this subroutine, if it doesn’t want to provide explicit

settings for all the usual mode-specific variables, such as comment pattern variables.

zeroed buffer (*buffer_maybe_break_line)();

int example_maybe_break_line(int type)

int generic_maybe_break_line(int type)

zeroed buffer int (*mode_restrict_break)();

int example_mode_restrict_break(int pos)

568 Chapter 10. Primitives and EEL Subroutines

The auto-fill minor mode normally calls a function named maybe_break_this_line() to break lines.

A major mode may set the buffer-specific function pointer buffer_maybe_break_line to point to a

different function; then auto-fill mode will call that function instead, for possibly breaking lines as well as

for turning auto-fill on or off, or testing its state.

A buffer_maybe_break_line function will be called with one numeric parameter. If 0 or 1, it’s

being told to turn auto-fill off or on. The function may interpret this request to apply only to the current

buffer, or to all buffers in that mode. It should return 0.

If its parameter is 2, it’s being asked whether auto-fill mode is on. It should return a nonzero value to

indicate that auto-fill mode is on.

If its parameter is 3, it’s being asked to perform an auto-fill, if appropriate, triggered by the key in the

variable key, which has not yet been inserted in the buffer. It may simply return 1 if the line is not wide

enough yet, or after it has broken the line. Epsilon will then insert the key that triggered the filling request. If

it returns zero, Epsilon will skip inserting the key that triggered the filling.

Many language modes set buffer_maybe_break_line to point to the

generic_maybe_break_line() function, which breaks within comments by using variables like

comment-start, and doesn’t break long lines outside comments. It works in languages that use simple

one-line comments.

Even if a mode uses the standard maybe_break_this_line() subroutine to handle its line breaking, it

can still limit where breaks may occur by setting the buffer-specific function pointer

mode_restrict_break to point to a restriction function. A restriction function takes a parameter

specifying the position of a space or tab character in the current buffer, and returns 1 if it’s OK to break a

line at that position, or 0 if it’s not. In buffers where mode_restrict_break is zero, any space or tab

character is a valid breaking position.

10.7.1 Language-specific Subroutines

int find_c_func_info(char *type, char *class,

char *func, int stop_on_key)

The find_c_func_info() subroutine gets info on the function or class defined at point in the current

C-mode buffer, by parsing the buffer. It sets class to the class name of the current item, if any, and func to

the function name if any. It sets type to "class", "struct", or "union" if it can determine which is

appropriate. Outside a function or class definition, the above will be set to "". You may pass NULL for any

of the above parameters if you don’t need that information.

If stop_on_key is nonzero, and the user presses a key while the function is running, the function will

immediately return -1 without setting the above variables. Otherwise the function returns a bit pattern:

CF_INFO_TYPE if type was set non-empty; CF_INFO_CLASS if class was set non-empty; and

CF_INFO_FUNC if func was set non-empty. In addition to zero, only these combination can occur:

CF_INFO_TYPE CF_INFO_CLASS CF_INFO_FUNC

• •

•

• •

• • •

10.7. Defining Language Modes 569

Chapter 11

Error Messages

571

This chapter lists some of the error messages Epsilon can produce, with explanations. In general, any error

numbers produced with error messages are returned from the operating system.

Argument list mismatch in call. An EEL function was called with the wrong number of parameters.

Perhaps you tried to call an EEL function by name, from the command line. Only functions that take no

formal parameters can be called this way.

Can’t find tutorial. Install first. Epsilon tried to load its tutorial file, since you started it with the

-teach option, but can’t find it. The tutorial is a file named eteach, located in Epsilon’s main directory.

Can’t interpret type of variable-name. You can only set or show variables that have numbers or

characters in them.

COMSPEC missing from environment. Epsilon needs a valid COMSPEC environment variable in

order to run another program. See page 11.

Couldn’t exec: error number. You tried to run a program from within Epsilon, and Epsilon

encountered an error trying to invoke that program. The number denotes the error code returned by the

operating system. Also see the previous error.

Debug: can’t read source file filename. Epsilon’s EEL debugger tried to read an EEL source file, but

couldn’t find it. Epsilon gets a source file’s pathname from the EEL compiler’s command line. If you

compiled an EEL file with the command “eel dir/file.e”, Epsilon will look for a file named “dir/file.e”.

Check that your current directory is the same as when you ran the EEL compiler.

Don’t know how to tag the file filename. Epsilon only knows how to tag files with certain extensions

like .c, .h, .e, and .asm. Using EEL, you can tell Epsilon how to tag other types of files, though. See page

499.

Files not deleted. An error occurred when the dired command tried to delete the file or directory. You

can only delete empty directories.

Invalid or outdated byte code file filename. The byte code file Epsilon tried to load was created with

another version of Epsilon, was empty, or was illegal in some other way. Try compiling it again with the

EEL compiler.

filename is not a directory. You specified filename in an -fs flag, telling Epsilon to create its temporary

files there, but it isn’t a directory.

Macro definition buffer full: keyboard macro defined. You tried to define a macro of more than 500

keys from the keyboard. This might happen because you forgot to close a macro definition with the Ctrl-X)

command. If you really want to define such a big macro, use the command file mechanism (see page 154) or

change the MAX_MACRO constant defined in eel.h and recompile control.e using EEL.

Macro nesting too deep. All macros canceled. An Epsilon keyboard macro can call another keyboard

macro recursively (but only if the calling macro is defined by a command file—see page 146). To catch

runaway recursive macros, Epsilon puts a limit on the depth of keyboard macro recursion. Epsilon allows

unlimited tail-recursion: if a macro calls another macro with its last keystrokes, Epsilon finishes the original

macro call before beginning the next one.

Only one window. The diff and compare-windows commands compare the current window with the

next window on the screen, but there’s only one window.

function undefined or of wrong type. Epsilon initialized itself exclusively from a bytecode file

(without reading a state file), since you gave the -b flag, but that file didn’t define a function or variable that

Epsilon needs to run. See page 532. To load a bytecode file, in addition to Epsilon’s usual commands, use

the -l flag, not the -b flag.

Appendix A

Index

573

+ command line option 10

--w EEL command line flag 380

.bsc files for browsing 50

.bsc files for tagging 49

.directory.espell file 78

.epsilon_vars file 121

.espell files 78

.mnu files 31

.sbr files 50

8.3-format file names 494

#messages# buffer 22

#symbols# buffer 51

A
abbreviate_file_name() subroutine 461, 492

abort command 43, 99, 169

abort key 99

ABORT_ASK textual macro 477

ABORT_ERROR textual macro 428, 435, 477, 551

abort_file_io primitive 253, 477

abort_file_matching primitive 253, 489, 551

ABORT_IGNORE textual macro 428, 477

ABORT_JUMP textual macro 428, 435, 477, 551

abort_key primitive 45, 253, 515

abort_searching primitive 253, 428, 435

about_box() primitive 554

about-epsilon command 36, 169

absolute() primitive 490, 546

-add command line flag 14, 136

add_buffer_when_displaying() subroutine 472

add_buffer_when_idle() subroutine 536

add_final_slash() primitive 492

add_popup() primitive 444

add_region() primitive 464

add_tag() subroutine 499

after-exiting color class 107

after_loading() primitive 532

align-by-tab command 169

align-region command 77, 169, 253

align-region-extra-space variable 77, 253

align-region-rules variable 77, 169, 253

all_blanks() subroutine 433

ALL_BORD() textual macro 444

all-directory file variables 121

all_must_build_mode primitive 254, 452

alloc_spot() primitive 424

allow_mouse_switching() subroutine 543

already-made-backup buffer variable 254

ALT() textual macro 536

Alt-? key 35

alt-invokes-menu variable 165, 254

alt-numpad-keys variable 145, 254

alt-prefix command 148, 169

alter_color() primitive 474

anon-ftp-password variable 126, 254

anonymous ftp 126

another_process() primitive 511

ansi-to-oem command 117, 169

any_uppercase() subroutine 517

API help 95

append-next-kill command 58, 170

Application Data directory 13

apply_defaults() primitive 532

apropos command 35, 36, 170

argc primitive 254, 531

argument command 145, 170

argument, numeric 25, 145

argv primitive 531

arrow keys 40

ASCII characters 162

ask_3way() subroutine 555

ask_find_it() subroutine 476

ask_key() subroutine 561

ask_line_translate() subroutine 480

ask_save_buffer() subroutine 478

ask_yn() subroutine 555

Asm mode 81

asm-mode command 81, 170

aspell program 79

assemble_mode_line() subroutine 451

assigning to variables 151

associations, file 136

associativity 398

ATTR_DIRECTORY textual macro 486

ATTR_READONLY textual macro 486

attr_to_rgb() primitive 474

auto-fill-comment-rules variable 98, 254

auto-fill-indents buffer variable 73, 75, 255

auto-fill-mode command 24, 73, 74, 170

auto-indent buffer variable 74, 255, 458

auto-menu-bar variable 255

auto-read-changed-file buffer variable 114, 255

auto-save-biggest-file variable 115, 255

auto-save-count variable 115, 255

auto-save-idle-seconds variable 115, 255

574 Appendix A. Index

auto-save-name variable 115, 255

auto-save-tags variable 50, 256

auto-show-adjacent-delimiter variable 42, 256

auto-show-batch-delimiters variable 81, 256

auto-show-c-delimiters variable 85, 256

auto-show-conf-delimiters variable 86, 256

auto-show-css-delimiters variable 88, 257

auto-show-delimiter-delay variable 257

auto-show-gams-delimiters variable 86, 257

auto-show-html-delimiters variable 87, 257

auto-show-matching-characters buffer variable

257, 565

auto-show-perl-delimiters variable 89, 257

auto-show-php-delimiters variable 90, 257

auto-show-postscript-delimiters variable 90,

258

auto-show-python-delimiters variable 91, 258

auto-show-shell-delimiters variable 91, 258

auto-show-tcl-delimiters variable 91, 258

auto-show-tex-delimiters variable 92, 258

auto-show-vbasic-delimiters variable 93, 258

auto-show-vhdl-delimiters variable 93, 258

autoload() primitive 530

autoload_commands() primitive 529, 530

autosaving files 115

auxiliary files 12

avoid-bottom-lines variable 109, 258, 443

avoid-top-lines variable 109, 259, 443

B
-b command line flag 14, 379

b_match() subroutine 547

back-to-tab-stop command 76, 171

backup files 114

backup-by-renaming variable 114, 259

backup-name variable 115, 259

backward-character command 40, 171

backward-delete-character command 55, 171

backward-delete-word command 171

backward-ifdef command 85, 171

backward-kill-level command 42, 171

backward-kill-word command 41, 171

backward-level command 42, 171

backward-paragraph command 42, 171

backward-sentence command 41, 172

backward-word command 41, 172

Bash shell for Windows 141

basic multilingual plane 127

basic types 385

Batch mode 81

batch-auto-show-delim-chars variable 81, 259

batch-mode command 81, 172

BBLANK textual macro 444

BBOTTOM textual macro 444

BC textual macro 455

BDOUBLE textual macro 444

beep-duration variable 109, 259, 502

beep-frequency variable 109, 260, 502

beginning-of-line command 40, 172

beginning-of-window command 101, 172

bell, setting 109

bell-on-abort variable 110, 260

bell-on-autosave-error variable 110, 260

bell-on-bad-key variable 110, 260

bell-on-completion variable 110, 260

bell-on-date-warning variable 110, 260

bell-on-read-error variable 110, 260

bell-on-search variable 110, 260

bell-on-write-error variable 110, 260

BF_UNICODE textual macro 482

BHEX textual macro 455

binary constants 383

binary files, editing 115

Binary, in mode line 116

bind-last-macro command 146, 172

bind-to-key command 24, 147, 148, 165, 172, 216

in command file 155

bind_universally() subroutine 562

binding 24

binding commands 147

BLEFT textual macro 444

block 398

BM textual macro 455

BMC textual macro 455

BMP 127

BNEWLINE textual macro 454, 455, 456

BNONE textual macro 444

BNORMAL textual macro 454, 455

bold text 106

bookmarks 47

BORD() textual macro 444

border-bottom variable 109, 260

border-inside variable 109, 260

border-left variable 109, 261

border-right variable 109, 261

575

border-top variable 109, 261

BOTTOMRIGHT textual macro 442

bprintf() primitive 422

brace matching 42

bracket matching 42

break, eel keyword 396, 397

break_into_numbers() subroutine 424

Brief emulation 148

brief-copy-region command 172

brief-cut-region command 172

brief-delete-region command 173

brief-delete-window command 173

brief-drop-bookmark command 173

brief-end-key command 173

brief-home-key command 173

brief-jump-to-bookmark command 173

brief-keyboard command 148, 173

brief-open-line command 173

brief-resize-window command 174

brief-split-window command 174

BRIGHT textual macro 444

browse-current-symbol command 52, 174

browse-mode command 174

browse-set-filter command 52, 174, 261

browse-set-usedby-filter command 52, 175, 261

browse-symbol command 51, 52, 175, 261

browser files for tagging 49

browser-file variable 51, 232, 261

browser-filter variable 52, 261

browser-filter-usedby variable 52, 261

browser-options variable 52, 261

browsing source code 50

BSINGLE textual macro 444

BTAB textual macro 454, 455

BTOP textual macro 444

buf-accessed buffer variable 262

buf-accessed-clock variable 262

buf_delete() primitive 437

buf_exist() primitive 437

buf_go_line() subroutine 433

buf_grab_bytes() subroutine 423

buf_in_window() primitive 483

buf_list() primitive 440

buf_match() primitive 550

buf_pipe_text() primitive 513

buf_position_to_line_number() subroutine 433

buf_printf() primitive 422

_buf_readonly buffer variable 438

buf_set_character_color() subroutine 468

buf_size() subroutine 438

buf_sort_and_uniq() subroutine 436

buf_stuff() primitive 422

buf_xfer() subroutine 423

buf_xfer_colors() subroutine 423, 467

buf_zap() primitive 437

bufed command 110, 111, 133, 134, 144, 175, 189

bufed-column-width variable 134, 262

bufed-grouping variable 134, 262, 352

bufed-show-absolute-path variable 134, 262

bufed-width variable 134, 263

buffer 21

commands 110

keyword 385, 406, 412

startup 21

storage class 151

buffer number 437

buffer, eel keyword 151, 406

buffer_display_characters buffer variable 455

buffer_flags() primitive 482

buffer_ftp_activity variable 497

buffer-grep command 175

buffer_list() primitive 440

buffer_maybe_break_line buffer variable 568

buffer-not-saveable buffer variable 263, 482

buffer_on_modify buffer variable 438

buffer_printf() primitive 422

buffer_size() subroutine 438

buffer_sort() primitive 434

buffer-specific variables 151, 385, 528

buffer-spell-mode command 78, 79, 176

buffer_to_clipboard() primitive 502

buffer_unchanged() primitive 482

buffer_url primitive 496

buffers_identical() subroutine 435

bufname primitive 263, 438

bufnum primitive 263, 438

bufnum_to_name() primitive 437

build_filename() subroutine 493

build_first primitive 263, 452, 455

build_mode() subroutine 451

build_prompt() subroutine 549

build_window() primitive 449

BUNICODE textual macro 380

button_dialog() primitive 554

byte, eel keyword 385

byte_extension primitive 263, 529

576 Appendix A. Index

bytecode files 14, 158

bytes_to_chars() primitive 522

C
C++ mode 81

c-access-spec-offset variable 83, 263

c-align-break-with-case variable 83, 264

c-align-contin-lines variable 83, 264

c-align-contin-max-offset variable 264

c-align-contin-max-width variable 264

c-align-extra-space variable 83, 264

c-align-inherit variable 83, 264

c-align-open-paren variable 84, 265

c-align-selectors variable 84, 265

C_ALPHA textual macro 518

c-auto-fill-mode variable 85, 98, 265

c-auto-show-delim-chars variable 265

c-biggest-declarator variable 265

c-block-macro-close-pat variable 265

c-block-macro-inner-pat variable 265

c-block-macro-open-pat variable 265

c-brace-offset variable 83, 265

c-case-offset variable 83, 266

c-close command 85, 176

c-colon command 85, 176

c-contin-offset variable 83, 266

c-delete-trailing-spaces variable 114, 266, 283

C_DIGIT textual macro 518

c-extra-keywords buffer variable 266

c-fill-column variable 85, 98, 266

c-hash-mark command 85, 176

c-ident color class 108

c-indent buffer variable 83, 266

c-indent-after-extern-c variable 83, 266

c-indent-after-namespace variable 83, 266

c-label-indent variable 83, 266

c-look-back variable 267

C_LOWER textual macro 518

c-mode command 81, 85, 176

c-mode-mouse-to-tag variable 29, 267

c_move_level() subroutine 434

c-open command 85, 176

c-param-decl variable 83, 267

c-reindent-previous-line variable 267, 283

c-spell-options variable 267

c-tab-always-indents variable 82, 267

c-tab-override variable 82, 267

c-tagging-class variable 267

c-top-braces variable 83, 267

c-top-contin variable 83, 268

c-top-struct variable 83, 268

c-top-template variable 268

C_UPPER textual macro 518

call_by_suffix() subroutine 567

call_dll() primitive 508

call_mode() subroutine 476

call_on_modify primitive 268, 438

call_with_arg_list() primitive 524

can-get-process-directory variable 268

canceling a command 99

capitalize-word command 60, 61, 176

capture-output variable 139, 268

caret 105

carriage return translation 115, 479

case replacement 62

case, changing 60

case, eel keyword 395, 397

case, of file names 119

case-fold buffer variable 43, 72, 245, 268, 428, 519

cast, function pointer 523

catch_mouse primitive 268, 539

CAUTIOUS textual macro 547

cd command 111, 112, 177, 273

center-line command 76, 177

center-window command 100, 177

CF_INFO_CLASS textual macro 568

CF_INFO_FUNC textual macro 568

CF_INFO_TYPE textual macro 568

change_buffer_name() primitive 437

change-code-coloring command 108, 177

change-file-read-only command 113, 177

change-font-size command 106, 177

change-line-wrapping command 101, 178

change-modified command 114, 178

change-name command 152, 178

in command file 157

change-read-only command 113, 178

change-show-spaces command 104, 105, 178

changed files, detecting 113

char, eel keyword 385

char_avail() primitive 536

character class 65

character constant 383

character sets, converting 117

character() primitive 422

577

charfcmp() primitive 519

chars_to_bytes() primitive 522

chdir() primitive 488, 490

check_abort() primitive 515, 557

check_dates() subroutine 487

CHECK_DEVICE textual macro 485

CHECK_DIR textual macro 485

CHECK_FILE textual macro 485

check_file() primitive 485

check_modify() primitive 439

CHECK_OTHER textual macro 485

CHECK_PATTERN textual macro 485

CHECK_PIPE textual macro 485

CHECK_URL textual macro 485

checking spelling 77

chm files 95

clean-customizations command 178

clean_mode() subroutine 452

clear-process-buffer variable 141, 269

clear-tags command 50, 179

CLIP_ADD_FORMAT textual macro 502

CLIP_CONVERT_NEWLINES textual macro 502

clip_mouse() subroutine 541

clipboard, accessing the 58

clipboard-access variable 58, 250, 269

clipboard_available() primitive 502

clipboard-convert-mac-lines variable 58, 269

clipboard-convert-unicode variable 58, 269

clipboard-format variable 59, 270

clipboard_to_buffer() primitive 502

Closeback variable 81, 82, 270

CMD_INDEX_KEY textual macro 537

cmd_len primitive 270, 558

cmd-line-session-file variable 270

CMDCONCURSHELLFLAGS configuration variable

141

CMDSHELLFLAGS configuration variable 140

code coloring 108

coding file variable 120

col_search() subroutine 431

ColdFusion elements 268

coldfusion-empty-elements variable 268

color class 106, 473, 475

color class assertions 71

color scheme 106

color_c_from_here() subroutine 471

color_c_range() subroutine 470

color_class, eel keyword 407

COLOR_DO_COLORING textual macro 271

color-html-look-back variable 270

COLOR_IGNORE_INDENT textual macro 271, 470

COLOR_IN_PROGRESS textual macro 271

COLOR_INVALIDATE_BACKWARD textual macro 271, 470

COLOR_INVALIDATE_FORWARD textual macro 271, 470

COLOR_INVALIDATE_RESETS textual macro 271, 470

color-look-back variable 108, 271, 471

COLOR_MINIMAL textual macro 271

color-names variable 271

COLOR_RETAIN_NARROWING textual macro 271, 470

color_scheme, eel keyword 407

COLOR_STRIP_ATTR() textual macro 474

color-whole-buffer variable 108, 271

coloring-flags buffer variable 271, 470

colors, changing 106

column editing 60

column number, always displaying 316

column_color_searching() subroutine 431

column_in_window primitive 271, 449

column_to_pos() subroutine 456

columnize_buffer_text() subroutine 435

comm_dlg_color() primitive 554

command

defined 386

eel keyword 386, 412

command file

bind-to-key 155

change-name 157

create-prefix-command 156

define-macro 156

command files 152, 154

command history 28

command line

for EEL 379

for Epsilon 9

command, eel keyword 386

comment-begin buffer variable 98, 272, 564

comment-column buffer variable 97, 272

comment-end buffer variable 98, 272, 564

comment-pattern buffer variable 98, 272, 564

comment-region command 98, 179

comment-repeat-indentation-lines variable 272

comment-start buffer variable 98, 272, 564

commenting commands 97

comments in EEL 383

common_file_dlg() primitive 553

common-open-curdir variable 272, 553

578 Appendix A. Index

common-open-use-directory variable 118, 273

COMP_FILE textual macro 548

COMP_FOLD textual macro 548

comp_read() subroutine 547

comp_tab primitive 550

compare_buffer_text() primitive 435

compare_chars() primitive 519

compare_dates() subroutine 486

compare-sorted-windows command 53, 54, 179

compare-to-prior-version command 53, 54, 179, 273

compare-to-prior-version-style variable 53, 273

compare-windows command 52, 54, 179

compare-windows-ignores-space variable 52, 273

compile-asm-cmd variable 81, 273

compile-buffer command 144, 145, 179, 277

compile-buffer-cmd buffer variable 273

compile-c-cmd variable 274

compile-c-cmd-unix variable 274

compile-command file variable 144

compile-cpp-cmd variable 144, 274

compile-cpp-cmd-unix variable 274

compile-csharp-cmd variable 274

compile-eel-cmd variable 274

compile-eel-dll-flags variable 144, 274

compile-gams-cmd variable 275

compile-html-cmd variable 275

compile-idl-cmd variable 275

compile-in-separate-buffer variable 143, 275

compile-java-cmd variable 275

compile-latex-cmd variable 92, 275

compile-makefile-cmd variable 89, 275, 276

compile-makefile-cmd-unix variable 276

compile-perl-cmd variable 89, 276

compile-php-cmd variable 276

compile-python-cmd variable 91, 276

compile-tcl-cmd variable 276

compile-tex-cmd variable 92, 276

compile-typescript-cmd variable 276

compile-vbasic-cmd variable 276

compile-vhdl-cmd variable 277

compile-xml-cmd variable 277

compiler help 95

complete() subroutine 549

completion 26

adding your own 547

completion, excluding files 28, 118

completion_column_marker variable 548

completion_lister variable 549

completion-pops-up variable 26, 277

complex scripts 127

compressed files 112

COMSPEC environment variable 11, 140

conagent.pif 142

concur_activity() subroutine 512

concur_shell() primitive 511

concurrent process 140

concurrent-compile buffer variable 144, 277

concurrent-make variable 143, 144, 277

COND_KEY textual macro 515

COND_PROC textual macro 515

COND_PROC_EXIT textual macro 515

COND_RETURN_ABORT textual macro 515

COND_TRUE_KEY textual macro 515

Conf mode 86

conf-auto-show-delim-chars variable 86, 269

conf-mode command 86, 180

configuration variable 10

CMDCONCURSHELLFLAGS 141

CMDSHELLFLAGS 140

EEL 379

EPSCOMSPEC 11, 140, 141

EPSCONCURCOMSPEC 141

EPSCONCURSHELL 141

EPSCUSTDIR 11

EPSILON 14, 531

EPSMIXEDCASEDRIVES 119

EPSPATH 12, 136, 379, 494

EPSSHELL 12, 140, 141

ESESSION 136

INTERCONCURSHELLFLAGS 141

INTERSHELLFLAGS 140

configure-epsilon command 50, 136, 180

console-ansi-font variable 277, 518

constants 383

context help 95

context-help command 95, 97, 180

context-help-default-rule variable 96, 278

context_help_man() subroutine 97

context_help_perldoc() subroutine 97

context-help-rule-asm-unix variable 278

context-help-rule-asm-windows variable 278

context-help-rule-c-unix variable 278

context-help-rule-c-windows variable 278

context-help-rule-eel variable 278

context-help-rule-gams variable 278

context-help-rule-html variable 278

579

context-help-rule-java variable 278

context-help-rule-jscript variable 278

context-help-rule-latex variable 279

context-help-rule-perl variable 279

context-help-rule-php variable 279

context-help-rule-postscript variable 279

context-help-rule-python variable 279

context-help-rule-shell variable 279

context-help-rule-tcl variable 279

context-help-rule-tex variable 279

context-help-rule-vbasic-unix variable 279

context-help-rule-vbasic-windows variable 279

context-help-rule-vbscript variable 280

context-help-rule-vhdl variable 280

context-help-rule-xml variable 280

context_help_windows_compilers() subroutine 97

context-menu command 165, 180

continue, eel keyword 396, 397

control characters 104

control chars, in searches 43

CONV_TO_16 textual macro 481

conversion of variables 398

convert_to_8_3_filename() primitive 494

converting encodings 127, 481

copy_buffer_variables() primitive 528

copy_expanding() subroutine 521

copy-file-name command 77, 180

copy-formatting-as-html command 59, 180

copy-include-file-name command 77, 112, 180, 502

copy-include-file-name-batch variable 280

copy-include-file-name-latex variable 280

copy-include-file-name-options variable 280

copy-include-file-name-perl variable 280

copy-include-file-name-shell variable 280

copy-include-file-name-tex variable 280

copy_key_table() subroutine 560

copy_line_to_clipboard() subroutine 77, 502

copy-rectangle command 60, 181

copy-region command 57, 181

copy-to-clipboard command 58, 59, 181

copy-to-file command 115, 181

copy-to-scratch command 58, 181

copyfile() primitive 484

copying files 131

copying text 56

copyright, Epsilon iii

count-lines command 101, 181

count_lines_in_buf() subroutine 433

count_windows_with_buf() primitive 483

count-words command 100, 101, 181

CPROP_CTYPE textual macro 518

CPROP_FOLD textual macro 518

CPROP_TOLOWER textual macro 518

CPROP_TOUPPER textual macro 518

create() primitive 437

create_dired_listing() subroutine 489

create-file-associations command 181

create_invisible_window() primitive 507

create-prefix-command command 147, 148, 182

in command file 156

create-variable command 152, 182

CSS mode 86

css-auto-show-delim-chars variable 281

css-indent variable 88, 281

css-mode command 88, 182

CTRL() textual macro 536

Ctrl-_ 35

ctrl-prefix command 148, 182

CTRLIFY_KEY textual macro 561

cua-keyboard command 150, 182

curchar() primitive 422

current buffer 23

current window 23

current_column() primitive 456

current_time_and_date() subroutine 507

curses program 17

cursor-blink-period variable 281

cursor-output-color buffer variable 281

cursor_shape primitive 281, 463

CURSOR_SHAPE() textual macro 463

cursor_to_column primitive 281, 457

customization directory 13

cx_tab variable 559

Cygwin environment 10, 95

cygwin-filenames variable 10, 281

cygwin-root variable 282

D
-d command line flag 14, 379

date-format variable 77, 206, 282

-dde command line flag 16

DDE messages, sending 504

dde_close() primitive 504

dde_execute() primitive 504

dde_open() primitive 504

580 Appendix A. Index

debug-text color class 107

debugger 159

decimal constant 383

declaration 386

declarator 386

Def, in mode line 145

default color class 107

default value 151, 385

default, eel keyword 395, 397

default-add-final-newline variable 114, 283

default-character-set variable 283

default-color-spell-word-pattern variable 79,

283

default-delete-trailing-spaces variable 114,

283

default_fold() subroutine 430

default_move_level() subroutine 434

default-read-encoding variable 127, 283

default-reindent-previous-line variable 283

default_replace_string() subroutine 431

default_search_string() subroutine 430

default-spell-options variable 78, 284

default-spell-word-pattern variable 79, 284

default-state-file-name variable 284

default-translation-type variable 116, 284, 480

default_when_displaying() subroutine 472

default-word variable 41, 285

default-write-encoding variable 127, 285

#define preprocessor command 49, 379, 380

define_color_class() primitive 474

define-macro, in command file 156

defined(), eel keyword 382

delay() primitive 515

delayed_say() primitive 460

delete vs. kill 56

delete() primitive 422

delete-blank-lines command 55, 182

delete_buffer() primitive 437

delete_buffer_when_displaying() subroutine 472

delete_buffer_when_idle() subroutine 536

delete-character command 55, 182

delete-current-line command 182

delete_file() primitive 484

delete-hacking-tabs buffer variable 55, 285

delete-hacking-tabs variable 171, 334

delete-horizontal-space command 55, 182

delete_if_highlighted() subroutine 422

delete-matching-lines command 62, 183

delete-name command 109, 152, 183, 245

delete-options variable 55, 285

delete-rectangle command 60, 183, 209, 310

delete-region command 57, 58, 183

delete-to-end-of-line command 183

delete_user_buffer() subroutine 438

deleting commands or variables 152

deleting files 131

describe-command command 35, 36, 183

describe-key command 35, 36, 183

describe-variable command 36, 183

desktop icon, running Epsilon from a 138

detect_dired_format() subroutine 490

detect-encodings variable 127, 283, 286

detecting changed files 113

Developer Studio, integrating with 137

device files, ignoring 46

DI_LINEINPUT textual macro 550

DI_SEARCH textual macro 550

DI_VIEW textual macro 550

DI_VIEWLAST textual macro 550

diacritical marks 127

dialog_checkboxes primitive 557

dialog-regex-replace command 62, 183

dialog-replace command 62, 183

dialog-reverse-search command 45, 46, 184

dialog-search command 45, 46, 184

dictionary lookup 77

diff command 52, 54, 184

diff-match-characters variable 286

diff-match-characters-limit variable 286

diff-match-lines variable 52, 286

diff-mismatch-lines variable 52, 286

diff-precise-limit variable 286

ding() primitive 502

-dir command line flag 14

directory name, avoid typing 111

directory, setting current 111

directory_flags primitive 286

directory-wide file variables 121

dired command 9, 122, 130, 184, 192, 291, 489, 497

and find-file 111

dired-24-hour-time variable 287

dired-buffer-pattern buffer variable 287

dired-confirmation variable 287

dired-format buffer variable 287, 490

dired-groups-dirs variable 287

dired-layout variable 132, 185, 287

581

dired-live-link-limit variable 287

dired-mode command 184

dired_one() subroutine 489

dired-show-dotfiles variable 287, 296

dired-sort command 186

dired-sorts-files variable 288

dired_standardize() primitive 489

disable_dialog_controls primitive 557

discardable-buffer buffer variable 288, 482

disk management 130

DISPLAY environment variable 11

display-buffer-info command 187

display-c-options variable 288

_display_characters primitive 455

_display_class primitive 453, 454, 455

display-column window variable 101, 288

display-definition variable 288, 565

display_dialog_box() primitive 555

display-func-name variable 288

display_more_msg() subroutine 452

display_scroll_bar primitive 288, 543

display_width() primitive 456

displaying special characters 104

displaying variables 151

divide_url() subroutine 498

DLLs, under Windows 508

do, eel keyword 395

do_again() primitive 561

do_buffer_sort() subroutine 434

do_buffer_to_hex() primitive 435

do-c-indent command 85, 187

do_color_searching() subroutine 71, 428, 429, 431

do_command() primitive 558, 560

do_compare_sorted() subroutine 436

do_compile() subroutine 179

do_dired() primitive 489

do_display_dialog_box() subroutine 557

do_drop_matching_lines() subroutine 432

do_execute_eel() subroutine 157

do_file_match() subroutine 551

do_file_read() subroutine 476

do_find() subroutine 477

do_ftp_op() subroutine 496

do_insert_file() subroutine 483

do_push() subroutine 510

do_readonly_warning() subroutine 432, 476

do_recursion() primitive 516

do_remote_dired() subroutine 489

do_resume_client() primitive 503

do_save_file() subroutine 478

do_save_state() subroutine 530

do_searching() subroutine 429

do_set_mark() subroutine 426

do_shift_selects() subroutine 467

do_sort_region() subroutine 434

do_telnet() subroutine 495, 496

do_topkey() primitive 558, 560

do_uniq() subroutine 436

do-vbasic-indent command 187

do_when_exiting_ subroutines 515

do_when_idle_ subroutines 536

do_when_make_mode_ subroutines 453

do_when_repeating_ subroutines 536

documentation, online 36

Documents and Settings directory 13

_doing_input primitive 550

DOS, in mode line 116

DOS-format file names 494

double_click_time primitive 289, 540

down-line command 24, 40, 187

download_file_to_disk() subroutine 495

drag_drop_handler() subroutine 503

drag_drop_result() primitive 503

dragging text 29

draw-column-markers variable 104, 289

draw-focus-rectangle variable 104, 289

draw-line-numbers buffer variable 100, 104, 128,

289, 312, 317, 329, 348

drop_all_colored_regions() subroutine 472

drop_buffer() subroutine 438

drop_coloring() subroutine 472

drop_dots() subroutine 489

drop_final_slash() primitive 492

drop_name() primitive 524, 525

drop_pending_says() primitive 459

DSABORT textual macro 429

DSBAD textual macro 429

DVI files, previewing 92, 207

dvi viewers 207

dynamic-link libraries, under Windows 508

E
-e command line flag 379

early_init() subroutine 532

EBADENCODE textual macro 481

582 Appendix A. Index

echo area 22

_echo_display_class variable 455

echo-line variable 109, 289

ECOLOR_COPY textual macro 474

ECOLOR_UNKNOWN textual macro 473

edit-customizations command 13, 154, 187

edit-variables command 151, 152, 187, 321

edoc file 14, 36

EEL 158

EEL configuration variable 379

EEL textual macro 380

eel_compile() primitive 529

EEL_PTR, type definition 526

eel-tab-override variable 82, 290

eel-version variable 290

EFONT_BOLD textual macro 408, 474

EFONT_ITALIC textual macro 408, 474

EFONT_UNDERLINED textual macro 408, 474

eight bit characters 455

einit-file-name variable 154, 290

einit.ecm file 15, 152, 154

#elif preprocessor command 382

#else preprocessor command 382

EMACS 25

encoding_from_name() primitive 480

encoding_to_name() primitive 480

encodings

converting 127, 481

end-kbd-macro command 146, 187, 216

end-of-line command 40, 188

end-of-window command 101, 188

end_print_job() primitive 506

#endif preprocessor command 382

enlarge-window command 103, 188

enlarge-window-horizontally command 103, 188

enlarge-window-interactively command 103, 188

enter-key command 73, 74, 188

environment variable

reading 500

environment variable COMSPEC 11, 140

environment variable DISPLAY 11

environment variable EPSRUNS 12

environment variable HOME 282

environment variable MIXEDCASEDRIVES 119

environment variable PATH 12

environment variable SHELL 12, 140

environment variable TEMP 12, 14

environment variable TMP 14

environment variable USE_DEFAULT_COLORS 107

environment, size of 142

EPSCOMSPEC configuration variable 11, 140, 141

EPSCONCURCOMSPEC configuration variable 141

EPSCONCURSHELL configuration variable 141

EPSCUSTDIR configuration variable 11

EPSILON configuration variable 14, 531

Epsilon Extension Language 158

Epsilon, command 9

epsilon-help-format-unix-gui variable 36, 290

epsilon-help-format-win-console variable 36,

290

epsilon-help-format-win-gui variable 36, 290

epsilon-html-look-up command 188

epsilon-info-look-up command 35, 37, 188

epsilon-keyboard command 148, 150, 188

epsilon-manual command 37, 189

epsilon-manual-html command 189

epsilon-manual-info command 35, 37, 189

epsilon-manual-port variable 290

epsilon-viewer script 132

epsilon-xfer-helper file 126

EPSMIXEDCASEDRIVES configuration variable 119

EPSPATH configuration variable 12, 136, 379, 494

EPSRUNS environment variable 12

EPSSHELL configuration variable 12, 140, 141

epswhlp.cnt file 96

EREADABORT textual macro 253, 477, 551

err_file_read() subroutine 477

errno primitive 291, 484, 488, 551

error() primitive 514, 515, 517

error_if_input() subroutine 446

ERROR_PATTERN textual macro 143

ESESSION configuration variable 136

eshell file 14

espell.lst and espell.srt files 78

eswap file 14

ETOOBIG textual macro 481

ETRANSPARENT textual macro 408, 473

eval command 165, 166, 189

evaluate_numeric_expression() subroutine 552

EWRITEABORT textual macro 253, 477

EXACTONLY textual macro 547

exchange-point-and-mark command 57, 189

executable files, editing 115

execute-eel command 166, 189

execution profiler 373

exist() primitive 437

583

exit command 134, 189, 516

exit-level command 134, 189, 516

exit-process command 142, 189, 333

expand_display() primitive 455

expand_string_template() subroutine 493, 521

expand-wildcards variable 10, 291

expire_message variable 459

explicit-session-file variable 291

export-colors command 107, 190

expressions in EEL 400

exptoi() subroutine 552

EXTEND_SEL_KEY textual macro 539

extended file patterns 128

extension language 373

extensions vs. macros 373

extensions, file 80

extract_rectangle() subroutine 466

F
-F command line flag 379

F1 key 35

fallback-remote-translation-type variable 116,

291

fallback_translation_type buffer variable 480

far-pause variable 42, 191, 291

-fd command line flag 14

field names 389

file

edoc 36

eshell 14

readme.txt 19

startup 152

file associations 136

file dates 113

file name patterns 128

file name prompts 117

file name template 115, 493

file names, capitalization of 119

file types, customizing list of 118

file variables 120

FILE_CONVERT_ASK textual macro 481

FILE_CONVERT_QUIET textual macro 481

FILE_CONVERT_READ textual macro 481

file_convert_read() subroutine 476

FILE_CONVERT_WRITE textual macro 481

file_convert_write() subroutine 481

file-date-skip-drives variable 114, 292

file-date-tolerance variable 113, 292

file_error() primitive 483

file_info structure 485

FILE_IO_ATSTART textual macro 478

file_io_converter variable 481

FILE_IO_NEWFILE textual macro 478, 481

FILE_IO_TEMPFILE textual macro 478

file_match() primitive 550

file-pattern-ignore-directories variable 129,

292

file-pattern-rules variable 130, 292

file-pattern-unc-domains variable 130, 292

file-pattern-wildcards variable 129, 293, 485

file-query-replace command 62, 190

file_read() primitive 475

file-read-kibitz variable 117, 293

file_write() primitive 477, 530

file_write_newfile variable 478, 481

filename primitive 293, 483

filename_rules() primitive 493

FILETYPE_AUTO textual macro 475, 479, 480

FILETYPE_BINARY textual macro 479

FILETYPE_MAC textual macro 479

FILETYPE_MSDOS textual macro 479, 480

FILETYPE_UNIX textual macro 479, 480

fill column 73

Fill, in mode line 73

fill-c-comment-plain variable 85, 293

fill-comment command 86, 190

fill-indented-paragraph command 74, 191

fill-mode buffer variable 73, 293

fill-paragraph command 74, 191

fill_rectangle() subroutine 465

fill-region command 74, 191

filter-region command 139, 140, 191

filter.txt file 118

filters, customizing 118

final_index() primitive 523

final-macro-pause variable 293

find_buffer_prefix() subroutine 549

find_c_func_info() subroutine 568

find_data variable 554

find-delimiter command 42, 191

find_dialog() primitive 554

find_dialog_say() primitive 554

find-file command 48, 111, 112, 122, 131, 143, 192, 476

and dired 111

find_group() primitive 429

584 Appendix A. Index

find_in_other_buf() subroutine 476

find_index() primitive 523

find_it() subroutine 476, 564

find-lines-visible variable 293

find-linked-file command 112, 192

find-linked-file-ignores-angles variable 294

find_next_entry() primitive 559

find-oem-file command 117, 192

find-read-only-file command 113, 192

find_remote_file() subroutine 476

find-unconverted-file command 192

finger command 124, 193

finger_user() primitive 495

finish_up() subroutine 532

first_window_refresh primitive 294, 472

fix_cursor() subroutine 463

fix_key_table() subroutine 560

fix_region() subroutine 465

fix_window_start() subroutine 448

FKEY() textual macro 537

flags

for EEL 379

for Epsilon 13

FM_FOLD textual macro 551

FM_NO_DIRS textual macro 547, 551

FM_ONLY_DIRS textual macro 547, 551

fnamecmp() subroutine 493

FNAMELEN textual macro 374

FNT_DIALOG textual macro 463

FNT_PRINTER textual macro 463

FNT_SCREEN textual macro 463

FOLD textual macro 429

follow-mode command 102, 193

follow-mode-on buffer variable 294

follow-mode-overlap variable 102, 193, 294

font styles 106

font-dialog variable 106, 294

font-fixed variable 106, 294

font-printer variable 106, 295

font-styles variable 295

font-styles-tolerance variable 106, 295

fonts, setting 106

for, eel keyword 395

force-common-file-dialog command 118, 193

FORCE_MODE_LINE textual macro 451

force-remote-translation-type variable 116, 285,

295

force-save-as buffer variable 295

force_to_column() subroutine 456

foreign characters 127, 454

format string 461

format_date() subroutine 486

format_file_date() subroutine 486

forward-character command 40, 193

forward-ifdef command 85, 193

forward-level command 42, 193

forward-paragraph command 42, 171, 193, 214

forward-search-again command 45, 46, 194

forward-sentence command 41, 194, 209

forward-word command 41, 194

forward-word-to-start variable 296

FPAT_COMMA textual macro 485

FPAT_CURLY_BRACE textual macro 485

FPAT_FOLD textual macro 520

FPAT_IGNORE_SQUARE_BRACKETS textual macro 520

FPAT_PERMIT_NO_URLS textual macro 292

FPAT_SEMICOLON textual macro 485

FPAT_SKIP_DIR_SYMLINKS textual macro 292

FPAT_SKIP_FILE_SYMLINKS textual macro 292

FPAT_SKIP_RECUR_SYMLINKS textual macro 292

FPAT_SQUARE_BRACKET textual macro 485

fpatmatch() primitive 520

free() primitive 522

free_spot() primitive 424

-fs command line flag 14, 523

FSA_NEWFILE textual macro 295

FSA_READONLY textual macro 295

FSYS_CASE_IGNORED textual macro 493

FSYS_CASE_MASK textual macro 493

FSYS_CASE_PRESERVED textual macro 493

FSYS_CASE_SENSITIVE textual macro 493

FSYS_CASE_UNKNOWN textual macro 493

FSYS_CDROM textual macro 493

FSYS_LOCAL textual macro 493

FSYS_NETWORK textual macro 493

FSYS_REMOVABLE textual macro 493

FSYS_SHORT_NAMES textual macro 493

FTP URL 123

ftp_activity() subroutine 497

FTP_ASCII textual macro 496

ftp-ascii-transfers variable 116, 123, 296, 496

ftp-compatible-dirs variable 123, 296, 496

FTP_LIST textual macro 496

FTP_MISC textual macro 496

ftp_misc_operation() subroutine 497

ftp_op() primitive 496, 498

585

FTP_OP_MASK textual macro 496

ftp-passive-transfers variable 123, 296

FTP_PLAIN_LIST textual macro 496

FTP_RECV textual macro 496

FTP_SEND textual macro 496

FTP_USE_CWD textual macro 496

FTP_WAIT textual macro 496

full_getkey() subroutine 561

full_key primitive 296, 535

full-path-on-mode-line variable 297

full_redraw primitive 297, 452, 453

function 404

function keys 163

function name, displaying 288

function, pointer to 523

fundamental-auto-show-delim-chars variable 81,

297

fundamental-mode command 81, 194

fundamental-spell-options variable 297

fwd-search-key variable 45, 297

G
GAMS files 275

GAMS mode 86

gams-auto-show-delim-chars variable 297

gams-files variable 86, 297

gams-mode command 86, 194

general_matcher() primitive 549

generic_key() primitive 535

generic_maybe_break_line() subroutine 568

-geometry command line flag 15

get_any() subroutine 546

get_background_color() primitive 473

GET_BORD() textual macro 444

get_buf() subroutine 546

get_buf_modified() subroutine 482

get_buf_point() subroutine 438

get_buffer_directory() subroutine 488

get_buffer_filename() subroutine 483

get_character_color() primitive 468

get_choice() subroutine 552

get_cmd() subroutine 546

get_color_scheme_variable() subroutine 473

get_column() subroutine 456

get_command_index() subroutine 546

get_customization_directory() primitive 489

get_default_translation_type() subroutine 476

get_direction() subroutine 518

get_dired_item() subroutine 490

get_doc() subroutine 534

GET_ENCODING() textual macro 479

get_executable_directory() primitive 492

get_executable_file() primitive 492

get_extension() primitive 491

get_fallback_translation_type() primitive 480

get_file() subroutine 546

get_file_dir() subroutine 546

get_file_read_kibitz() primitive 482

get_file_read_only() primitive 484

get_foreground_color() primitive 473

get_func() subroutine 546

get_func_name() subroutine 566

get_indentation() subroutine 456

get_key_choice() subroutine 553

get_key_response() subroutine 555

get_keycode() primitive 538, 562

get_line_from_buffer() subroutine 423

GET_LINE_TRANSLATE() textual macro 479

get_macname() subroutine 546

get_macro() primitive 562

get_mode_based_index() subroutine 567

get_mode_string_variable() subroutine 567

get_mode_variable() subroutine 567

get_movement_or_release() subroutine 542

get_num_var() primitive 525

get_number() subroutine 552

get_password() subroutine 498

get_profile() primitive 534

get_range() primitive 559

get_search_string() subroutine 431

get_spot() primitive 425

get_str_auto_def() subroutine 551

get_str_var() primitive 525

get_strdef() subroutine 551

get_string() subroutine 551

get_strnone() subroutine 551

get_strpopup() subroutine 552

get_tagged_region() primitive 469

get_tail() primitive 491

get_tempfile_name() primitive 478

get_url_file_part() subroutine 499

get_var() subroutine 546

get_wattrib() primitive 447

get_window_info() subroutine 443

get_window_pos() primitive 448

586 Appendix A. Index

GETBLUE() textual macro 408

getcd() primitive 488

getenv() primitive 500

GETFOCUS textual macro 545

GETGREEN() textual macro 408

gethostname() primitive 497

getkey() subroutine 536, 558, 560

GETRED() textual macro 408

give_begin_line() subroutine 433

give_end_line() subroutine 433

give_line_translate() subroutine 480

give_position() subroutine 434

give_position_at_column() subroutine 456

give_prev_buf() subroutine 448

give_window_space() primitive 441

glibc 6

global variable 384

global-spell-options variable 78, 298

go_line() subroutine 433

goal-column buffer variable 298

got-bad-number variable 298, 552

goto, eel keyword 397, 398

goto-beginning command 40, 194

goto-end command 40, 194

goto-line command 100, 101, 194

goto-tag command 48, 50, 195

goto_url file 39

grab() primitive 423

grab_buffer() subroutine 423

grab_expanding() subroutine 423

grab_full_line() subroutine 423

grab_line() subroutine 423

grab_line_offset() subroutine 423

grab_numbers() subroutine 424

grab_string() subroutine 424

grab_string_expanding() subroutine 424

graphics characters 104, 127

grep command 47, 195, 300

grep-default-directory variable 46, 298, 300

grep-empties-buffer variable 47, 298

grep-ignore-file-basename variable 46, 298

grep-ignore-file-extensions variable 46, 299

grep-ignore-file-pattern variable 46, 299

grep-ignore-file-types variable 46, 299

grep-include-timestamp variable 299

grep-keeps-files variable 47, 299

grep-mode command 195

grep-on-changed-file variable 299

grep-prompt-with-buffer-directory variable 46,

300

grep-show-absolute-path variable 300

GREYBACK textual macro 537

GREYENTER textual macro 537

GREYEQUAL textual macro 537

GREYESC textual macro 537

GREYHELP textual macro 537

GREYMINUS textual macro 537

GREYPLUS textual macro 537

GREYSLASH textual macro 537

GREYSTAR textual macro 537

GREYTAB textual macro 537

grouping of EEL operators 398

guess_mode_without_extension() subroutine 567

gui_cursor_shape primitive 300, 463

GUI_CURSOR_SHAPE() textual macro 463

gui-menu-file variable 31, 300

gui.mnu file 96

H
hack_tabs() subroutine 457

halt_process() primitive 512

has_arg primitive 300, 516, 558

has_feature primitive 501

help command 35, 36, 196

file 14

help, getting 35

help_on_command() subroutine 534

help_on_current() subroutine 534

HELPKEY textual macro 556

hex constants 383

entering interactively 151

hex display 104

hex-mode command 80, 197

hex-overtype-mode variable 301

hex-tab-key command 197

_highlight_control primitive 465

highlight_off() subroutine 465

highlight_on() subroutine 465

highlight-region command 57, 198

history of commands 28

hlp files 95

HOME environment variable 282

hook

when loading bytecode files 529

when reading in a file 80

587

when starting Epsilon 531

horiz-border color class 107, 475

horizontal scrolling 101

HORIZONTAL textual macro 441

horizontal() primitive 456

host name, displaying 361

host name, retrieving 497

HTML mode 86

html-asp-coloring variable 87, 301

html-auto-fill-combine variable 301

html-auto-fill-mode variable 301

html-auto-indent variable 87, 301

html-auto-show-delim-chars variable 302

html-backward-tag command 88, 198

html-close-last-tag command 88, 198

html-delete-tag command 88, 198

html-display-definition variable 302

html-display-nesting-width variable 87, 302

html-empty-elements variable 304

html-fill-paragraph command 198

html-find-matching-tag command 88, 198

html-forward-tag command 88, 198

html-indent variable 87, 302

html-indent-cmd command 198

html-indenting-rules variable 87, 302

html-list-element-nesting command 88, 198

html-list-mismatched-tags command 88, 199

html-mode command 88, 199

html_move_level() subroutine 434

html-no-indent-elements variable 87, 303

html-other-coloring variable 87, 303

html-paragraph-elements variable 303

html-paragraph-is-container buffer variable 87,

303

html-php-coloring variable 87, 304

html-prevent-coloring variable 87, 304

html-recognize-coldfusion-comments buffer

variable 304

html-redirect-active-key command 199

html-reindent-previous-line variable 304

html-spell-options variable 304

html-style-rules buffer variable 305

html-tag-match-look-back variable 305

HtmlHelp files 95

Http URL 123

http_force_headers primitive 495

http-force-headers variable 123

http-log-request variable 123, 305

http-proxy-exceptions variable 305

http-proxy-port variable 305

http-proxy-server variable 305

http_retrieve() primitive 495

HTTP_RETRIEVE_ONLY_HEADER textual macro 495

HTTP_RETRIEVE_WAIT textual macro 495

http-user-agent variable 305

I
-i command line flag 379

IACT_AUTO_FILL textual macro 458

IACT_AUTO_FILL_COMMENT textual macro 458

IACT_AUTO_INDENT textual macro 458

IACT_COMMENT textual macro 458

IACT_FILL_COMMENT textual macro 458

IACT_REINDENT_PREV textual macro 458

identifiers 383

IDL files 275

idle-coloring-delay buffer variable 108, 305

idle-coloring-size buffer variable 306

#if preprocessor command 382

if, eel keyword 264, 394

ifdef lines, moving by 85

#ifdef preprocessor command 382

#ifndef preprocessor command 382

ig nore_file_ex ten sions variable 493

ignore-error variable 143, 306

ignore-file-basename variable 306

ignore-file-extensions variable 28, 118, 306

ignore-file-pattern variable 306

ignore-kbd-macro variable 306, 561

ignore.lst file 78

ignoring-file-change buffer variable 306

import-colors command 199

import-customizations command 160, 199

in_bufed() subroutine 448

in_echo_area primitive 306, 462, 557

in_macro() primitive 536

in-perl-buffer buffer variable 306

in-shell-buffer buffer variable 307

include preprocessor command 381

executed only once 412

include-directories variable 112, 192, 307

INCR textual macro 430

incremental-search command 43, 46, 199

indent-comment-as-code variable 97, 200, 307

indent-for-comment command 98, 200

588 Appendix A. Index

indent_like_tab() subroutine 456

indent-preprocessor-contin variable 307

indent-previous command 74, 76, 200

indent-region command 75, 76, 200

indent-rigidly command 75, 76, 200

indent_to_column() subroutine 456

indent-to-tab-stop command 76, 201

indent-under command 75, 76, 201

indent-with-tabs buffer variable 60, 76, 307, 456

indenter variable 458

indenter_action primitive 458

indenting 74

indents-separate-paragraphs buffer variable 41,

194, 307

index() primitive 519

index_table() primitive 560

info command 39, 201

info-backward-node command 38, 201

info-directory-node command 39, 201

info-follow-nearest-reference command 39, 201

info-follow-reference command 39, 202

info-forward-node command 38, 202

info-goto command 39, 202

info-goto-epsilon-command command 36, 202

info-goto-epsilon-key command 36, 202

info-goto-epsilon-variable command 36, 202

info-index command 39, 202

info-index-next command 39, 202

info-last command 39, 203

info-last-node command 39, 203

info-menu command 38, 203

info-mode command 39, 203

info-mouse-double command 204

info-next command 38, 204

info-next-page command 38, 204

info-next-reference command 39, 204

info-nth-menu-item command 39, 204

info-path-non-unix variable 38, 307

info-path-unix variable 38, 307

info-previous command 38, 204

info-previous-page command 38, 205

info-previous-reference command 39, 205

info-quit command 39, 205

info-recovering variable 307

info-search command 39, 205

info-tagify command 38, 39, 205

info-top command 39, 205

info-up command 38, 205

info-validate command 38, 39, 205

Ini mode 88

ini-mode command 88, 205

initial-tag-file variable 49, 308

initialization

of Epsilon 14

of variables 392, 393

inline_eel() subroutine 157

insert() primitive 421

insert-ascii command 54, 55, 206

insert-binding command 158, 206

insert-clipboard command 58, 59, 206

insert-date command 77, 206

insert-default-response variable 26, 57, 308

insert-file command 112, 206, 483

insert-file-remembers-file variable 308

insert-macro command 147, 158, 206

insert-scratch command 58, 206

insert_to_column() subroutine 456

inserting characters 54

installation 5

for DOS 8

for Mac OS X 7

for OS/2 9

for Unix 5

Installing Epsilon for DOS 8

Installing Epsilon for Mac OS X 7

Installing Epsilon for OS/2 9

Installing Epsilon for Unix 5

int, eel keyword 385, 538

integrate with Visual Studio 137

integrating with Developer Studio 137

IntelliMouse support 30, 363, 544

INTERCONCURSHELLFLAGS configuration variable

141

international characters 127, 454

internationalization 127

Internet 122

INTERSHELLFLAGS configuration variable 140

invisible_cmd() primitive 558

invisible_window primitive 308, 447

invoke_menu() primitive 505

invoke-windows-menu command 164, 165, 206

invoking Epsilon 9

IS_ALT_KEY() textual macro 537

is_buf_in_window() subroutine 483

is_buffer_in_window() subroutine 483

IS_CTRL_KEY() textual macro 537

589

is-current-window variable 308

is_directory() primitive 484

is_dired_buf() subroutine 489

IS_EXT_ASCII_KEY() textual macro 540

is_gui primitive 308, 500

is_highlight_on() subroutine 465

is_in_tree() subroutine 492

is_key_repeating() primitive 536

IS_MOUSE_...() textual macros 540

IS_MOUSE_CENTER() textual macro 540

IS_MOUSE_DOUBLE() textual macro 540

IS_MOUSE_DOWN() textual macro 540

IS_MOUSE_KEY() textual macro 540

IS_MOUSE_LEFT() textual macro 540

IS_MOUSE_RIGHT() textual macro 540

IS_MOUSE_SINGLE() textual macro 540

IS_MOUSE_UP() textual macro 540

IS_NT textual macro 500

is_path_separator() primitive 491

is_pattern() primitive 485

is_process_buffer() primitive 511

is_relative() primitive 491

is_remote_buffer() subroutine 496

is_remote_file() primitive 492

IS_TRUE_KEY() textual macro 540

is_unix primitive 500

is-unix variable 308

IS_UNIX_BSD textual macro 309, 501

is_unix_flavor primitive 501

is-unix-flavor variable 309

IS_UNIX_LINUX textual macro 309, 501

IS_UNIX_MACOS textual macro 309, 501

IS_UNIX_TERM textual macro 308, 500

IS_UNIX_XWIN textual macro 308, 500

is_unsaved_buffer() subroutine 482

IS_WIN_KEY() textual macro 540

IS_WIN_PASSIVE_KEY() textual macro 540

is_win32 primitive 501

is-win32 variable 309

IS_WIN32_CONSOLE textual macro 309, 501

IS_WIN32_GUI textual macro 309, 501

IS_WIN32S textual macro 500

IS_WIN95 textual macro 500

is_window() primitive 442

isalnum() subroutine 517

isalpha() primitive 517

isdigit() primitive 517

isident() subroutine 517

islower() primitive 517

ISO 8859 character sets 127

ispell program 79

ISPOPUP textual macro 442

ISPROC_CONCUR textual macro 511

ISPROC_PIPE textual macro 511

isspace() primitive 517

ISTILED textual macro 442

isupper() primitive 517

italic text 106

iter primitive 309, 516, 552, 558, 560, 561

J
Java mode 81

java-indent variable 83, 309

jump-to-column command 101, 207

jump-to-dvi command 92, 93, 207

jump-to-dvi-command variable 207, 309

jump-to-dvi-main-file variable 309

jump-to-last-bookmark command 48, 207

jump-to-named-bookmark command 48, 208

K
-ka command line flag 15

keep-duplicate-lines command 53, 54, 208

keep-matching-lines command 62, 208

keep-unique-lines command 53, 54, 208

key primitive 309, 535, 561

key table 406, 558

key table, values in 523

KEY_ALT textual macro 537

key_binding variable 561

key_code primitive 310, 538

KEY_CTRL textual macro 537

key-from-macro variable 310, 536

key_is_button primitive 310, 545, 556

KEY_PLAIN() textual macro 537

key-repeat-rate variable 166, 310

KEY_SHIFT textual macro 537

key_t textual macro 538, 559

key_type primitive 310, 538

key_value() primitive 462, 538

keyboard macro 145

KEYDELETE textual macro 537

KEYDOWN textual macro 537

KEYEND textual macro 537

KEYHOME textual macro 537

590 Appendix A. Index

KEYINSERT textual macro 537

KEYLEFT textual macro 537

KEYPGDN textual macro 537

KEYPGUP textual macro 537

KEYRIGHT textual macro 537

keys and commands 147

Keystrokes and Commands: Bindings 24

keystrokes, recording 145

keytable 406, 558

keytable, eel keyword 406, 412, 560, 563

keytable, values in 523

KEYUP textual macro 537

keyword help 95

kill buffers 56

kill vs. delete 56

kill-all-buffers command 110, 111, 208

kill-buffer command 111, 208

kill-buffers variable 57, 310

kill-comment command 98, 208

kill-current-buffer command 111, 208

kill-current-line command 56, 58, 209

kill-level command 42, 209

kill-line command 57, 209

kill-process command 142, 209

kill-rectangle command 60, 209, 310

kill-rectangle-removes variable 310

kill-region command 57, 209

kill-sentence command 41, 209

kill-to-end-of-line command 56, 58, 209

kill-window command 102, 209

kill-word command 41, 210

killing commands 56

-ks command line flag 15

KT_ACCENT textual macro 539

KT_ACCENT_SEQ textual macro 539

KT_EXTEND_SEL textual macro 539

KT_MACRO textual macro 539

KT_NONASCII textual macro 539

KT_NONASCII_EXT textual macro 539

KT_NORMAL textual macro 539

L
-l command line flag 15, 532

language mode

defining a new 563

last_index primitive 310, 534, 560

last-kbd-macro command 146, 210

last-show-spaces buffer variable 311

last-window-color-scheme variable 311

LaTeX mode 92

latex-2e-or-3 variable 92, 311

latex-display-math-env-pat variable 311

latex-math-env-pat variable 311

latex-mode command 93, 210

latex-non-text-argument variable 93, 311

latex-spell-ignore-pattern-prefix variable 311

latex-spell-options variable 311

latex-tag-keywords variable 93, 311

Latin 1 character set 127

lcs() primitive 436

lcs_char() primitive 436

leave() primitive 515, 516

leave_blank primitive 312, 532

leave_recursion() primitive 516, 557

_len_def_mac variable 536

level 42

libnss shared files 6

licensing, Epsilon iii

lifetime of variables 384

line number, displaying 100

line number, positioning by 100

line numbers, always displaying 316

#line preprocessor command 381

line scrolling 101

line translation 115, 479

line wrapping 101

line_in_window primitive 312, 449

line-number-width buffer variable 104, 289, 312

line_search() subroutine 432

line-to-bottom command 100, 101, 210

line-to-top command 100, 101, 210

lines_between() primitive 433

lisp commands 42

list-all command 158, 160, 161, 162, 210

list_bindings() primitive 562

list-bookmarks command 48, 210

list-changes command 161, 162, 211

list-colors command 211

list-customizations command 158, 211, 369

list-debug command 210

list-definitions command 86, 94, 211

list-definitions-live-update variable 94, 312

list-files command 130, 131, 211

list_finder variable 549

list-make-preprocessor-conditionals command 89, 211

591

list_matches() subroutine 548

list-preprocessor-conditionals command 86, 212

list-undefined command 159, 212

list-which-definitions variable 312

LISTMATCH textual macro 547

load-buffer command 147, 154, 212

load-bytes command 159, 212, 370

load-changes command 161, 162, 212

load_commands() primitive 529

load-customizations variable 312

load_eel_from_path() subroutine 156, 529

load-fail-ok variable 312

load-file command 154, 212

load_from_path() subroutine 529, 530

load_from_state primitive 312, 532

local variable 384

locate-file command 130, 212

locate-path-unix variable 130, 212, 313

locate_window() subroutine 483

long lines 101

longjmp() primitive 516

look_file() subroutine 476

look_on_path() primitive 494

look_up_tree() subroutine 492

lookpath() primitive 494

LOSEFOCUS textual macro 545

low-level operations 508

low_window_create() primitive 443

low_window_info() primitive 443

lowaccess() primitive 488

lowclose() primitive 487

lowercase-word command 60, 61, 212

lowopen() primitive 487

lowread() primitive 487

lowseek() primitive 487

lowwrite() primitive 487

LR_BORD() textual macro 444

lvalue expressions 400

M
-m command line flag 15

Mac, in mode line 116

mac-framework-dirs variable 313

Macintosh files 115

Macintosh, running Epsilon on 7

macro-runs-immediately variable 313, 561

macros vs. extensions 373

macros, keyboard 145

macros, types of 380

mail-fill-paragraph command 74, 213

mail-quote-pattern variable 74, 213, 313

mail-quote-region command 74, 213

mail-quote-skip variable 74, 213, 313

mail-quote-text variable 74, 213, 313

mail-unquote command 74, 213

main loop 557

major modes 23

major-mode buffer variable 313, 451

make command 143, 144, 145, 213, 277

make utility program 370

make_alt() subroutine 537

make_anon_keytable() subroutine 560

make_backup() primitive 484

make_ctrl() subroutine 537

make_dired() subroutine 489

make_line_highlight() subroutine 467

make_mode() subroutine 452

make_pointer() primitive 509

MAKE_RGB() textual macro 408

make_title() primitive 451

MAKE_TRANSLATE() textual macro 479

makefile file 370

Makefile mode 89

makefile-mode command 89, 213

malloc() primitive 522

man command 95, 96, 97, 213

margin-right buffer variable 73, 313

margins, setting printer 128

mark 56

mark primitive 314, 425

mark-c-paragraph command 214

mark-inclusive-region command 60, 214

mark-line-region command 60, 214

mark-normal-region command 59, 214

mark-paragraph command 42, 214

mark-rectangle command 60, 214

mark-rectangle-expands variable 314

mark_spot primitive 425

mark_to_column primitive 314, 457

mark-unhighlights variable 59, 214, 314

mark-whole-buffer command 56, 58, 215

_MATCH_BUF textual macro 549

Matchdelim variable 82, 314

matchend primitive 69, 314, 427

matches_at() subroutine 429

592 Appendix A. Index

matches_at_length() subroutine 429

matches_in() subroutine 429

matchstart primitive 69, 314, 427, 428

MAX_CHAR textual macro 502

max-initial-windows variable 9, 314

MAXKEYS textual macro 559

maybe_break_this_line() subroutine 568

maybe_ding() subroutine 502

maybe_indent_rigidly() subroutine 457

maybe_refresh() primitive 452, 557

maybe-show-matching-delimiter command 42, 215

mem_in_use primitive 315, 523

memcmp() primitive 522

memcpy() primitive 522

memfcmp() primitive 522

memset() primitive 522

mention() primitive 460, 560

mention-delay variable 147, 315, 460

menu bar 30

menu bar, customizing 31

menu-bar-flashes variable 31, 315

menu-bindings variable 31, 315

menu_command primitive 315, 544, 545

menu-file variable 31, 315

menu-stays-after-click variable 31, 315

menu_tab primitive 550

menu-width variable 27, 315

menu-window variable 315

merge-diff command 53, 54, 215

merge-diff-var variable 315

message-history-size variable 316

meta characters 455

Microsoft Visual Studio, integrating with 137

MicroSpell program 79

middle_init() subroutine 532

minimal-coloring variable 108, 316

minor modes 24

misc-language-fill-mode variable 316

MIXEDCASEDRIVES environment variable 119

mkdir() primitive 488

mode 23

defining a new 563

major 23

minor 24

mode line 22, 451

mode line format 316

mode_auto_show_delimiter buffer variable 565

mode_default_settings() subroutine 567

mode-extra buffer variable 316

mode_extra variable 451

mode-format variable 22, 100, 109, 316, 451

mode_keys primitive 559, 560

mode-line color class 107, 475

mode-line-at-top variable 317

mode-line-position variable 317, 318

mode-more-extra variable 318

mode_move_level variable 434

mode_restrict_break buffer variable 568

MODFOLD textual macro 429

modified primitive 318, 482

modified_buffer_region() primitive 439

modify_region() primitive 464

monochrome primitive 318, 473

mouse button, third 30

mouse support 29

mouse_auto_off primitive 318, 542

mouse_auto_on primitive 318, 542

mouse_buttons() primitive 542

mouse-center command 165, 215

mouse-center-yanks variable 30, 165, 215, 318

mouse_cursor primitive 542

MOUSE_CURSOR, type definition 542

MOUSE_DBL_LEFT textual macro 540

mouse-dbl-selects buffer variable 318, 543

mouse_display primitive 318, 542

mouse-goes-to-tag buffer variable 29, 319

mouse_handler window variable 543

MOUSE_LEFT_DN textual macro 540

mouse_mask primitive 319, 539

mouse-move command 165, 215

mouse-pan command 165, 215

mouse_panning primitive 319, 544

mouse_panning_rate() primitive 544

mouse_pixel_x primitive 319, 541

mouse_pixel_y primitive 319, 541

mouse_pressed() primitive 542

mouse_screen primitive 319, 444, 540

mouse-select command 165, 215

mouse-selection-copies variable 30, 59, 319

mouse_shift primitive 319, 541

mouse-to-tag command 165, 216

mouse_x primitive 320, 540

mouse_y primitive 320, 540

mouse-yank command 165, 216

move_by_lines() primitive 432, 433

move_level() subroutine 433

593

move_line_to_buffer() subroutine 423

move_to_column() primitive 456

move-to-window command 103, 216

moving around 40, 100

moving text 56

moving windows 29

MRAUTODEL textual macro 465

MRCOLOR textual macro 464

MRCONTROL textual macro 465

MREND textual macro 464

MRENDCOL textual macro 464

MRSTART textual macro 464

MRSTARTCOL textual macro 464

MRTYPE textual macro 464

mshelp2-collection variable 97, 320

mspellcmd.exe file 79

muldiv() primitive 460

multitasking 140

must_build_mode primitive 320, 452

must_color_through variable 470

must_find_func_name variable 566

MUST_MATCH textual macro 548

N
-n command line flag 380

name table 523

name_color_class() primitive 475

name_debug() primitive 532

name_help() primitive 534

name-kbd-macro command 146, 147, 165, 216

name_macro() primitive 562

name_match() primitive 550

name_name() primitive 524

name_to_bufnum() primitive 437

name_type() primitive 524

name_user() primitive 526

named pipes, ignoring 46

named-command command 147, 148, 216

Narrow, in mode line 166

narrow_end primitive 320, 426

narrow_position() subroutine 426

narrow_start primitive 320, 426

narrow-to-region command 166, 216, 249

narrowed_search() subroutine 430

national characters 127

national-keys-not-alt variable 320

near-pause variable 42, 191, 320

need-rebuild-menu variable 321

NET_DONE textual macro 497, 512, 513

NET_LOG_DONE textual macro 497

NET_LOG_WRITE textual macro 497

NET_RECV textual macro 497, 512, 513

NET_SEND textual macro 497, 512

new-buffer-translation-type variable 116, 321,

480

new-c-comments variable 97, 321

new-file command 110, 111, 216

new-file-ext variable 110, 321

new_file_io_converter variable 481

new-file-mode variable 110, 321

new_file_read() primitive 475

new_file_write() primitive 477, 481

new-search-delay variable 321

new_table() primitive 560

new_variable() primitive 528

next-buffer command 111, 216

next_dialog_item() primitive 557

next-difference command 54, 217

next-error command 142, 145, 217

next-match command 47, 217

next-page command 101, 217

next-position command 47, 143, 144, 217

next_screen_line() primitive 453

next-tag command 50, 217

next_user_window() subroutine 441

next-window command 103, 218

nl_forward() primitive 432

nl_reverse() primitive 432

NO_MODE_LINE textual macro 451

no_popup_errors primitive 483

-nodde command line flag 15

-noinit command line flag 15

-nologo command line flag 15

non-english characters 127

NONE_OK textual macro 548

normal-character command 42, 54, 55, 218, 225

normal-cursor variable 105, 322

normal-gui-cursor variable 105, 322

normal_on_modify() subroutine 438

-noserver command line flag 15, 136

note() primitive 459

noteput() primitive 459

NSS shared files 6

NT_AUTOLOAD textual macro 530

NT_AUTOSUBR textual macro 530

594 Appendix A. Index

NT_BUFVAR textual macro 524, 528

NT_BUILTVAR textual macro 524, 525

NT_COLSCHEME textual macro 473, 524, 528

NT_COMMAND textual macro 524

NT_MACRO textual macro 524

NT_SUBR textual macro 524

NT_TABLE textual macro 524

NT_VAR textual macro 524, 528

NT_WINVAR textual macro 524, 528

NTFS streams 130

null, searching for 64

NUMALT() textual macro 537

number_of_color_classes() primitive 475

number_of_popups() primitive 442

number_of_user_windows() subroutine 442

number_of_windows() primitive 442

numbers, entering interactively 151

NUMCTRL() textual macro 537

NUMDIGIT() textual macro 537

NUMDOT textual macro 537

NUMENTER textual macro 537

numeric argument 25, 145

numeric constant 383

NUMSHIFT() textual macro 537

numtoi() subroutine 552

O
-o command line flag 380

Objective-C language 84

octal constant 383

oem_file_converter() subroutine 481

oem-to-ansi command 117, 218

ok_file_match() subroutine 493

oldkeys.h header file 538, 559

on, eel keyword 406, 411, 412

on_exit, eel keyword 397

on_modify() subroutine 438

one-window command 102, 218

one_window_to_dialog() subroutine 556

online documentation 36

only-file-extensions variable 28, 118, 322

Open With Epsilon shell extension 139

open-line command 55, 218

operator precedence in EEL 398

opsys primitive 322, 500

orig_screen_color() primitive 475

original_argv() primitive 531

OS_DOS textual macro 322

OS_OS2 textual macro 322

OS_UNIX textual macro 322

OS_WINDOWS textual macro 322

_our_color_scheme variable 473

_our_gui_scheme variable 473

_our_mono_scheme variable 473

_our_unixconsole_scheme variable 473

over-mode buffer variable 54, 323

overwrite-cursor variable 105, 323

overwrite-gui-cursor variable 105, 323

overwrite-mode command 54, 55, 219

owitheps.dll file 139

P
-p command line flag 16, 136, 380

page-left command 101, 219

page-right command 101, 219

page_setup_dialog() primitive 506

Pager, in mode line 24

paging 323

paging-centers-window variable 323

paging-retains-view variable 323, 446

paragraphs 41

filling 73

parenthesis matching 42

parse_string() primitive 429

parse_url() subroutine 498

password, typing in a buffer 123

PASSWORD_PROMPT textual macro 548

passwords in URLs 126

PATH environment variable 12

path, searching for files on a 494

PATH_ADD_CUR_DIR textual macro 494

PATH_ADD_EXE_DIR textual macro 494

PATH_ADD_EXE_PARENT textual macro 494

path_list_char primitive 323, 493

PATH_PERMIT_DIRS textual macro 494

PATH_PERMIT_WILDCARDS textual macro 494

path_sep primitive 323, 490, 491

pattern, searching for a 63

pause-macro command 146, 219

PBORDERS textual macro 447

per-directory file variables 121

perform_unicode_conversion() primitive 481

Perl mode 89

perl-align-contin-lines variable 89, 323

595

perl-auto-show-delim-chars variable 324

perl-brace-offset variable 89, 324

perl-closeback variable 89, 324

perl-comment color class 89

perl-constant color class 89

perl-contin-offset variable 89, 324

perl-detect-expression-pattern variable 324

perl-function color class 89

perl-indent buffer variable 89, 324

perl-keyword color class 89

perl-label-indent variable 89, 324

perl-mode command 90, 219

perl-string color class 89

perl-tab-override variable 89, 324

perl-top-braces variable 89, 325

perl-top-contin variable 89, 325

perl-top-struct variable 89, 325

perl-topindent variable 89, 325

perl-variable color class 89

perldoc command 89, 90, 95, 96, 97, 219

perldoc-command variable 325

permanent-menu variable 325

PERMIT_RESIZE_KEY textual macro 325, 545

PERMIT_SCROLL_KEY textual macro 325, 545

PERMIT_WHEEL_KEY textual macro 325, 545

permit_window_keys primitive 325, 545

phoneticize_lines() primitive 437

PHORIZBORDCOLOR textual macro 447

PHP mode 90

php-align-contin-lines variable 90, 325

php-auto-show-delim-chars variable 326

php-brace-offset variable 90, 326

php-closeback variable 90, 326

php-comment-style variable 90, 326

php-contin-offset variable 90, 326

php-indent buffer variable 90, 326

php-label-indent variable 90, 326

php-mode command 90, 219

php-tab-override variable 326

php-top-braces variable 90, 327

php-top-contin variable 90, 327

php-top-level-indent variable 90, 327

php-top-struct variable 90, 327

php-topindent variable 90, 327

PIPE_CLEAR_BUF textual macro 513

PIPE_KEEP_ENV textual macro 513

PIPE_NOREFRESH textual macro 513

PIPE_SKIP_SHELL textual macro 513

PIPE_SYNCH textual macro 513

pipe_text() subroutine 513

plink ssh client 125

pluck-tag command 48, 50, 220

point 22

point primitive 327, 421

point_spot primitive 425

pointer to function 523

pointer to struct, vs. struct 508

pointer_to_index() primitive 527

pointers, internal structure 526

POP_UP_PROMPT textual macro 548

popup_border color class 475

popup_near_window() subroutine 449

popup_title color class 475

position 421

position-window-on-screen-line buffer variable

327

post_compile_hook subroutine 179

PostScript mode 90

postscript-auto-show-delim-chars variable 327

postscript-mode command 91, 220

pre_compile_hook subroutine 179

precedence 398

prefix keys 147

unbinding 156

prefix-fill-paragraph command 74, 220

prepare_url_operation() subroutine 498

prepare_windows() subroutine 451

preprocessor lines, moving by 85

preserve-filename-case variable 119, 327

preserve-session variable 16, 134, 328

preserve-session-flags variable 328

prev_cmd primitive 328, 516, 558

prev_dialog_item() primitive 557

prev_forget_buf() subroutine 448

prev_indenter() subroutine 458

prev_screen_line() primitive 453

previous-buffer command 111, 220

previous-difference command 54, 220

previous-error command 143, 145, 220

previous-match command 47, 220

previous-page command 101, 221

previous-position command 47, 143, 144, 221

previous-tag command 50, 221

previous-window command 103, 221

primary selection in X11 58

primitive 421

596 Appendix A. Index

print-buffer command 128, 221

print-buffer-no-prompt command 128, 222

print-color-scheme variable 128, 328

print-destination variable 128, 221, 328

print-destination-unix variable 128, 221, 329

print-doublespaced variable 128, 329

print_eject() primitive 506

print-heading variable 128, 329

print-in-color variable 128, 329

print_line() primitive 507

print-line-numbers variable 104, 128, 329

print-long-lines-wrap variable 329

print-region command 128, 222

print-setup command 128, 222

print-tabs variable 128, 329

print_window() primitive 507

Printf-style format strings 461

printing 128

printing variables 151

PROC_STATUS_RUNNING textual macro 512, 513

process-backward-kill-word command 142, 222

process-coloring-rules variable 140, 330

process-complete command 142, 222

process-completion-dircmds variable 140, 330

process-completion-style variable 140, 222, 330

process-completion-windows-programs variable

330

process-current-directory primitive 330, 488

process-echo buffer variable 331

process-echo variable 140

process-enter command 222

process-enter-whole-line variable 331

process_exit_status buffer variable 512, 513

process-exit-status primitive 331

process_input() primitive 511

PROCESS_INPUT_CHAR textual macro 511

PROCESS_INPUT_LINE textual macro 511

process_kill() primitive 512

process-max-size buffer variable 331

process-mode command 222

process-next-cmd command 124, 126, 142, 223

process-next-error-options variable 331

process-output-to-window-bottom variable 332

process-pass-drive-directories variable 332

process-previous-cmd command 124, 126, 142, 223

process-prompt-pattern variable 141, 332

process_send_text() primitive 512

process-spell-word-pattern variable 332

process-tab-size variable 332

process-view-error-lines variable 143, 332

process-warn-on-exit variable 333

process-warn-on-killing variable 333

process-yank command 142, 223

process-yank-confirm variable 141, 333

profile command 159, 223

profiling primitives 534

programs, running 139

prompt_box() subroutine 556

prompt_comp_read() subroutine 548

prompt-with-buffer-directory variable 118, 333

prompts, for file names 117

prox_line_search() subroutine 432

psftp ssh client 125

PTEXTCOLOR textual macro 447

PTITLECOLOR textual macro 447

ptrlen() primitive 526

pull-highlight color class 107

pull-word command 95, 107, 223

pull-word-from-tags variable 95, 333

pull-word-fwd command 95, 223

push command 139, 140, 224

push-cmd variable 144, 334

push-cmd-unix-interactive variable 334

push-cmd-unix-macos-interactive variable 334

put_directory() subroutine 488

putenv() primitive 500

PuTTY ssh client 125

PVERTBORDCOLOR textual macro 447

Python mode 91

python-auto-show-delim-chars variable 334

python-delete-hacking-tabs variable 91, 334

python-indent variable 91, 334

python-indent-to-comment variable 334

python-indent-with-tabs variable 91, 335

python-indenter command 224

python-language-level variable 91, 335

python-mode command 91, 224

python-tab-override variable 91, 335

Q
-q command line flag 380

QUERY textual macro 430

query-replace command 61, 62, 224

quick_abort() primitive 514, 560

quick-dired-command command 130, 225

597

-quickup command line flag 16

quiet-write-state variable 335

quit_bufed() subroutine 448

quoted-insert command 55, 225

quoting special chars in searches 43

R
-r command line flag 16, 532

raw_xfer() primitive 423

re_compile() primitive 428, 429

RE_FIRST_END textual macro 428

RE_FORWARD textual macro 428

RE_IGNORE_COLOR textual macro 428

re_match() primitive 428, 429

RE_REVERSE textual macro 428

re_search() primitive 428

RE_SHORTEST textual macro 428

_read_aborted variable 476

read_file() subroutine 476

read-only files 484

read-only files and buffers 112

read-session command 135, 136, 225

readme.txt file 19

readonly-pages variable 24, 113, 335, 439

readonly-warning variable 113, 335

realloc() primitive 522

rebuild-menu command 31, 226

recall-id variable 335

recall-longest-response variable 336

recall-maximum-session variable 336

recall-maximum-size variable 336

recall-prior-response-options variable 336

recall-response-selected variable 336

recalling previous commands 28

recognize-password-pattern variable 123, 336

recognize-password-prompt variable 123, 337

recolor_by_lines() subroutine 471

recolor_from_here variable 471

recolor_from_top() subroutine 471

recolor_partial_code() subroutine 472

recolor_range variable 470

record-customizations variable 158, 337, 369

record-kbd-macro command 226

recording-suspended variable 337

rectangle editing 60

rectangle_standardize() primitive 466

_recursion_level variable 516

recursive_edit() subroutine 516

recursive_edit_preserve() subroutine 516

redisplay command 146, 147, 226

redo command 98, 99, 226

redo vs. redo-changes 99

redo-by-commands command 99, 226

redo-changes command 99, 226

redo-movements command 99, 226

refresh() primitive 452

refresh-files command 226

reg_tab primitive 559

REGEX textual macro 429

regex-first-end variable 69, 337

regex-replace command 62, 71, 72, 227

regex-search command 46, 71, 72, 227

regex-shortest variable 69, 337

REGINCL textual macro 464

region 56

region_type() subroutine 465

REGLINE textual macro 464

REGNORM textual macro 464

REGRECT textual macro 464

regular expression assertions 70

regular expressions 43, 63, 428

reindent-after-c-yank variable 82, 337

reindent-after-perl-yank variable 90, 338

reindent-after-vbasic-yank variable 94, 338

reindent-after-yank variable 75, 250, 338

reindent-c-comments variable 338

reindent-c-preprocessor-lines variable 83, 338

reindent-one-line-c-comments variable 339

reindent-perl-comments variable 89, 339

reject_client_connections primitive 503

relative() primitive 490

release-notes command 36, 37, 228

remote_dirname_absolute() subroutine 489

remote_file_type() subroutine 492

remove_final_view() subroutine 446

remove_line_highlight() subroutine 467

remove_region() primitive 464

remove_window() primitive 440

rename-buffer command 228

rename_file() primitive 484

renaming commands or variables 152

renaming files 131

repeating commands 25

repeating, keys 536

Repeating: Numeric Arguments 25

598 Appendix A. Index

replace() primitive 422

replace-again command 228

replace-by-case variable 62, 339

REPLACE_FUNC() textual macro 525

replace_in_existing_hook() subroutine 432

replace_in_readonly_hook() subroutine 432

replace-in-region variable 339

replace_name() primitive 524, 525

replace-num-changed variable 339, 430

replace-num-found variable 339, 430

replace-string command 61, 62, 228

replacing in multiple files 62

reserved EEL keywords 383

reset-mode command 228

reset_modified_buffer_region() primitive 439

resize-menu-list variable 339

resize-rectangle-on-tab variable 340

resize_screen() primitive 454

resizing windows 29

restart-concurrent variable 144, 340

restore-color-on-exit variable 107, 340, 475

restore_screen() subroutine 443

restore_vars() primitive 397

resume-client command 137, 228

resynch-match-chars variable 52, 340

retag-files command 49, 50, 229

return, eel keyword 396, 397

return-raw-buttons variable 340, 556

rev-search-key variable 45, 340

REVERSE textual macro 429

reverse-incremental-search command 46, 229

reverse-regex-search command 46, 72, 229

reverse-replace command 62, 229

reverse-search-again command 45, 46, 229

reverse-sort-buffer command 72, 229

reverse-sort-region command 72, 229

reverse_split_string() subroutine 498

reverse-string-search command 44, 46, 229

revert-file command 112, 229

reverting to old file 112

rgb_to_attr() primitive 474

right margin wrap 73

right_align_columns() subroutine 435

rindex() primitive 519

rmdir() primitive 488

RO, in mode line 112

root_keys primitive 559, 560

ROWARN_BELL textual macro 335

ROWARN_BUF_RO textual macro 335

ROWARN_GREP textual macro 335

ROWARN_MSG textual macro 335

ROWARN_REFRESH textual macro 335

ruler, displaying 104

run-by-mouse variable 340, 543

run-ssh-agent.bat file 125

run_topkey() subroutine 560

run_viewer() primitive 514

run-with-argument command 145, 229

running other programs 139

S
-s command line flag 16, 380

safe_copy_buffer_variables() subroutine 528

save-all-buffers command 114, 144, 230

save-all-without-asking variable 340

save-file command 114, 230, 249

save_remote_file() subroutine 481

save_screen() subroutine 443

save_spot, eel keyword 397, 425

save_state() primitive 530

save_var, eel keyword 396, 397

save-when-making variable 144, 341

save_without_prompt variable 482

saving customizations 152

saving files automatically 115

say() primitive 458, 460, 462, 514, 521

sayput() primitive 458, 460, 462

SCON_COMPARE textual macro 431

SCON_RECORD textual macro 431

SCON_RESTORE textual macro 431

scope of variables 384

scp-client-style variable 125, 126, 341

scp-list-flags variable 125, 341

scp-read-file-no-user-template variable 341

scp-read-file-template variable 341

scp-run-helper-no-user-template variable 342

scp-run-helper-template variable 342

scp-unix-sftp-command variable 342

scp-windows-sftp-command variable 342

scp-write-file-no-user-template variable 343

scp-write-file-template variable 343

scratch buffers 57

screen 21

screen-border color class 107

screen_cols primitive 343, 453

599

screen-decoration color class 107

screen_lines primitive 343, 453

screen_messed() primitive 453

screen_to_window() primitive 445

screen_to_window_id() primitive 503

scripts

complex 127

scroll bar 29

Scroll Lock key 99

scroll-at-end variable 40, 343

scroll_bar_line() primitive 544

scroll-bar-type variable 343

scroll_by_wheel() subroutine 544

scroll-down command 101, 230

scroll-init-delay variable 29, 344

scroll-left command 101, 230

scroll-rate variable 29, 344

scroll-right command 101, 230

scroll-up command 101, 230

scrollbar_handler() subroutine 545

scrolling, lines 101

search() primitive 427, 428

search-again command 45, 46, 230

search-all-help-files command 96, 230

search_continuation primitive 431

search-defaults-from variable 45, 62, 344

search-delete-match variable 344

search-in-menu variable 27, 344

search-in-region variable 231, 344

search-man-pages command 95, 96, 231

search-man-pages-shows-all variable 344

search-positions-at-start variable 344

search_read() subroutine 430

search-region command 45, 46, 231

search-wraps variable 44, 345

searching

and replacing 61

case folding 43

conventional 44

for special characters 43

for words 43

incremental 43

incremental mode 44

regular expression 43

searching multiple files 46

secure shell 124

see-delay variable 104, 345, 459

select-browse-file command 51, 52, 232, 261

select-buffer command 111, 131, 231

select-help-files command 96, 231

select_low_window() primitive 443

select_menu_item() subroutine 553

select_printer() primitive 506

select-tag-file command 49, 50, 232

selectable-colors variable 345

selected_color_scheme primitive 263, 345, 363, 473

Send To menu, putting Epsilon on a 138

send-invisible command 232

sendeps program 138

-sendonly command line flag 16

sentence commands 41

sentence-end variable 345

sentence-end-double-space variable 41, 345

-server command line flag 16, 136

server-raises-window variable 137, 345, 503

session-always-restore variable 135, 345

session-default-directory variable 135, 346

session-file-name variable 136, 346

session-restore-biggest-file variable 346

session-restore-biggest-remote-file variable

346

session-restore-directory variable 135, 346

session-restore-directory-buffers variable 346

session-restore-files variable 135, 346

session-restore-max-directories variable 347

session-restore-max-files variable 134, 347

session-tree-root variable 135, 347

session-warn-when-saving variable 347

sessions, restoring 134

set-abort-key command 99, 232

set-any-variable command 151, 152, 232

set-bookmark command 48, 49, 51, 232

set_buf_modified() subroutine 482

set_buf_point() subroutine 438

set_buffer_filename() subroutine 483

set_character_color() primitive 423, 467

set_character_property() primitive 518

set_chars() primitive 521

set-color command 107, 108, 232, 245

set_color_pair() primitive 473

set-comment-column command 98, 233

set-debug command 159, 233

set-dialog-font command 106, 233

set-display-characters command 104, 106, 233, 455

set_display_func_name() subroutine 566

set-display-look command 109, 234

600 Appendix A. Index

set-encoding command 127, 234

SET_ENCODING() textual macro 479

set-file-name command 114, 234

set_file_opsys_attribute() primitive 484

set_file_read_only() primitive 484

set-fill-column command 74, 234

set-font command 106, 235

set-line-translate command 116, 117, 235

set_list_keys() subroutine 560

set-mark command 57, 235

set_mode() subroutine 451

set_mode_message() subroutine 316, 451

set_name_debug() primitive 532

set_name_help() primitive 534

set_name_user() primitive 526

set-named-bookmark command 48, 235

set_num_var() primitive 525

set-printer-font command 106, 128, 235

set_range() primitive 559

set_region_type() subroutine 465

set-show-graphic command 104, 105, 235

set_spot() subroutine 426

set_str_var() primitive 525

set_swapname() primitive 523

set-tab-size command 104, 106, 236

set_tagged_region() primitive 469

SET_TRANSLATE() textual macro 479

set-variable command 43, 151, 152, 236, 525, 526

set-variable, in command file 156

set-want-backup-file command 236

set_wattrib() primitive 447

set_window_caption() primitive 557

setjmp() primitive 516

setting

colors 106

variables 151

setting bookmarks 47

sftp program 124

shebang line 120

SHELL environment variable 12, 140

shell extension, Open with Epsilon 139

shell mode 91

shell() primitive 510, 511

shell-auto-show-delim-chars variable 347

shell-command command 140, 236

SHELL_HIDE textual macro 510

SHELL_KEEP_ENV textual macro 510, 511, 514

SHELL_MAXIMIZED textual macro 510

SHELL_MINIMIZED textual macro 510

shell-mode command 91, 236

SHELL_NO_SYNCH textual macro 510

SHELL_SYNCH textual macro 510, 514

shell-tab-override variable 91, 347

shelling commands 139

shift_pressed() primitive 541

shift-selecting variable 347

shift-selects variable 56, 347

short, eel keyword 385, 523

shortcut, running Epsilon from a 138

show-all-variables variable 348

show_binding() subroutine 534

show-bindings command 35, 36, 237

show_char() primitive 538

show-connections command 123, 124, 237

show-last-keys command 36, 237

show-matching-delimiter command 42, 82, 85, 237, 314

show-menu command 30, 237

show_minor_mode_ subroutines 451

show-mouse-choices variable 348, 543

show-point command 101, 237

show_replace() subroutine 430

show-spaces buffer variable 104, 178, 348

show-standard-bitmaps command 237, 506

show_status primitive 348, 434

show-tag-line variable 48, 348

show_text() primitive 459

show_url() subroutine 495

show-variable command 151, 152, 237

show-version command 238

show-view-bitmaps command 238, 506

show-when-idle variable 109, 348, 535

show-when-idle-column variable 109, 349

show_window_caption() subroutine 557

shrink-window command 103, 238

shrink-window-horizontally command 103, 238

shrink-window-interactively command 103, 238

signal_suspend() primitive 502

simple_re_replace() subroutine 430

size() primitive 421

sizeof operator 401

soft-tab-size buffer variable 76, 171, 200, 201, 349,

352

sort_another() subroutine 434

sort-buffer command 72, 238

sort-case-fold buffer variable 72, 349

sort-region command 72, 238

601

sort-tags command 50, 238

sorting 72, 434

source code browsing 50

source level tracing debugger 373

Sp, in mode line 77

SPACE_VALID textual macro 548

SPACEBAR textual macro 537

special files, ignoring 46

spell checking 77

spell-buffer-or-region command 78, 79, 239

spell-configure command 77, 79, 239

spell-correct command 78, 79, 239

spell-grep command 78, 79, 240

spell-helper-program variable 239, 350

spell_language_prefix primitive 79

spell-mode command 78, 79, 240

split_string() subroutine 498

split-window command 102, 240

split-window-vertically command 102, 240

spot 424

spot, eel keyword 385

spot_to_buffer() primitive 424

sprintf() primitive 521

ssh agents 124, 125

ssh command 124, 126, 240

ssh program 124

ssh-command-windows variable 350, 351

ssh-interpret-output variable 124, 350

ssh-mode command 126, 240

ssh-no-user-template variable 125, 351

ssh-template variable 125, 351

standard-color variable 473

standard-gui variable 473

standard-mono variable 473

standard_tab_cmd() subroutine 457

standard-toolbar command 164, 240, 506

standardize_remote_pathname() subroutine 489

start-epsilon script 7

start-kbd-macro command 146, 216, 241

start-make-in-buffer-directory variable 351

start_of_function variable 566

start_print_job() primitive 506

start-process command 140, 142, 241, 511

start-process-in-buffer-directory variable 351

start_profiling() primitive 534

start_up() subroutine 525, 532

starting Epsilon 9

STARTMATCH textual macro 547

starts_with_in_list() subroutine 520

startup files 152

state file 16, 152

state_extension primitive 351, 529

state_file primitive 532

state-file-backup-name variable 153, 351

_std_disp_class variable 455

std_find_it() subroutine 476

std_pointer primitive 543

stop-process command 142, 241, 512

stop_profiling() primitive 534

strcat() primitive 521

strchr() primitive 519

strcmp() primitive 519

strcpy() primitive 521

strfcmp() primitive 519

stricmp() primitive 519

string constant 384

string_matches_pattern() subroutine 520

string_matches_regex() subroutine 520

string_replace() subroutine 339, 430

string-search command 44, 46, 241

strings in when_loading() ftns 529

strkeep() subroutine 522

strlen() primitive 519

strncat() primitive 521

strncmp() primitive 519

strncpy() primitive 521

strnfcmp() primitive 519

strpbrk() subroutine 520

strpbrk_cnt() subroutine 520

strrchr() primitive 519

strsave() primitive 522, 529

strstr() primitive 519

strtoi() subroutine 552

structure-or-union specifier 389

stuff() primitive 422

stuff_macro() subroutine 538

subroutine 386

suffix_ subroutines 80, 564

suffix_default() subroutine 564

suffix_none() subroutine 564

Susp, in mode line 146

suspend-epsilon command 134, 241

swap file 14

switch, eel keyword 395, 397

switch-buffers command 111, 241, 352

switch-buffers-options variable 241, 352

602 Appendix A. Index

switch_to_buffer() subroutine 448

switch-windows command 242

switches

for EEL 379

for Epsilon 13

symbolic links, ignoring 292

syntax highlighting 108

system variables 151

system_window primitive 352, 447

T
tab size, setting 104, 307, 352

tab_convert() subroutine 457

tab-size buffer variable 76, 82, 104, 171, 200, 201,

349, 352, 454

tab-width file variable 120

tabify-buffer command 76, 242

tabify-region command 76, 242

table_count primitive 352, 560

table_keys primitive 560

table_prompt() subroutine 560

tabs, used for indenting 76

tag, struct or union 389

tag-ask-before-retagging variable 49, 352

tag-batch-mode variable 352

tag-by-text variable 50, 352

tag-c-preprocessor-skip-pat variable 352

tag-case-sensitive variable 49, 353

tag-declarations variable 49, 353

tag-display-width variable 353

tag-extern-decl variable 353

tag-files command 49, 50, 242

tag-list-exact-only variable 353

tag-options variable 353

tag-pattern-c variable 353

tag-pattern-default variable 353

tag-pattern-perl variable 353

tag-relative variable 50, 353

tag-show-percent variable 354

tag_suffix_default() subroutine 499

tag_suffix_none() subroutine 499

tag-which-items variable 354

tagged regions 469

tagging function names 48

TB_BORD() textual macro 444

Tcl mode 91

tcl-auto-show-delim-chars variable 354

tcl-indent variable 91, 354

tcl-indent-and-show-matching-delimiter command 242

tcl-indent-cmd command 242

tcl-mode command 91, 242

-teach command line flag 16

telnet command 123, 124, 242

Telnet URL 123

telnet_host() primitive 495

telnet_id variable 495

telnet-interpret-output variable 123, 354

telnet-mode command 124, 243

telnet_send() primitive 495

telnet_server_echoes() primitive 495

TEMP environment variable 12, 14

temp_buf() subroutine 438

template, file name 115, 493

term_clear() primitive 462

term_cmd_line() subroutine 454

term_init() subroutine 454

term_mode() subroutine 454

term_position() primitive 462

term_write() primitive 463

term_write_attr() primitive 463

terminal program under X11 17

terminal-epsilon program 6

TeX mode 92

tex-auto-fill-mode variable 354

tex-auto-show-delim-chars variable 355

tex-boldface command 93, 243

tex-center-line command 93, 243

tex-close-environment command 93, 243

tex-display-math command 93, 243

tex-environment command 93, 243

tex-environment-name variable 355

tex-fill-paragraph command 243

tex-footnote command 93, 243

tex-force-latex buffer variable 92, 355

tex-force-quote command 93, 243

tex-inline-math command 93, 244

tex-italic command 93, 244

tex-left-brace command 93, 244

tex-look-back variable 92, 355

tex-math-escape command 93, 244

tex-mode command 93, 244

tex-paragraphs buffer variable 41, 194, 355

tex-quote command 93, 244

tex-rm-correction command 93, 244

tex-save-new-environments variable 355

603

tex-slant command 93, 244

tex-small-caps command 93, 245

tex-spell-options variable 355

tex-typewriter command 93, 245

text color class 107, 475

text_color primitive 355, 475

text_height() primitive 442

text_width() primitive 442

third mouse button 30

this_cmd primitive 356, 516, 558

tiled-border variable 356

tiled_only() subroutine 448

tiled-scroll-bar variable 356

time_and_day() primitive 508

time_begin() primitive 507

time_done() primitive 507

time_ms() primitive 507

time_remaining() primitive 507

TIMER, type definition 507

title, of window 450

TITLECENTER textual macro 450

TITLELEFT() textual macro 450

TITLERIGHT() textual macro 450

TMP environment variable 14

tmp_buf() subroutine 438

to_another_buffer() subroutine 448

to_begin_line() textual macro 433

to_buffer() subroutine 447

to_buffer_num() subroutine 447

to_column() subroutine 456

to_end_line() textual macro 433

to-indentation command 76, 245

to-left-edge command 245

to-right-edge command 245

to_virtual_column() subroutine 457

toggle-borders command 108, 245

toggle-case-fold command 43, 46, 245

toggle-menu-bar command 30, 246

toggle-scroll-bar command 29, 246

toggle-toolbar command 164, 165, 246

tokenize_lines() primitive 436

tolower() primitive 518

toolbar_add_button() primitive 505

toolbar_add_separator() primitive 505

toolbar_create() primitive 505

toolbar_destroy() primitive 505

top_level primitive 517

Topindent variable 82, 356

TOPLEFT textual macro 442

toupper() primitive 518

tracing debugger 159

translation 115, 479

translation-type buffer variable 116, 356, 475, 477,

479, 481

transpose-characters command 73, 246

transpose-lines command 73, 246

transpose-words command 73, 246

transposing things 73

try_calling() primitive 524

try_show_url() subroutine 495

#tryinclude preprocessor command 381

tutorial 9

tutorial command 246

two_scroll_box() subroutine 556

type names 391

type point 141

type specifier 386

TYPE_BYTE textual macro 527, 528

TYPE_CARRAY textual macro 527, 528

TYPE_CHAR textual macro 527, 528

TYPE_CPTR textual macro 527, 528

TYPE_INT textual macro 527, 528

TYPE_OTHER textual macro 527

type_point primitive 356, 511

TYPE_POINTER textual macro 527

TYPE_SHORT textual macro 527, 528

typing-deletes-highlight variable 57, 344, 356

typing-hides-highlight variable 57, 356

U
unbind-key command 147, 148, 246

UNC network file syntax 130

uncompress-files variable 112, 357

#undef preprocessor command 381

underlined text 106

undo command 98, 99, 226, 246

undo vs. undo-changes 99

undo-by-commands command 99, 246

undo-changes command 99, 247

undo_count() primitive 427

UNDO_DELETE textual macro 427

UNDO_END textual macro 427

undo_flag primitive 357, 427

UNDO_FLAG textual macro 427

UNDO_INSERT textual macro 427

604 Appendix A. Index

undo-keeps-narrowing buffer variable 357

UNDO_MAINLOOP textual macro 427

undo_mainloop() primitive 427, 558

UNDO_MOVE textual macro 427

undo-movements command 99, 247

undo_op() primitive 426

UNDO_REDISP textual macro 427

undo_redisplay() primitive 427

UNDO_REPLACE textual macro 427

undo-size buffer variable 99, 357

ungot_key primitive 357, 535, 537

Unicode conversion 127, 481

UNICODE textual macro 380

unicode-convert-from-encoding command 117, 127, 247

unicode-convert-to-encoding command 117, 127, 247

uniform resource locator (URL) 122

uniq command 53, 54, 247

unique_file_ids_match() subroutine 486

unique_filename_identifier() primitive 486

Unix files 115

Unix, Epsilon for 6

Unix, in mode line 116

unsaved_buffers() subroutine 482

unseen_msgs() primitive 459

unseen_msgs_time() primitive 459

untabify-buffer command 60, 76, 247

untabify-region command 76, 247

untag-files command 50, 247

up-line command 40, 248

update Epsilon 160

update_readonly_warning() subroutine 476

updating Epsilon 160

uppercase-word command 60, 61, 248

URL (uniform resource locator) 122

URL syntax 126

url_operation() subroutine 496

url_services primitive 492

use_alternate_dialog variable 557

use_alternate_dialog_name variable 557

use-c-macro-rules variable 84, 357

use_common_file_dialog() subroutine 553

use_common_file_dlg() subroutine 553

use-compile-command-file-variable variable 357

use_default primitive 358, 528

USE_DEFAULT_COLORS environment variable 107

use-file-variables variable 121, 358

use-grep-ignore-file-variables variable 47, 358

use-process-current-directory variable 358, 488

user, eel keyword 151, 406, 526

user_abort primitive 358, 515

Users directory 13

using_new_font primitive 463

using_oem_font() primitive 463

UTF-16 encoding 127

V
-v command line flag 380

variables

buffer-specific 151, 385, 406

in EEL 384

setting & showing 151

window-specific 151, 385, 406

varptr() primitive 527

vartype() primitive 527

vartype_class() subroutine 528

VBasic mode 93

vbasic-auto-show-delim-chars variable 359

vbasic-indent variable 94, 359

vbasic-indent-case variable 359

vbasic-indent-subroutines variable 94, 359

vbasic-indent-with-tabs variable 94, 359

vbasic-language-level variable 94, 359

vbasic-mode command 94, 248

vbasic-reindent-previous-line variable 283, 359

-vc command line flag 16, 453

-vcolor command line flag 16

verenv() primitive 500

version primitive 358, 532

versioned-file-string variable 359

vert-border color class 107, 475

VERTICAL textual macro 441

VHDL mode 93

vhdl-auto-show-delim-chars variable 360

vhdl-indent variable 360

vhdl-indenter command 248

vhdl-mode command 93, 248

Vi/Vim file variables 122

_view_border variable 446

_view_bottom variable 446

view_buf() subroutine 445, 550

view_buffer() subroutine 445

_view_left variable 446

view_linked_buf() subroutine 445, 534

view_loop() subroutine 446

view-lugaru-web-site command 124, 248

605

view-process command 143, 145, 248

_view_right variable 446

view_tab primitive 550

_view_title variable 446

_view_top variable 446

view-web-site command 124, 248

virtual_column() subroutine 457

virtual-insert-cursor variable 105, 360

virtual-insert-gui-cursor variable 105, 360

virtual_mark_column() subroutine 457

virtual-overwrite-cursor variable 105, 360

virtual-overwrite-gui-cursor variable 105, 360

virtual-space buffer variable 40, 360

VisEpsil.dll file 137

visit-file command 112, 248

Visual Basic mode 93

Visual Studio, integration with 137

visual-diff command 53, 54, 249

visual-diff-mode command 54, 249

-vl command line flag 16, 453

-vmono command line flag 16

VMS 296

volatile, eel keyword 393

-vt command line flag 17

-vv command line flag 17

-vx command line flag 17

VxD 5

-vy command line flag 17

W
-w command line flag 17, 286

w-bottom variable 360

w-left variable 360

w-right variable 361

w-top variable 361

-wait command line flag 17

wait_for_key() primitive 535, 536, 558

wait_for_unseen_msgs() subroutine 459

wall-chart command 36, 37, 249

want-auto-save variable 115, 256, 361

want-backups buffer variable 114, 259, 361

want-bell variable 109, 361, 502

want-code-coloring buffer variable 108, 361

want_cols primitive 361, 453

want-common-file-dialog variable 118, 361

want-display-host-name variable 361

want-gui-menu variable 362

want-gui-printing variable 128, 362

want-gui-prompts variable 362

want_lines primitive 362, 453

WANT_MODE_LINE textual macro 451

want-sorted-tags variable 50, 362

want-state-file-backups variable 153, 362

want_toolbar primitive 362, 506

want-warn buffer variable 114, 362

want-window-borders variable 362

warn-before-overwrite variable 113, 362

warn_existing_file() subroutine 478

was_key_shifted() subroutine 541

was-quoted variable 363

Web URL 123

what-is command 36, 249

wheel mouse button 30

wheel mouse support 363

wheel-click-lines variable 363

when_aborting() subroutine 514

when_activity buffer variable 511, 513

when_displaying variable 472

when_exiting() subroutine 515

when_idle() subroutine 535

when_loading() subroutine 411, 529

when_net_activity buffer variable 497

when_repeating() subroutine 536

when_restoring() subroutine 531

when_setting_ subroutines 525

while, eel keyword 395

widen-buffer command 166, 249

wildcard file patterns 128

wildcard searching 63

win-askpass.exe file 18

WIN_BUTTON textual macro 545, 557

win_display_menu() primitive 505

WIN_DRAG_DROP textual macro 136, 544

WIN_EXIT textual macro 545

win_help_contents() primitive 504

WIN_HELP_REQUEST textual macro 545

win_help_string() primitive 504

win_load_menu() primitive 505

win_menu_popup() primitive 505

WIN_MENU_SELECT textual macro 315, 544

WIN_RESIZE textual macro 545

WIN_VERT_SCROLL textual macro 545

WIN_WHEEL_KEY textual macro 325, 544, 545

window

keyword 406, 412

606 Appendix A. Index

window handle 441

window number 441

window storage class 151

window title 450

window, eel keyword 151, 385, 406

window_at_coords() primitive 444

window-black color class 109

window-blue color class 109

window_bufnum primitive 363, 448

window-caption variable 108, 363

window-caption-buffer variable 108, 363

window-caption-file variable 108, 363

window_content_width() primitive 442

window_create() subroutine 443

window_edge() primitive 442

window_end primitive 363, 448

window_extra_lines() primitive 449

_window_flags window variable 451

window_handle primitive 363, 441

window_height primitive 363, 442

window_kill() primitive 440

window_left primitive 364, 445

window_line_to_position() primitive 449

window_lines_visible() primitive 554

window_number primitive 364, 441

window_one() primitive 440

window-overlap variable 100, 364

window_scroll() primitive 449

window-specific variables 151, 385

window_split() primitive 441

window_start primitive 364, 448

window_title() primitive 450

window_to_fit() subroutine 449

window_to_screen() primitive 445

window_top primitive 364, 445

window_width primitive 364, 442

windows 21

creating 102

deleting 102

selecting 103

sizing 103

windows_foreground() primitive 503

windows_help_from() subroutine 504

windows_maximize() primitive 503

windows_minimize() primitive 503

windows_restore() primitive 503

windows_set_font() primitive 463

windows_state() primitive 503

winexec() primitive 514

winhelp-display-contents variable 231, 364

winpty.exe file 350

WINSTATE_MAXIMIZED textual macro 503

WINSTATE_MINIMIZED textual macro 503

word commands 40

word searching 43

WORD textual macro 429

word wrap mode 73

word_in_list() subroutine 520

word-pattern buffer variable 41, 194, 364

word_search() subroutine 430

wrap-dired-live-link variable 133, 364

wrap-grep variable 365

wrap-info-mode variable 38, 365

wrap-split-vertically variable 102, 365

wrap-view-error-lines variable 332, 365

wrapping during searches 44

wrapping text as you type 73

wrapping, lines 101

write-file command 114, 249

write-files-and-exit command 249

write-line-translate file variable 120

write_part() subroutine 483

write-region command 114, 250

write-session command 135, 136, 250

write-state command 152, 153, 154, 250, 369, 406

WWW URL 123

X
x_pixels_per_char() primitive 541

X11 windowing system 6

xdvi dvi viewer program 207

xfer() subroutine 422

xfer_rectangle() subroutine 466

XML mode 86

xml-asp-coloring variable 87, 365

xml-auto-fill-combine variable 365

xml-auto-fill-mode variable 365

xml-auto-indent variable 87, 366

xml-indent variable 87, 366

xml-mode command 88, 250

xml-paragraph-elements buffer variable 366

xml-php-coloring variable 87, 366

xml-reindent-previous-line variable 366

xml-sort-by-attribute-name command 88, 250

xml-spell-options variable 366

607

xterm 17

xterm-color variable 473

Y
y_pixels_per_char() primitive 541

yank command 57, 58, 141, 250

yank-line-retains-position variable 367

yank-options variable 367

yank-pop command 58, 250

yank-rectangle-to-corner variable 367

yank-x-selection command 59, 251

yap dvi viewer program 207

Z
zap() primitive 437

zeroed, eel keyword 406

zoom-window command 102, 251

